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Abstract. Let F (T ) 2 Z[T ] be a nonconstant polynomial. We prove a
result concerning the maximal order of ⌦(F (n)), where ⌦(·) denotes the
total number of prime factors (counting multiplicity). In the case when
F has only simple roots, the result asserts that

lim sup
n!1

⌦(F (n))

log n
=

1

log `
,

where ` is the least prime for which F has a zero in the `-adic integers
Z`. This extends investigations of Erdős and Nicolas, who treated the
case F (T ) = T (T + 1).

1. Introduction

Let ⌦(n) :=
P

p

k|n 1 denote the number of (positive) prime factors of n,

counted with multiplicity. The study of statistical properties of ⌦(n) was a

major impetus for the development of probabilistic number theory in the

first half of the twentieth century. It is a simple consequence of elementary

prime number theory that ⌦(n) behaves like log log n on average. Hardy

and Ramanujan [HR17] showed that this average behavior is typical by

demonstrating that ⌦(n) ⇠ log log n as n ! 1 along a set of asymptotic

density 1. This result was refined in celebrated work of Erdős and Kac

[EK40], who proved that ⌦(n) possesses a Gaussian distribution with mean

and variance log log n. In contrast with the depth of these authors’ work,

the minimal and maximal orders of ⌦(n) are trivial to determine: ⌦(n) = 1

for prime n, while ⌦(n) = logn

log 2

when n is a power of 2.

Let F (T ) 2 Z[T ] be a fixed polynomial. One can ask for the average,

normal, minimal, and maximal orders of ⌦(F (n)). The first two questions

have been satisfactorily resolved (see, e.g., [Hal56] for an analogue of the

Erdős–Kac theorem in this context). The third question is in general very

di�cult; to take a famous example, we expect that if F (T ) = T (T + 2),

then ⌦(F (n)) = 2 infinitely often, but we are still far from proving this.

Probably the following is true:
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Hypothesis H0. Let F (T ) be a nonzero polynomial with integer coe�cients.

Let D := gcd
n2Z{F (n)} be the greatest fixed divisor of F . Then

lim inf
n!1

⌦(F (n)) = r + ⌦(D),

where r is the number of monic irreducible factors of F in Q[T ], counted

with multiplicity.

We remark that it is easy to compute D = D(F ) for a given F . Indeed,

setting d := degF , a theorem of Hensel [Hen96] asserts that

D(F ) = gcd(F (0), F (1), . . . , F (d)).

Moreover, Pólya [Pol15] has shown (cf. [Bha00]) that if the coe�cients of

F do not all share a common factor > 1, then D(F ) | d! .
We show in §2 that Hypothesis H0 is equivalent to Schinzel’s well-known

Hypothesis H [SS58] concerning simultaneous prime values of polynomials.

This equivalence, and its proof, are similar in flavor to Schinzel’s own argu-

ment [Sch62] that his Hypothesis H implies a conjecture of Bunyakovsky.

The primary purpose of this note is to give a satisfactory answer to the

remaining, fourth question: What is the maximal order of ⌦(F (n))? Erdős

and Nicolas [EN80] considered this problem when F (T ) = T (T + 1), so

that ⌦(F (n)) = ⌦(n) + ⌦(n+ 1). Trivially, ⌦(F (n))  2 log (n+1)

log 2

. But these

authors showed [EN80, Théorème 3] that in fact,

⌦(n(n+ 1))  (1 + o(1))
log n

log 2
(as n ! 1).

We show that ⌦(F (n)) always has maximal order C log n for some positive

constant C. More precisely, factor F as

(1.1) F (T ) = ±Cont(F )
kY

i=1

F
i

(T )ei ,

where Cont(F ) is the content of F (the greatest common divisor of its

coe�cients) and the F
i

are distinct irreducible elements of Z[T ], each with

positive leading term. For each 1  i  k, we let `
i

denote the least prime `

for which F
i

has a root in the `-adic integers Z
`

(equivalently, for which F
i

has a zero modulo every power of `). To see that `
i

is well-defined, first note

that a straightforward variant of Euclid’s proof of the infinitude of primes

shows that F
i

has a root modulo ` for infinitely many primes ` (see, for

example, [Sch12, pp. 40–41]). For each such ` not dividing the resultant of

F
i

and F 0
i

, one sees from Hensel’s lemma that F has a root in Z
`

. We can

now state our main result.
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Theorem 1. Let F (T ) 2 Z[T ] be a nonconstant polynomial with integer

coe�cients. Suppose that F is written in the form (1.1). For each 1  i  k,

define `
i

as above. Then

lim sup
n!1

⌦(F (n))

log n
= C(F ), where C(F ) := max

1ik

e
i

log `
i

.

In particular, if F has only simple roots, then C(F ) = 1/ log `, where ` is

the least prime for which F has a zero in Z
`

.

Our proof is similar in spirit to that of Erdős and Nicolas, but replaces

the use of Ridout’s version of Roth’s theorem with an application of the

subspace theorem.

The questions we have raised make sense also for !(F (n)), where !

counts the number of distinct prime factors. However, as observed already

by Erdős and Nicolas, here it seems very di�cult to prove any nontrivial re-

sults about the maximal order. To illustrate the di�culties, call the natural

number n special if n(n+1) is the product of the first k primes for some k;

e.g., n = 714 is special, with k = 7. Improving the trivial bound

lim sup
n!1

!(n(n+ 1))

log n/ log log n
 2

entails showing that there are only finitely many special n. This conjecture,

first proposed by Nelson, Penney, and Pomerance [NPP74], seems unattack-

able at present. It may be mentioned that in a 2009 preprint, A. Da̧browski

conjectured that there are precisely 28 solutions to the equation

(1.2) N2 � 1 = pa1
1

· · · pak
k

,

where N and the a
i

are positive integers, and p
i

denotes the ith prime. Note

that if n is special, then N = 2n + 1 gives a solution to (1.2). The results

of [LN11] imply the truth of Da̧browski’s conjecture for all k  25.

Notation. Most of our notation is standard or will be explained when

needed, so we make only a few brief remarks: We let |·| (without a subscript)
denote the usual absolute value on C. For a prime p and a nonzero rational

number x, we write ord
p

(x) for the exponent of p in the prime factorization

of x. We say that a number n is y-smooth if each prime factor of n is bounded

by y, and we define the y-smooth part of n as its largest y-smooth divisor.

2. Minimal order: The equivalence of Hypotheses H and H0

We begin by recalling the statement of Schinzel’s Hypothesis H [SS58]:
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Hypothesis H. Suppose that G
1

(T ), . . . , G
k

(T ) 2 Z[T ] are irreducible over
Q, each with positive leading coe�cient. Put G :=

Q
k

i=1

G
i

. Suppose that

G has no fixed prime divisor: for every prime p, there is an integer m
p

for which p - G(m
p

). Then there are infinitely many natural numbers n for

which each G
i

(n) is prime.

It is clear that Hypothesis H0 implies H: We need only apply H0 with

F =
Q

r

i=1

G
i

(assuming, as we may, that the G
i

are distinct). So we may

focus our energies on showing that H implies H0.

Let F (T ) 2 Z[T ] be a nonzero polynomial for which we wish to establish

the conclusion of Hypothesis H0. We can assume that F is nonconstant and

that Cont(F ) = 1. Hence, we may write F =
Q

k

i=1

F
i

(T )ei , where each

F
i

(T ) is nonconstant, irreducible over Z, and possesses a positive leading

coe�cient. Let D = gcd
n2Z{F (n)}; we must prove that

lim inf
n!1

⌦(F (n)) = ⌦(D) + r, where r :=
kX

i=1

e
i

.

It is easy to prove that ⌦(F (n)) � ⌦(D)+ r for all large n. Indeed, since

D | F (n) =
Q

k

i=1

F
i

(n)ei , there is a factorization D =
Q

k

i=1

D
i

where each

D
i

| F
i

(n)ei . Then with D0
i

:=
Q

p

pd(ordpDi)/eie, we have D0
i

| F
i

(n) for all

1  i  n, and so

F (n) =

 
kY

i=1

D0ei
i

! 
kY

i=1

(F
i

(n)/D0
i

)ei

!
.

The first product contributes at least ⌦(D) prime factors, since D =
Q

D
i

|Q
D0ei

i

, and the second product contributes at least
P

k

i=1

e
i

= r primes (for

large n). This gives the desired lower bound on ⌦(F (n)).

Turning to the upper bound, let S be the set of primes p for which

either p | D or p  degF . For each p 2 S, choose an integer n
p

so that

p1+ordp(D) - F (n
p

). Choose n
0

to satisfy the simultaneous congruences

n
0

⌘ n
p

mod p1+ordp(D) for all p 2 S.

With M :=
Q

p2S p
1+ordp(D), put F̃

i

(T ) = F
i

(MT + n
0

), and set F̃ (T ) =

F (MT + n
0

), so that F̃ (T ) =
Q

k

i=1

F̃
i

(T )ei . Since D | M and D | F (n
0

), it

is clear that F̃ (T )/D 2 Z[T ]. Moreover, F̃ (T )/D has no fixed prime divisor:

Indeed, gcd(F̃ (0)/D,M) = gcd(F (n
0

)/D,M) = 1 by construction, so that

no prime in S is a fixed divisor of F̃ (T ). Moreover, if p 62 S, then the

reduction of F̃ (T ) modulo p is nonzero and has degree  degF < p, so that

again p is not a fixed divisor of F̃ (T )/D.
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Since F̃ (T )/D has no fixed prime divisor, we have in particular that

(2.1) D = Cont(F̃ ) =
kY

i=1

Cont(F̃
i

)ei .

Let G
i

(T ) := F̃
i

(T )/Cont(F̃
i

). Since each F
i

is irreducible over Q, so is each

G
i

. In Z[T ], we have (referring back to (2.1))

G(T ) :=
kY

i=1

G
i

(T ) |
kY

i=1

G
i

(T )ei = F̃ (T )/D;

as F̃ (T )/D has no fixed prime divisor, neither does G(T ). So by Hypothesis

H, there are infinitely many n for which each G
i

(n) is prime. For any such

n, it is clear that

F (Mn+ n
0

) = F̃ (n) = D
kY

i=1

G
i

(n)ei

has precisely ⌦(D) +
P

i

e
i

= ⌦(D) + r prime factors, as desired.

3. Maximal order

3.1. The lower bound. It is simple to prove that ⌦(F (n)) is occasionally

at least as large as predicted here: Fix 1  i  r so that the ratio e
i

/ log `
i

is maximal. Write e = e
i

and ` = `
i

(to ease notation). For each natural

number j, choose n
j

2 [`j, 2`j) so that F
i

(n
j

) ⌘ 0 (mod `j). Then the n
j

tend to infinity and

⌦(F (n
j

)) � e · ⌦(F
i

(n
j

)) � e · j � e
log(n

j

/2)

log `
.

This shows that the lim sup considered in Theorem 1 is at least as large as

predicted.

3.2. The upper bound. To see that the lim sup in Theorem 1 is no larger

than predicted, we use a version of Schmidt’s subspace theorem due to

Schlickewei. First, some terminology. For a nonzero rational number x, its

infinite valuation is |x|1 = |x|. Finite valuations correspond to prime num-

bers p, and for such a prime, the p-adic valuation of x is taken to be

|x|
p

= p�ordp(x). Put MQ = {p : p prime} [ {1}. Such valuations are

sometimes called normalized since the product formula
Y

v2MQ

|x|
v

= 1 holds for all x 2 Q⇤.

Often one extends these valuations to all algebraic numbers. A canonical

way to do this is the following. Let K be an algebraic number field of degree

d over Q. The infinite valuations v of K are in correspondence with the
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embeddings � : K ,! C. If � is real and x 2 K, then |x|
v

= |�(x)|1/d,
whereas if � is complex non-real then |x|

v

= |�(x)|2/d. Finite valuations of

K are in correspondence with prime ideals ⇡ in OK. More precisely, say ⇡

is a prime ideal in K of norm NK/Q(⇡) = pf . Then |x|
v

= p�cvord⇡(x), where

c
v

= f/d, and ord
⇡

(x) is the exponent at which the prime ideal ⇡ appears

in the factorization of the fractional ideal xOK generated by x inside K.

Put MK for the set of all valuations of K. Then one checks easily that the

formula Y

v2MK

|x|
v

= 1 holds for all x 2 K⇤.

Let m � 2 be given, and let S be a finite subset of MK containing all

the infinite valuations. Assume that for each v 2 S we are given a system

of m linearly independent linear forms L
v,i

(x) in x = (x
1

, . . . , x
m

) with

coe�cients in K. Using x
(j)

i

(1  j  d) for the conjugates of x
i

, put

kxk := max
1im

1jd

|x(j)

i

|.

Then the p-adic subspace theorem of Schlickewei [Sch77] (in the formulation

of [Sch91, Theorem 1D, p. 177]) says the following:

Theorem A. For each " > 0, the solutions x 2 Om

K of the inequality

Y

v2S

mY

i=1

|L
v,i

(x)|
v

< kxk�"

lie in finitely many proper subspaces of Km.

The proof of the upper-bound assertion of Theorem 1 is based on the

following lemma:

Lemma 1. Let F (T ) 2 Z[T ] be a polynomial of degree d � 1 with only

simple roots. Fix Z > 0. For each natural number n for which F (n) 6= 0,

write F (n) = UV , where U is the Z-smooth part of F . Given ✏ > 0, we

have U > n1+✏ for only finitely many natural numbers n.

Proof of Lemma 1. We can assume that d � 2, otherwise there is nothing

to prove. We can also assume that F is monic. To see this, write c
d

for the

leading coe�cient of F . Replacing F with �F if necessary, we can assume

that c
d

> 0. Then cd�1

d

F (T ) = G(c
d

T ) for some monic G of the same degree

as F (still with only simple roots), and the lemma holds for F provided that

it holds for G.

Let K be the splitting field of F and write

F (T ) = (T � ✓
1

)(T � ✓
2

) · · · (T � ✓
d

).
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Let N be the set of n such that F (n) = UV , with U > n1+" and Z-smooth.

Since F (T ) is monic, the numbers ✓
1

, . . . , ✓
d

are all in OK. Put m = 2,

x = (x
1

, x
2

). We shall take x
1

= n � ✓
1

and x
2

= n � ✓
2

. We take S to be

the finite subset of MK consisting of the following valuations:

(i) all the infinite valuations of K;

(ii) all the finite valuations of K sitting above some prime number p  Z.

To define the forms L
v,i

(x) for v 2 S and i = 1, 2, it is helpful to

introduce the notion of type. Let P be the set of finite valuations of S. To
each n 2 N we associate a type function f : P ! {1, 2, . . . , d}, as follows:
Let ⇡ 2 P . For each 1  i  d, write

(n� ✓
i

)OK = ⇡eiI
i,⇡

,

where I
i,⇡

is an ideal of OK coprime to ⇡ and e
i

is a nonnegative integer.

We define f(⇡) 2 {1, 2, . . . , d} as that index i for which e
i

is as large as

possible, choosing arbitrarily among the possibilities if more than one such

i exists. The number of possible types is finite. So to show that N is finite,

it su�ces to show that there are only finitely many n having a fixed type f .

We are now ready to define the forms L
v,i

(x). If v is infinite, we take

L
v,1

(x) = x
1

and L
v,2

(x) = x
1

� x
2

. It is clear that they are independent.

Say that ✓
1

has degree d
1

| d, with minimal polynomial F
1

| F . For large n,
Y

v infinite

L
v,i

(x) =
Y

v infinite

|n� ✓
1

|
v

Y

v infinite

|✓
1

� ✓
2

|

⇣ NK/Q(n� ✓
1

)1/d = F
1

(n)1/d1 ⇣ n.(3.1)

(The implied constants may depend on F .) In order to proceed to the finite

valuations, observe first that for i = 3, . . . , d, we have n� ✓
i

= c
i

x
1

+ d
i

x
2

,

where (c
i

, d
i

) is the unique solution of the system c
i

+d
i

= 1 and c
i

✓
1

+d
i

✓
2

=

✓
i

. Observe that d
i

6= 0, as otherwise c
i

= 1 and ✓
1

= c
i

✓
1

= ✓
i

. If now v 2 P
corresponds to a prime ideal ⇡, we then take L

v,1

(x) = x
1

and L
v,2

(x) = x
2

if f(⇡) 2 {1, 2}, and L
v,1

(x) = x
1

and L
v,2

= c
i

x
1

+ d
i

x
2

if f(⇡) = i � 3.

In all cases, L
v,1

(x) and L
v,2

(x) are independent. It remains to compute

|L
v,i

(x)|
v

for i = 1, 2. Continuing to denote f(⇡) by i, note that if j 6= i,

then e
j

 e
i

, so that ⇡ej divides n � ✓
j

and n � ✓
i

. Thus, it also divides

✓
j

� ✓
i

. Hence,

⇡
P

j 6=i ej |
Y

j 6=i

(✓
j

� ✓
i

) | �(F ),

where �(F ) is the discriminant of F . This shows immediately that

|L
v,1

(x)|
v

|L
v,2

(x)|
v

 |n� ✓
i

|
v

 |f(n)|
v

|�(F )|
v

.
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Hence,

(3.2)
Y

v2S
v finite

|L
v,1

(x)|
v

|L
v,2

(x)|
v


Y

v2S
v finite

|f(n)|
v

|�(F )|
v

 |�(F )|
U

⌧ 1

U
.

Thus, putting together (3.1) and (3.2), we have

Y

v2S

2Y

i=1

|L
v,i

(x)|
v

⌧ n

U
⌧ 1

n"

⌧ kxk�".

By Theorem A, all solutions x are contained in finitely many subspaces

of K2. In other words, there is a positive integer K and K pairs (C
1

, D
2

),

. . . , (C
K

, D
K

) of numbers in K, not both zero, such that each such solution

x satisfies C
i

x
1

+D
i

x
2

= 0 for some 1  i  K. Take an i with 1  i  K.

If C
i

= 0, then D
i

6= 0; thus, x
2

= 0 and n = ✓
2

. Similarly, if D
i

= 0, then

x
1

= 0 and n = ✓
1

. If neither C
i

nor D
i

vanishes, then (n� ✓
1

)/(n� ✓
2

) =

x
1

/x
2

= �D
i

/C
i

, which uniquely determines n. So there are only finitely

many possibilities for n, as desired. ⇤

Completion of the proof of Theorem 1. It remains only to prove the upper

bound for the lim sup. For an interval I, let us write ⌦
I

(n) :=
P

p

k|n,p2I 1

for the number of prime power divisors pk of n with p 2 I.

Fix a large real number Z. Write F in the form (1.1). By the choice of

`
i

, each prime < `
i

divides F
i

(n) to a bounded power. Hence, for large n,

(3.3) ⌦(F (n)) = ⌦(Cont(F ))+
kX

i=1

e
i

�
⌦

[1,`i)(Fi

(n)) + ⌦
[`i,Z]

(F
i

(n)) + ⌦
(Z,1)

(F
i

(n))
�

= O(log n/ logZ) +
kX

i=1

e
i

· ⌦
[`i,Z]

(F
i

(n)),

where for an interval I we use ⌦
I

(m) for the number of prime factors of m in

I, multiple factors counted multiply. (As before we suppress the dependence

of the implied constants on F .) Let U
i

denote the Z-smooth part of F
i

(n),

so that

(3.4) ⌦
[`i,Z]

(F
i

(n))  logU
i

log `
i

.

We now apply Lemma 1 with G(T ) :=
Q

k

i=1

F
i

(T ). Writing G(n) = UV ,

where U is the Z-smooth part of G(n), we find that U  n1+o(1) as n ! 1,

and so

(3.5)
kX

i=1

logU
i

log n
 1 + o(1).
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From (3.3), (3.4), (3.5), and the definition of C(F ) given in the theorem

statement,

⌦(F (n))  log n
kX

i=1

logU
i

log n

e
i

log `
i

+O(log n/ logZ)

 (C(F ) + o(1)) log n+O(log n/ logZ).

Dividing by log n and letting n ! 1 gives that lim sup⌦(F (n))/ log n 
C(F )+O(1/ logZ). Since Z can be taken arbitrarily large, the result follows.

⇤

Acknowledgements

The authors thank Carl Pomerance, Enrique Treviño, and the referee

for suggestions which improved the quality of the manuscript. This research

was conducted while P. P. was supported by NSF award DMS-0802970.

References

[Bha00] M. Bhargava, The factorial function and generalizations, Amer.

Math. Monthly 107 (2000), 783–799.
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C.P. 58089, Morelia, Michoacán, México
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