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1. Introduction

Let p(n) denote the classical partition function, defined as the number of ways of
writing n as a sum of positive integers, where the order of the summands is not taken
into account. Hardy and Ramanujan [10] developed the circle method in order to
obtain precise estimates of the asymptotic behavior of p(n) as n ! 1. Their results
were later refined by Rademacher [13], who found an exact expression for p(n) as
the sum of a rapidly converging series. Taking the first term in Rademacher’s series
results in the stunning asymptotic formula
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In addition to its asymptotic properties, the arithmetic properties of the parti-
tion function p(n) have drawn the attention of a number of authors. Once again,
the story begins with Ramanujan, who discovered the remarkable congruences

p(5n+ 4) ⌘ 0 (mod 5), p(7n+ 5) ⌘ 0 (mod 7), and p(11n+ 6) ⌘ 0 (mod 11),

valid for all nonnegative integers n. As a weak consequence of this result, 5, 7,
and 11 each divide infinitely many values of p(n). Seventy years later, Schinzel
showed that infinitely many primes divide some member of the sequence {p(n)}1n=0

.
(See [8, Lemma 2.1]; see also [14] for quantitative results.) Schinzel’s theorem was
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superseded by work of Ono [12], who showed that every prime divides some value
of p(n). Very roughly speaking, Ono uses the theory of modular forms to show that
congruences of the sort discovered by Ramanujan are surprisingly ubiquitous. A
useful survey of related work is given in [1].

Despite these recent developments, Schinzel’s method still has some life to it.
Quite recently, Cilleruelo and Luca [7] used a sophisticated variant of Schinzel’s ar-
gument to prove that the largest prime factor of p(n) exceeds log log n for (asymp-
totically) almost all n (see also the weaker result [11]). The purpose of this note is
to establish the analogue of Schinzel’s original theorem for a wide class of restricted
partition functions.

If A is a set of positive integers, we write pA (n) for the number of partitions
of n into parts all of which belong to A. Equivalently, pA (n) is defined by the
generating function identity

P1
n=0

pA (n)zn =
Q

a2A (1� za)�1.

Theorem 1.1. Let A be an infinite set of positive integers. Suppose that A satisfies

the following hypothesis, referred to hereafter as ‘condition P ’:

There is no prime dividing all su�ciently large elements of A. (P )

Then the set of primes that divide some nonzero value of pA (n) is infinite.

For example, Theorem 1.1 applies if A is taken to be the set of perfect rth powers
or the set of rth powers of primes, for any r � 1. Asymptotics for these partition
functions were studied by Hardy and Ramanujan (see [9, §5]). It seems plausible to
conjecture that the conclusion of Theorem 1.1 in fact holds for every infinite set A.

Theorem 1.1 does not apply to finite sets A, but for these sets the situation
is much simpler. Let A be a k-element set with k � 2. There is a degree k � 1
polynomial f(z) 2 Q[z] with the property that pA (n

Q
a2A a) = f(n) for every

natural number n. (See, for example, [2].) For all but finitely many primes p, the
coe�cients of f are p-integral, and so f can be reduced mod p. An elementary
variant of Euclid’s proof of the infinitude of primes, dating back at least to Schur
[15, pp. 40–41], shows that the reduction of f has a root mod p for infinitely many
primes p. In fact, the (non-elementary) Frobenius density theorem shows that f has
a root mod p for a positive proportion of all primes p. Thus, infinitely many primes
— in fact, a positive proportion of all primes — divide a nonzero value of pA (n).

At present, Theorem 1.1 appears to be one of only a handful of theorems in the
literature concerning arithmetic properties of the partition functions pA (n). Other
examples, concerned with the parity of pA (n), can be found in the papers of Berndt,
Yee, and Zaharescu [5,6].

2. Asymptotic results for pA (n)

On the face of it, Schinzel’s argument depends crucially on the existence of the
extremely precise asymptotic relation (1.1). In particular, it is important that the
relative error there is of size OK(n�K) for each fixed K. Except for very special sets
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A, this sharp of a result for pA (n) is unavailable, and so certain auxiliary estimates
must be developed in order to get Schinzel’s approach o↵ the ground. We collect
the needed results in this section. Throughout, all implied constants may depend
on the choice of A without further mention.

We need some notation. Letr denote the backwards-di↵erence operator, defined
by rf(n) = f(n) � f(n � 1). For each nonnegative integer k, we let r

(k) denote
the kth iterate of r. We let p(k)A (n) = r

(k)pA (n). We have the formal identity

1X

n=0

p
(k)
A (n)zn = (1� z)k

1X

n=0

pA (n)zn.

The following estimates are contained in more general results of Bateman and Erdős
(see [3, Theorem 5]).

Proposition 2.1. Let A be an infinite set of positive integers. Suppose that A
satisfies condition P . Then for each fixed nonnegative integer k,

p
(k)
A (n) ! 1 as n ! 1.

Moreover, as n ! 1,

p
(k+1)

A (n)

p
(k)
A (n)

! 0. (2.1)

Bateman and Erdős conjectured [3, p. 12] that (2.1) could be sharpened to

p
(k+1)

A (n)

p
(k)
A (n)

⌧k n�1/2 (2.2)

for all large enough n. In fact, for each fixed k, they conjectured that (2.2) holds as
long as A satisfies a condition called Pk:

There are more than k elements of A, and if we remove an arbitrary

subset of k elements from A, then the remaining elements have gcd 1.
(Pk)

We are assuming that A is infinite, and so our condition P guarantees that all of
the conditions Pk hold at once. Thus, the Bateman–Erdős conjecture implies that
under condition P , (2.2) holds for every k and all n > n

0

(k).
The conjecture of Bateman and Erdős has since been proved by Bell [4]. Writing

p
(k)
A (n) = pA (n)

Qk�1

j=0

⇣
p
(j+1)

A (n)/p(j)A (n)
⌘
, we obtain the following simple conse-

quence of Bell’s theorem.

Proposition 2.2. Let A be an infinite set of positive integers satisfying condition

P . Then for every fixed nonnegative integer k, and all large n, we have

p
(k)
A (n) ⌧k pA (n)n�k/2. (2.3)

For our proof of Theorem 1.1, it is necessary to have an upper bound on the
successive di↵erences of log pA (n). We bootstrap our way there, taking (2.3) as
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our starting point. As an intermediate step, we study the successive di↵erences of
pA (n)j .

For the remainder of this section, we assume that A is infinite and satisfies
condition P .

Lemma 2.3. Let j and k be fixed positive integers. For all large n,

r

(k)pA (n)j ⌧j,k pA (n)j · n�k/2.

Proof. The proof is by induction, based on the product rule for r:

r(fg)(n) = f(n� 1)rg(n) + g(n)rf(n). (2.4)

We call a formal expression in n a partition monomial if it is a product of terms
of the form p

(`)
A (n � m), where ` and m are nonnegative integers. The number of

terms in the product will be called the degree of the monomial, while the sum of
the values of ` will be called the weight. For example,

pA (n� 2) · pA (n� 3) · p(2)A (n) · p(1)A (n� 1)

has degree 4 and weight 0+ 0+ 2+ 1 = 3. Applying r to a monomial yields a sum
of monomials of the same degree and one higher weight. (This follows from (2.4),
by induction on the degree.) Applying this k times, r(k)pA (n)j can be written as
a sum of monomials of degree j and weight k.

Now we estimate the size of an arbitrary monomial, viewed as a function of n. Fix
nonnegative integers ` and m. From (2.3), p(`)A (n�m) ⌧ pA (n�m)n�`/2 for large
n. From (2.1) (with k = 0), we have pA (n�1) ⇠ pA (n) as n ! 1, and iterating this
shows that pA (n � m) ⇠ pA (n). Hence, p(`)A (n � m) ⌧ pA (n)n�`/2. Multiplying
inequalities of this type together, we deduce that a fixed partition monomial of
weight k and degree j is Oj,k(pA (n)j · n�k/2) for large n. Since r

(k)pA (n)j is a
sum of Oj,k(1) such monomials, the lemma follows.

We can now prove the needed result about the successive di↵erences of log pA (n).

Lemma 2.4. Let k be a fixed positive integer. Then for all large n, we have

r

(k) log pA (n) ⌧k n�k/2.

Proof. We start by writing

r

(k) log pA (n) =
kX

m=0

✓
k

m

◆
(�1)m log pA (n�m) (2.5)

=
kX

m=0

✓
k

m

◆
(�1)m log

pA (n�m)

pA (n)
. (2.6)
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Let 0  m  k. Repeated application of the k = 1 case of (2.3) shows that
pA (n)� pA (n�m) ⌧k pA (n)n�1/2 for large n. Consequently,

log
pA (n�m)

pA (n)
= log

✓
1 +

✓
pA (n�m)

pA (n)
� 1

◆◆

=
k�1X

`=1

(�1)`�1

`

✓
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pA (n)
� 1

◆`

+Ok(n
�k/2).

If we substitute this back into (2.6), the accumulated error term is Ok(n�k/2). To
estimate the main term, write

k�1X

`=1

(�1)`�1
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� 1
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+ · · ·+A
0

,

where A
0

, . . . , Ak�1

are rational numbers depending only on k. Using this in (2.6),
we obtain a main term of

kX

m=0

✓
k

m
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(�1)m

k�1X

j=0

Aj
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pA (n)

◆j

=
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j=0

AjpA (n)�j
kX

m=0

✓
k

m

◆
(�1)mpA (n�m)j

=
k�1X

j=0

AjpA (n)�j
·r

(k)pA (n)j .

The j = 0 term contributes nothing to the final sum, while by Lemma 2.3, the
terms j = 1, . . . , k � 1 each contribute Ok(n�k/2). The lemma follows.

3. Proof of Theorem 1.1

The following result, which is a consequence of Baker’s estimates for linear forms
in logarithms, is due to Tijdeman [16].

Proposition 3.1. Fix a positive integer K. There is a constant C = C(K) with the

following property: If N,M > 3 are integers both supported on the first K primes,

with N > M , then

N �M > M/(logM)C .

Proof of Theorem 1.1. Proposition 2.1 shows that pA (n) ! 1 as n ! 1. So
we may fix an n

0

with the property that pA (n) > 0 once n > n
0

. Let us suppose for
the sake of contradiction that no term of the sequence {pA (n)}1n=n0

is divisible by a
prime larger than the Kth prime, where K is a fixed positive integer. Let C = C(K)
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be as in Theorem C, and let k denote the smallest positive integer exceeding C. For
the rest of this proof, all implied constants may depend on A , K, and k.

Observe that there are arbitrarily large n for which r

(k) log pA (n) 6= 0. Other-
wise, log pA (n) eventually coincides with a polynomial in n. Since pA (n) ! 1 as
n ! 1, that polynomial must be nonconstant with a positive leading coe�cient.
However, from (1.1), log pA (n)  log p(n) ⌧

p

n. This is a contradiction.
From now on, we assume n is chosen so that r

(k) log pA (n) 6= 0. From the
expression (2.5) for r(k) log pA (n), we see that

exp(r(k) log pA (n)) =
A

B
,

where A :=
Y

0mk
m even

pA (n�m)(
k
m), B :=

Y

0mk
m odd

pA (n�m)(
k
m).

Let N = max{A,B} and M = min{A,B}. Then N > M and, assuming n is large
enough, both N and M are supported on the first K primes. By Lemma 2.4, we
have r

(k) log pA (n) ⌧ n�k/2 for large n. It follows that both A/B and B/A are of
the form 1 +O(n�k/2), and this shows that

N �M ⌧ N · n�k/2. (3.1)

Both N and M are products of 2k�1 terms from the set {pA (n), . . . , pA (n � k)}.
Since pA (n) ⇠ · · · ⇠ pA (n � k) as n ! 1, we get that N ⇠ M ⇠ pA (n)2

k�1

.
Consequently,

n1/2
� log p(n) � log pA (n) � logM.

So from (3.1),

N �M ⌧ M/(logM)k.

But k > C. Thus, for n su�ciently large (so that N and M are also large), this
contradicts Proposition 3.1.
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87 (2001) 144–153.
[5] B. C. Berndt, A. J. Yee, and A. Zaharescu, On the parity of partition functions,

Internat. J. Math. 14 (2003) 437–459.
[6] , New theorems on the parity of partition functions, J. Reine Angew. Math.

566 (2004) 91–109.
[7] J. Cilleruelo and F. Luca, On the largest prime factor of the partition function of n,

Acta Arith. 156 (2012) 29–38.
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