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Abstract

Let m be a natural number, and let Q be a set containing at least exp(Cm) primes.
We show that one can find infinitely many strings of m consecutive primes each
of which has some q ∈ Q as a primitive root, all lying in an interval of length
OQ(exp(C ′m)). This is a bounded gaps variant of a theorem of Gupta and Ram
Murty. We also prove a result on an elliptic analogue of Artin’s conjecture. Let
E/Q be an elliptic curve with an irrational 2-torsion point. Assume GRH. Then
for every m, there are infinitely many strings of m consecutive primes p for which
E(Fp) is cyclic, all lying an interval of length OE(exp(C ′′m)). If E has CM, then
the GRH assumption can be removed. Here C, C ′, and C ′′ are absolute constants.
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1 Introduction

In 1927, Artin proposed the following conjecture: If g is not a square and g 6= −1, then
there are infinitely many primes p for which g is a primitive root modulo p. Artin’s
conjecture remains unsolved, but investigations in this direction have led to many deep
and beautiful results (see [Mor12]).

In 1967, Hooley [Hoo67] showed that Artin’s conjecture is a consequence of the Gen-
eralized Riemann Hypothesis for Dedekind zeta functions (hereafter GRH). In [Pol14],
it was shown how Hooley’s proof could be merged with the method of Maynard–Tao for
producing bounded gaps between primes: On GRH, for every nonsquare g 6= −1 and
every m, there are infinitely many runs of m consecutive primes all possessing g as a
primitive root and lying in an interval of length Om(1).

There is not a single g for which the conclusion of Artin’s conjecture is known to hold
unconditionally. However, in 1984 Gupta and Ram Murty [GM84] described how to
produce many finite sets of integers some member of which satisfies Artin’s conjecture.
Their method was refined by Ram Murty and Srinivasan [MS87], Gupta, Ram Murty,
and Kumar Murty [GMM87], and by Heath-Brown [HB86]. It follows from the results
in this last paper that Artin’s conjecture holds for at least one g ∈ {2, 3, 5}. We prove a
result in this direction where the primes produced are consecutive and contained in an
interval of bounded length.

Recall that nonzero q1, . . . , qr ∈ Z are said to be multiplicatively independent if
qe11 · · · qerr = 1 in integers e1, . . . , er only when e1 = · · · = er = 0.

Theorem 1.1. Let Q be a set of r multiplicatively independent integers. Assume that
the elements q1, . . . , qr of Q satisfy the following technical condition:

If e0, e1, . . . , er are nonnegative integers for which (−3)e0qe11 · · · qerr is a
square, then

∑r
i=0 ei is even.

(*)

Let m be a natural number. If r ≥ exp(Cm), then there are infinitely many runs of m
consecutive primes p1 < · · · < pm all of which possess some element of Q as a primitive
root, where also

pm − p1 ≤ f(Q(
√
q1, . . . ,

√
qr)/Q) · exp(C ′m).

Here C and C ′ are (positive) absolute constants, and f(K/Q) denotes the conductor of
the abelian extension K/Q.

Remark. Of course, (*) holds whenever q1, . . . , qr are distinct (positive) primes.

The techniques used to attack Artin’s conjecture can also be used to answer statistical
questions about reductions of elliptic curves. Here the general setup is as follows: Let
E/Q be an elliptic curve. For all but finitely many primes p, one can reduce E mod p
to obtain an elliptic curve defined over Fp. What can one say about the structure of the
group E(Fp) as p varies? It is known that E(Fp) is always generated by two elements,
and so it is particularly natural to ask when one suffices. In other words, how often is
E(Fp) a cyclic group?
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If all of the 2-torsion of E is defined over Q, then (Z/2Z)2 sits inside E(Q), and
so E(Fp) is cyclic for at most finitely many primes p. So assume E has an irrational
2-torsion point. Assuming GRH, Serre showed that there are infinitely many primes
p with E(Fp) cyclic, using Hooley’s approach [Hoo67] to Artin’s conjecture. In fact,
Serre [Ser78] obtained an asymptotic formula for the number of such p ≤ x, as x→∞.
Ram Murty [Mur83] showed that when E has CM, Serre’s asymptotic formula can be
proved unconditionally; a simpler argument for the same conclusion has been given by
Cojocaru [Coj03]. See [CM04] and [AM10] for investigations into the size of the error
term in Serre’s formula.

We prove the following bounded gaps result.

Theorem 1.2. Let E/Q be an elliptic curve with an irrational 2-torsion point. Let m
be a natural number. If GRH holds, then there are infinitely many runs of m consecutive
primes p1 < p2 < · · · < pm for which E(Fp) is cyclic, where

pm − p1 ≤ rad(∆E) · exp(C ′′m).

Here rad(∆E) is the product of the primes of bad reduction, and C ′′ is an absolute
constant. If E has CM , then the GRH assumption can be removed.

The CM case of Theorem 1.2 is particularly easy because of the abundance of su-
persingular primes. According to a criterion of Deuring (see, e.g., [Lan87, Theorem 12,
p. 182]), a prime p of good reduction is supersingular precisely when there is a unique
prime in the CM field lying above p. As we explain below, this implies that E(Fp) is
cyclic for all primes from a certain arithmetic progression. This allows us to appeal to
a recent theorem of Banks–Freiberg–Turnage-Butterbaugh [BFTB] about long runs of
such primes in short intervals.

It is perhaps slightly unsettling that we produce only supersingular primes in the
CM case. In general, this is unavoidable. For instance, consider the curve E given by
y2 = x3 + x, whose 2-torsion points are defined over Q(i). Since E has CM by Z[i],
Deuring’s criterion tells us that a prime p of good ordinary reduction splits in Q(i),
and so E(Fp) contains (Z/2Z)2 for all such p. Our final theorem says that if there are
infinitely many p of good ordinary reduction with E(Fp) cyclic, then the set of these p
has bounded gaps.

Theorem 1.3. Let E/Q be a CM elliptic curve. Assume that there are infinitely many
primes p of good ordinary reduction for which E(Fp) is cyclic. Then there are infinitely
many tuples of m such primes p1 < · · · < pm with pm − p1 � exp(OE(m)).

Unfortunately, the method of proof of Theorem 1.3 does not allow us to impose the
condition that the primes produced here are consecutive.

It would be desirable to remove the GRH assumption altogether from Theorem 1.2.
We note that in [GM90], Gupta and Ram Murty showed unconditionally that if E has
an irrational 2-torsion point, then there are always infinitely many primes p with E(Fp)
cyclic (but they do not get the order of magnitude for the count predicted by Serre’s
asymptotic formula). Their proof relies on a sieve result seemingly unavailable in our
context.
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Notation

The letters ` and p are reserved for primes. We write p−(n) for the smallest prime
factor of n, with the convention that p−(1) = ∞. We use rad(n) to denote the largest
squarefree divisor of n. We use C1, C2, . . . for absolute positive constants that are be
thought of as large. If F is a number field, ZF denotes its ring of integers, and we write
∆F for the absolute discriminant of F . If E is an elliptic curve defined over Q, we let
∆E denote the minimal discriminant of E/Q. We write P(·) for the probability of an
event and E[·] for the expectation of a random variable.

2 Preliminaries for the proof of Theorem 1.1

If q1, . . . , qr ∈ Z and p - q1 · · · qr, we write 〈q1, . . . , qr mod p〉 for the subgroup of F×p
generated by the mod p reductions of the qi. The next lemma is due to Ram Murty and
Srinivasan [MS87] (compare with [GM84, Lemma 2]).

Lemma 2.1. Let q1, . . . , qr be multiplicatively independent integers, and let Y ≥ 1. The
number of primes p for which

#〈q1, . . . , qr mod p〉 ≤ Y

is O(Y 1+ 1
r ). Here the implied constant may depend on the qi.

Proof. We include the short proof. Suppose that #〈q1, . . . , qr mod p〉 ≤ Y . By the
pigeonhole principle, as e1, . . . , er run independently from 0 through bY 1/rc, two ex-
pressions of the form qe11 · · · qerr must coincide mod p. Consequently, for some choice of
integers e′i with each |e′i| ≤ Y 1/r and not all e′i = 0, p divides the numerator of the

nonzero rational number q
e′1
1 · · · q

e′r
r − 1. This numerator is (crudely) bounded above by

2 max{|q1|, . . . , |qr|}rY
1/r

and so has O(Y 1/r) prime divisors. Summing over the O(Y )
possibilities for the e′i completes the proof.

The following lemma is used to construct an admissible collection of linear functions
to which Maynard’s machinery can be applied.

Lemma 2.2. Let q1, . . . , qr be nonzero integers satisfying (*). Let v = 16
∏

`|q1···qr, `>2 `.
One can select an integer u coprime to v so that both of the following hold:

(1) For every p ≡ u (mod v), the Legendre symbols
(
q1
p

)
= · · · =

(
qr
p

)
= −1.

(2) If T is the largest power of 2 dividing u−1, then T ∈ {2, 4, 8}, and gcd(u−1
T
, v) = 1.

Proof. For r = 3, this lemma was proved by Heath-Brown. Since the argument for
the general case is the same, we only outline the main steps, referring the reader to

[HB86, pp. 35–36] for the details. By estimating
∑

p≤x

(
1−

(−3
p

))∏r
i=1

(
1−

(
qi
p

))
from

below — keeping (*) in mind — one shows that there are infinitely many primes p with
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(−3
p

)
=
(
q1
p

)
= · · · =

(
qr
p

)
= −1. Fix one and call it p0. For each odd prime ` dividing

q1 · · · qr, put

u` =

{
p0 if ` - p0 − 1,

4p0 otherwise,
and put u2 =

{
p0 if 16 - p0 − 1,

p0 − 8 otherwise.

Then for all odd primes ` | q1 · · · qr, we see that ` - u` − 1. (We have used here that
p0 ≡ −1 (mod 6), since

(−3
p

)
= −1.) One checks that it suffices to choose u as a solution

to the simultaneous congruences

u ≡ u` (mod `) ∀ odd ` | q1 . . . qr and u ≡ u2 (mod 16).

Let L be a set of k distinct linear functions, say L1(n) = a1n+b1, . . . , Lk(n) = akn+bk,
where each ai, bi ∈ Z and every ai > 0. We say that L is admissible if for each prime
p, there is some integer np for which p -

∏k
i=1 Li(np). Note that if each (ai, bi) = 1, to

check admissibility it suffices to check primes p ≤ k.

Lemma 2.3. Let q1, . . . , qr be nonzero integers satisfying (*), and let u and v be chosen
as in Lemma 2.2. Let κ be a natural number. There are integers a1 < · · · < aκ, each
congruent to u mod v, for which the 2κ linear functions

L1(n) = vn+ a1, . . . , Lκ(n) = vn+ aκ,

L̃1(n) =
v

T
n+

a1 − 1

T
, . . . , L̃κ(n) =

v

T
n+

aκ − 1

T

make up an admissible family. Moreover, we can select the ai in such a way that

aκ − a1 ≤ v · (2κ)C1 .

Proof. By the fundamental lemma of the sieve, if C1 is large enough, then the number
of integers A ∈ [0, (2κ)C1 ] for which p−((vA+ u)( v

T
A+ u−1

T
)) > 2κ exceeds

1

2
((2κ)C1)

∏
p≤2κ

(1− 2/p).

Increasing C1 if necessary, this lower bound exceeds κ. Pick κ of these integers, say
A1 < · · · < Aκ. The theorem follows upon choosing ai = vAi + u. Indeed, for primes
p ≤ 2κ, we have arranged matters so that p -

∏κ
i=1 Li(0)L̃i(0).

Remark. In the next section, we will show that all of the L̃i are almost primes at the
same time that several of the Li are prime. A similar strategy appears in work of Li and
Pan [LP14], who seem to have been the first to notice that the Maynard–Tao method
can be applied with auxiliary ‘almost prime’ conditions added. In the context of the
earlier GPY method, this observation was made by Pintz [Pin10].
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3 Proof of Theorem 1.1

The following key proposition is contained in recent work of Maynard [May14].

Proposition 3.1. Fix an admissible family L of k distinct linear functions, where
k ≥ 2. Suppose that x is sufficiently large, x > x0(L ). There is a probability measure
on

A (x) := {n ∈ Z : x ≤ n < 2x}

with all of the following properties:

(1) The probability mass at any single n ∈ A (x) is

� x−1(log x)k

 k∏
i=1

∏
p|Li(n)

4

 exp(O(k log k)).

(2) For each L ∈ L ,

P(L(n) is prime)� log k

k
.

(3) Suppose that ρ ∈ [k (log log x)2

log x
, 1

25
]. For each L ∈ L ,

E
[ ∑
p|L(n)
p<xρ

1

]
� ρ2k4(log k)2.

(4) Suppose that L(n) = a0n + b0 is a linear function not belonging to L . Suppose
also that |a0|, |b0| ≤ x and that ∆L, defined by

∆L := a0

k∏
j=1

|a0bj − b0aj|,

is nonzero. Then

P(p−(L(n)) > x1/25)� ∆L/ϕ(∆L)

log x
.

Although x0 may depend on L , all implied constants in this statement are absolute.

Proof (sketch). This follows from [May14, Proposition 6.1]. In the setup of that propo-
sition, A is the set of natural numbers, L is as above, P is the set of all primes,
B = 1, θ = 2/5, and α = 1. The probability measure on A (x) assigns to each n the
probability mass w(n)/

∑
n∈A (x) w(n). Our (1) follows from Proposition 6.1(1) together

with the immediately preceding estimate for wn; we also use Maynard’s lower bounds on
S(L ) and Ik(F ) given in (8.2) and Lemma 8.6, respectively. Our (2) is deduced from
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Proposition 6.1(1,2); here we use the estimate Jk/Ik � log k/k and the observation that
for each L(n) = aLn+ bL ∈ L , we have (in Maynard’s notation)

#PL,A (x) =
∑

aLx+bL≤p<2aLx+bL
p≡bL (mod aL)

1 ∼ 1

ϕ(aL)

aLx

log x
∼ aL
ϕ(aL)

#A (x)

log x
.

Our (3) comes from Proposition 6.1(1,4), and (4) comes from Proposition 6.1(1,3).

We now prove Theorem 1.1.

Proof. Assume that r ≥ exp(C2m), and let κ = dexp(C3m)e. Let c be a small positive
absolute constant. The necessary constraints on the constants C2, C3, and c will emerge
in the proof.

Let q′1, . . . , q
′
r be the integers obtained from q1, . . . , qr by replacing each qi with its

squarefree part. That is, q′i is the unique squarefree integer for which qi/q
′
i is a square.

Since q1, . . . , qr satisfy (*), so do q′1, . . . , q
′
r. Let k = 2κ, and let Li and L̃i, for 1 ≤ i ≤ κ,

be the linear functions produced by Lemma 2.3 applied with q′1, . . . , q
′
r. Every prime

dividing q′1 · · · q′r divides f := f(Q(
√
q1, . . . ,

√
qr)/Q), and thus v = 16

∏
`|q′1...q′r, `>2 `

divides 16f .
We now invoke Proposition 3.1. We will show that with positive probability, an

n ∈ A (x) satisfies all of

(i) at least m of L1(n), . . . , Lκ(n) are prime,

(ii) p−(Li(n)) ≥ x
c

k3 log k and p−(L̃i(n)) ≥ x
c

k3 log k for all i = 1, . . . , κ,

(iii) all integers in the interval [L1(n), Lκ(n)] that are not one of the Li(n) are composite,

(iv) whenever p = L(n) is prime with L ∈ {L1, . . . , Lκ}, p possesses some element of
Q as a primitive root.

If (i)–(iv) hold for n, then the set of primes in [L1(n), Lκ(n)] has at least m elements, each
one of which possesses some element of Q as a primitive root. Moreover, the difference
between the largest and smallest such primes is at most

Lκ(n)− L1(n) = aκ − a1 ≤ v(2κ)C1 ≤ f exp(C4m),

provided that C4 is large enough in terms of C1 and C3. Thus, we obtain Theorem 1.1
with C = C2 and C ′ = C4.

To begin analyzing (i)–(iv), let P be the set of primes, and consider the random
variable X :=

∑κ
i=1 1P(Li(n)). Proposition 3.1(2) and our choice of κ yield E[X] �

C3m. We assume C3 is large enough that E[X] > m. Noting the inequality

1X≥m ≥ κ−1(X − (m− 1)),

and taking expectations, we find that (i) holds with probability at least κ−1.
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Let L be one of the linear functions in L . Then

P(p−(L(n)) < xc/(k
3 log k)) ≤ E

[ ∑
p|L(n), p<xc/(k

3 log k)

1

]
.

So from Proposition 3.1(3), (ii) fails with probability

� k ·
(

c

k3 log k

)2

k4(log k)2.

We may assume c > 0 is small enough that the odds of failure are less than 1
2
κ−1. Then

(i) and (ii) hold simultaneously with probability at least 1
2
κ−1.

We claim that (iii) fails with probability o(1), as x → ∞. It is enough to show
that if a is a fixed integer from [a1, aκ], and a 6∈ {a1, . . . , aκ}, then the probability that
L(n) := vn + a is prime is o(1). This follows immediately from Proposition 6.1(4) if
L is not a rational multiple of any Li or L̃i. Since L has leading coefficient v and
a 6∈ {a1, . . . , aκ}, L is not a multiple of any Li. Since each L̃i has leading coefficient v/T ,
if L is a multiple of some L̃i, then L = TL̃i; but then T | L(n) and so L(n) is composite
for all n ∈ A (x).

Now assume that (ii) holds but that (iv) fails. We will show that this occurs with
probability o(1), as x → ∞. In view of our previous estimates, this will complete the
proof of Theorem 1.1.

Assume that p = L(n) is prime, with L ∈ {L1, . . . , Lκ}, but that p fails to have any
q ∈ Q as a primitive root. From Lemma 2.2(1) and our choice of L , each q ∈ Q
is is a nonsquare modulo p. Thus, for each q ∈ Q, there is a prime s = sq dividing
(p−1)/T for which q is an sth power modulo p. Put t = d2c−1k3 log ke. Since (ii) holds,
Ω((p − 1)/T ) ≤ t. (We assume here, as elsewhere in the proof, that x is sufficiently
large.) Recalling that k = 2dexp(C3m)e, we assume C2 is large enough that

exp(C2m) > (t− 1)t.

Since #Q = r ≥ exp(C2m), the pigeonhole principle guarantees that at least t values of
q ∈ Q share the same value of sq; call this common value s. Relabeling, we can assume
these are q1, . . . , qt. Then

#〈q1, . . . , qt mod p〉 ≤ p− 1

s
≤ p− 1

p−((p− 1)/T )
≤ x

1− c
2k3 log k ≤ x1− 1

t .

By Lemma 2.1, p is restricted to a set of size �Q (x1−1/t)1+1/t = x1− 1
t2 . Given L, the

prime p = L(n) determines n, restricting n also to a set of size OQ(x1−1/t2). Since there
are Om(1) possibilities for L, the number of n ∈ A (x) for which (ii) holds but (iv) fails
is OQ,m(x1−1/t2).

Since n satisfies (ii), each of L1(n), . . . , Lκ(n) has at most t prime factors. So from
Proposition 3.1(i), the probability mass at n is at Om(x−1(log x)k). Thus, the probability
of selecting an n detected in the previous paragraph is Om,Q((log x)kx−1/t2), which is
o(1) as x→∞.
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4 Preparation for the proof of Theorem 1.2

We begin with some background on elliptic curves. For each prime `, let K` denote the
`-torsion field Q(E[`]). It is well-known and easy to check that K` is a Galois extension
of Q. Now let p be a prime of good reduction for E. Clearly, E(Fp) is cyclic if and
only if it does not contain (Z/`Z)2 for any prime `. The following lemma, due to Ram
Murty [Mur83, p. 159], shows that whether or not E(Fp) is cyclic amounts to a series
of conditions on the splitting of p in the fields K`.

Lemma 4.1. Let p be a prime of good reduction for E. If ` is a prime with ` 6= p,
then E(Fp) contains (Z/`Z)2 if and only if p splits completely in K`. As a consequence,
E(Fp) is cyclic if and only if for all primes ` 6= p,

p does not split completely in K`. (4.1)

Remark. If E(Fp) contains (Z/`Z)2, then `2 | #E(Fp) ≤ (
√
p+ 1)2, and so it suffices to

test (4.1) for
` ≤ √p+ 1. (4.2)

If we assume the GRH, then the following theorem of Lagarias and Odlyzko [LO77]
gives a satisfactory estimate for the frequency with which primes split completely in K`.
We state the result incorporating a small improvement by Serre [Ser81, §2.4].

Proposition 4.2 (Effective Chebotarev theorem, on GRH). Let K be a finite Galois
extension of Q, and let C be a conjugacy class of Gal(K/Q). The number of unramified

primes p ≤ x with
[K/Q

p

]
= C is given by

#C
[K : Q]

Li(x) +O

(
#C · x1/2

(
log |∆K |
[K : Q]

+ log x

))
,

for all x ≥ 2. Here the O-constant is absolute.

Remark. To estimate the O-term, we will use the following estimate valid for any Galois
extension K/Q (see [Ser81, Proposition 6]):

1

[K : Q]
log |∆K | ≤ log [K : Q] +

∑
p|∆K

log p. (4.3)

To apply (4.3), we need to understand which primes ramify in K`. The following
result can be derived from a criterion of Néron–Ogg–Shafarevich [Sil09, Theorem 7.1, p.
201].

Lemma 4.3. Let E/Q be an elliptic curve. Every prime that ramifies in K` divides
` ·∆E.

We will find bounded gaps among primes p produced by certain linear functions, with
coefficients chosen to give p a “leg up” in terms of E(Fp) being cyclic. To build these
functions, we need the following analogue of Lemma 2.2.
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Lemma 4.4. Let M be either a quadratic or abelian cubic extension of Q. Let f =
f(M/Q), and let v = 2433

∏
`|f, `>3 `. One can select an integer u coprime to v so that

both of the following hold:

(1) For every prime p ≡ u (mod v), p is inert in M .

(2) If T is the largest power of 2 dividing u−1, then T ∈ {2, 4, 8}, and gcd(u−1
T
, v) = 1.

Proof. We make free use of the correspondence between abelian extensions of Q and
groups of primitive Dirichlet characters, as reviewed in [Was97, Chapter 3].

If M/Q is quadratic, then f is the absolute value of a fundamental discriminant,
whereas if M/Q is abelian cubic, then

f = 9q1 · · · qk or f = q1 · · · qk, for distinct primes qi ≡ 1 (mod 6).

Thus, 24 - f , 33 - f , and every prime ` > 3 that divides f appears to the first power only.
Let H be the subgroup of Gal(Q(ζf )/Q) that fixes M . We identify Gal(Q(ζf )/Q) with
(Z/fZ)×. Note that H has index [M : Q] > 1. Since M is cyclic of prime degree, an
unramified prime p either remains inert or splits completely, the latter holding exactly
when p mod f ∈ H.

Choose an integer u0 with

gcd(u0, f) = 1, u0 mod f 6∈ H, and u0 ≡ 2 (mod 3). (4.4)

This is clearly possible if 3 - f . If 3 | f , we argue by contradiction: If there is no such
u0, then #H > #{1 ≤ h ≤ f : gcd(h, f) = 1, h ≡ 2 (mod 3)} = 1

2
ϕ(f), where the

inequality is strict since 1 mod f ∈ H. But then H = Gal(Q(ζf )/Q), a contradiction.
We can also assume that

u0 ≡ 1 (mod 2). (4.5)

Indeed, if f is even, this condition is automatic, whereas if f is odd but u0 is even, we
can replace u0 by u0 + 3f . Finally, we can assume that

16 - u0 − 1, (4.6)

by replacing u0 with u0 + lcm[24, f ] if necessary.
If M/Q is quadratic, then for each prime ` > 3 dividing f , put

u` =

{
u0 if ` - u0 − 1,

4u0 otherwise.

Then ` - u` − 1. If M/Q is abelian cubic, then for each prime ` > 3 dividing f , put

u` =

{
u0 if ` - u0 − 1,

−8u0 otherwise.
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In this case, we again have that ` - u` − 1. Finally, select u so that

u ≡ u0 (mod 24 · 33) and u ≡ u` (mod `) ∀` | f with ` > 3.

This puts u in a well-defined coprime residue class modulo v.
We now check (1) and (2). In the case when M/Q is quadratic, u ≡ u0g

2 (mod f) for
some integer g. Since H has index 2, g2 mod f ∈ H. Since u0 mod f 6∈ H, we find that
u mod f 6∈ H. So if p ≡ u (mod v), then p mod f 6∈ H (notice f | v) and so p is inert
in M . An analogous argument works when M/Q is abelian cubic; in that case, H has
index 3 and u ≡ u0g

3 (mod f) for some g. This completes the verification of (1). Since
u ≡ u0 (mod 16), (4.5) and (4.6) yield T ∈ {2, 4, 8}. Since u ≡ u0 (mod 3), (4.4) shows
that 3 - u− 1. For each prime ` > 3 dividing v, our choices of u` ensure that ` - u− 1.
Hence, gcd(u−1

T
, v) = 1, which completes the proof of (2).

By imitating the deduction of Lemma 2.3 from Lemma 2.2, we obtain the following
consequence of Lemma 4.4.

Lemma 4.5. Let M be either a quadratic or abelian cubic extension of Q. Let u and v
be chosen as in Lemma 4.4. Let κ be a natural number. There are integers a1 < · · · < aκ,
each congruent to u mod v, for which the 2κ linear functions

L1(n) = vn+ a1, . . . , Lκ(n) = vn+ aκ,

L̃1(n) =
v

T
n+

a1 − 1

T
, . . . , L̃κ(n) =

v

T
n+

aκ − 1

T

make up an admissible family. Moreover, we can select the ai in such a way that

aκ − a1 ≤ v · (2κ)C5 .

5 Proof of Theorem 1.2

5.1 The GRH case

By assumption, K2 6= Q. Since K2 is the splitting field of a cubic polynomial, it has
a subfield M that is either quadratic or abelian cubic over Q. Let κ = dexp(C6m)e,
where C6 is a large absolute constant. Let k = 2κ, and let L consist of the linear
functions L1, . . . , Lκ, L̃1, . . . , L̃κ constructed in Lemma 4.5. Recall that each Li has
leading coefficient v = 2433

∏
`|f, `>3 `, where f is the conductor of M . If ` | f , then

` | ∆K2 , and so ` = 2 or ` is a prime of bad reduction. Consequently,

v | 2433 · rad(∆E).

We warn the reader of the following innocuous abuse of notation: If L = Li, we will
write L̃ for L̃i.

Assume x is large. We will show that if c > 0 is a sufficiently small absolute constant,
then with positive probability, an n ∈ A (x) satisfies all of
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(i) at least m of L1(n), . . . , Lκ(n) are prime,

(ii) p−(Li(n)) ≥ x
c

k3 log k and p−(L̃i(n)) ≥ x
c

k3 log k for all i = 1, . . . , κ,

(iii) all integers in the interval [L1(n), Lκ(n)] that are not one of the Li(n) are composite,

(iv) if p = L(n) is prime with L ∈ {L1, . . . , Lκ}, then p is inert in every K` with
` > x1/3 and ` 6= p,

(v) if p = L(n) is prime with L ∈ {L1, . . . , Lκ}, then E(Fp) is cyclic.

If all of (i)–(v) hold for n, then the set of primes p ∈ [L1(n), Lκ(n)] has at least m
elements, all of these have E(Fp) cyclic, and the gap between the largest and smallest
is at most

Lκ(n)− L1(n) ≤ v · (2κ)C5 ≤ rad(∆E) · exp(C7m);

the GRH half of Theorem 1.2 follows.
For the sake of readability, in the remainder of the proof we suppress the dependence

of implied constants on E.
To handle (i)–(iii), we proceed as in the proof of Theorem 1.1. Arguments given there

show that if we fix C6 sufficiently large and c sufficiently small, then (i) and (ii) hold
simultaneously with probability at least 1

2
κ−1, while (iii) fails with probability o(1), as

x→∞.
Now suppose that (i)–(iii) hold for n but that (iv) fails. We will show that this occurs

with probability o(1). Observe that for each n ∈ [x, 2x) and each L ∈ {L1, . . . , Lκ}, the
integer L(n) is smaller than 3vx.

We start by bounding the number of p ≤ 3vx which split completely in K` for some
` > x1/3 with ` 6= p. In that case, (Z/`Z)2 sits inside E(Fp), and so

`2 | p+ 1− ap. (5.1)

Since Q(ζl) ⊂ K` (by properties of the Weil pairing [Sil09, Corollary 8.1.1]),

` | p− 1. (5.2)

Comparing (5.1) and (5.2) shows that ` | 2− ap. If ap 6= 2, then

0 < |2− ap| < 2 + 2
√

3vx < x2/3 < `2;

hence ` is uniquely determined by a = ap, as the largest prime dividing |2− a|. Fixing
a 6= 2, (5.1) shows that the number of corresponding p ≤ 3vx is� x

`2
+1� x1/3. By the

Hasse bound, |a| �
√
x, and so summing on the possible values of a shows that O(x5/6)

values of p arise in this way. On the other hand, when a = 2, (4.2) and (5.1) imply that
the number of corresponding p is

�
∑

`∈(x1/3,
√

3vx+1]

( x
`2

+ 1
)
� x2/3.

12



So there are a total of O(x5/6) of these primes p.
Since (i)–(iii) hold while (iv) fails, there is an L ∈ {L1, . . . , Lκ} such that p = L(n)

is among the primes counted in the previous paragraph. There are Om(1) possibilities
for L, and so Om(x5/6) possibilities for n ∈ A (x). From (ii) and Proposition 3.1(1), the
probability mass at each such n is Om(x−1(log x)k). So the probability that (i)–(iii) hold
but (iv) fails is Om(x−1/6(log x)k), which is o(1) as x→∞.

To complete the proof, we show the probability (i)–(iv) hold but (v) fails is also o(1).
Suppose p = L(n) is prime, with L ∈ {L1, . . . , Lκ}, but that E(Fp) is not cyclic.

From Lemma 4.4(1) and our choice of L , p is inert in M , and a fortiori does not
split completely in K2. So E(Fp) must split completely in K` for some ` > 2. Since
` | p− 1 = T · L̃(n), (ii) and (iv) imply that

xc/(k
3 log k) ≤ ` ≤ x1/3. (5.3)

We now count how many p ≤ 3vx split completely in K` for some ` in the range (5.3)
with ` 6= p. Making the same appeal to Proposition 3.1(1) we saw earlier in the proof,
it is enough to prove that the number of these p is

� x
1− c

k3 log k + x5/6 log x. (5.4)

We invoke GRH. By effective Chebotarev, the number of p ≤ 3vx splitting completely
in K` is

� x

[K` : Q] log x
+ x1/2

(
log x+

1

[K` : Q]
log |∆K` |

)
.

Since every prime dividing ∆K` divides ` ·∆E, (4.3) shows that this upper bound is

� x

[K` : Q] log x
+ x1/2 log([K` : Q] · `x). (5.5)

If E has CM, then for all large primes `, the degree of K`/Q is either 2(`−1)2 or 2(`2−1),
according to whether or not ` splits in the CM field. In particular, [K` : Q] � `2. If
the non-CM case, we have [K` : Q] = #GL2(Z/`Z) � `4 for all large primes `. (These
results are due to Serre [Ser72]; see [CCS13, Theorem 18] for a detailed discussion of the
CM case.) Thus, the sum of (5.5) over the range (5.3) is

� x

log x

∑ 1

`2
+ x1/2 log x

∑
`

1� x
1− c

k3 log k + x5/6 log x,

which agrees with (5.4). This completes the proof in the GRH case.

5.2 Unconditional proof in the CM case

As already mentioned in the introduction, we will deal entirely with supersingular primes
in this part of the proof.
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Suppose that p ≥ 5 is supersingular but that E(Fp) is not cyclic. Choose an ` 6= p for
which p splits completely in K`. Then `2 | #E(Fp) = p+ 1 and ` | p− 1, forcing ` = 2.
Consequently, p splits in the quadratic or abelian cubic subfield M of K2.

Let F be the CM field. We look for primes p of good reduction that are inert in F —
guaranteeing that p is supersingular — and inert in M . If F = M , it is clear that there
are infinitely many such primes; otherwise, this follows from the linear disjointness of F
and M over Q. Since F/Q and M/Q are abelian, the set of such p contains all primes in
a certain arithmetic progression modulo q := f1f2, where f1 = f(F/Q) and f2 = f(M/Q).
Since E is defined over Q, its CM field F must be one of the nine imaginary quadratic
fields of class number 1 (see, e.g., Serre’s chapter in [CF86]), and so f1 � 1. On the
other hand, since every odd prime dividing f2 divides ∆E, and since f2 is squarefree
apart from bounded powers of 2 and 3, the modulus q = f1f2 � f2 � rad(∆E).

Corollary 3 of [BFTB] asserts that for any fixed coprime progression mod q, there are
infinitely many tuples of m consecutive primes p1 < p2 < · · · < pm with pm − p1 �q,m

1. In fact, it is straightforward to modify their argument to get an upper bound of
q exp(O(m)) (cf. [Tho14, Theorem 2(2)] when m = 2). The theorem follows.

Remark. In the non-CM case, we do not have an unconditional bounded gaps result
for primes p with E(Fp) cyclic. But if ‘cyclic’ is replaced by ‘has an element of order
> p3/4−ε’, then such a result follows quickly from work of Duke [Duk03].

Let E/Q be any elliptic curve. (No assumption on the rational torsion is needed here.)
For each prime p of good reduction, write E(Fp) ∼= Z/dpZ⊕Z/epZ for natural numbers
dp and ep where dp | ep. Clearly, d2

p ≤ #E(Fp) ≤ (
√
p+ 1)2, so that dp ≤ 2

√
p.

Duke shows (see [Duk03, eq. (8)]) that for each n ≤ 2
√
x, the number of p ≤ x for

which n | dp is O(x3/2n−3). A fortiori, the same bound holds for how often dp = n.
Consequently, the number of p ≤ x with dp > x1/4+ε/2 is O(x1−ε). Whenever dp ≤
x1/4+ε/2, the group E(Fp) has an element of order

ep ≥
#E(Fp)
x1/4+ε/2

� px−
1
4
− ε

2 .

Summing dyadically, we conclude that E(Fp) has an element of order > p
3
4
−ε for all but

Oε(x
1−ε) primes p ≤ x. This exceptional set is so sparse that it follows immediately from

Maynard’s lower bound results (see [May14, Theorem 3.1]) that the set of nonexceptional
p has bounded gaps. More precisely, this set contains arbitrarily long runs of primes
contained in bounded length intervals.

6 Proof of Theorem 1.3

We begin by stating a variant of Proposition 3.1 for sets of primes described by Cheb-
otarev conditions.

Proposition 6.1. Let K/Q be a Galois extension, and let C be a fixed conjugacy class
of Gal(K/Q). Let

P(C) = {p : p - ∆K ,

[
K/Q
p

]
= C}.
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Suppose a1 < a2 < · · · < aκ are odd integers for which the k = 2κ linear functions

L1(n) = 2n+ a1, L2(n) = 2n+ a2, . . . , Lκ(n) = 2n+ aκ,

L̃1(n) = n+
a1 − 1

2
, L̃2(n) = n+

a2 − 1

2
, . . . , L̃κ(n) = n+

aκ − 1

2
(6.1)

form an admissible collection; call this collection L . Suppose that x is sufficiently large,
x > x0(K,L ). There is a probability measure on A (x) = {n ∈ Z : x ≤ n < 2x} with
all of the following properties:

(1) The probability mass at any single n ∈ A (x) is

�K x−1(log x)k

 k∏
i=1

∏
p|Li(n)
p-2∆K

4

 exp(O(k log k)).

(2) For each L ∈ L ,

P(L(n) belongs to P(C))�K
log k

k
.

(3) Let ρ ∈ [k (log log x)2

log x
, 1

30[K:Q]
]. For each L ∈ L ,

E
[ ∑

p|L(n)
p≤xρ, p-2∆K

1

]
� ρ2k4(log k)2.

The implied constant in (3) is absolute.

Proof (sketch). The main technical input is supplied by a variant of the Bombieri–
Vinogradov theorem due to Murty and Murty [MM87], which asserts that P(C) has
level of distribution θ for any fixed

θ < min{1

2
,

2

[K : Q]
};

here the moduli of the arithmetic progressions are assumed coprime to ∆K . We now
argue as in the proof of Proposition 3.1. Specifically, the Murty–Murty theorem allows us
to apply [May14, Proposition 6.1] with A = N, L as given, P = P(C, K), B = 2∆K ,
θ = min{1

3
, 1

[K:Q]
}, and α = 1. Defining the probability mass at n as w(n)/

∑
n∈A (x) w(n),

the result follows. (For similar applications of the Murty–Murty theorem, see [Tho14]
and [May14, Theorem 3.5].)

The proof of Theorem 1.3 also uses the following criterion, which is contained in work
of Cojocaru [Coj03, Lemmas 2.2 and 2.3].
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Lemma 6.2. Suppose that E/Q has CM by an order in the imaginary quadratic field
F . Let p be a prime of good ordinary reduction, and let ` be a prime with ` 6= p. If p
splits completely in K`, then there is a π ∈ ZF with π ≡ 1 (mod `) and N(π) = p.

Proof of Theorem 1.3. We begin by specifying the parameters needed for our application
of Proposition 6.1.

Let F be the CM field of E. Let Q be the set of primes dividing 2∆F∆E, and let
K be the compositum of F and all of the fields K` := Q(E[`]) for ` ∈ Q. Then K/Q
is Galois and every prime dividing ∆K belongs to Q. Choose a conjugacy class C of
Gal(K/Q) where every prime p ∈P(C) is such that

• p splits in F ,

• p does not split completely in any of the fields K` with ` ∈ Q.

Any large prime p of ordinary reduction for which E(Fp) is cyclic satisfies both of these
conditions, and so such a C must exist.

Let κ = dexp(CKm)e, where CK is a sufficiently large constant depending on K.
Mimicking the proof of Lemma 2.3, we can choose odd integers a1 < · · · < aκ for which
(6.1) is admissible, with aκ − a1 ≤ (2κ)C8 . Then

aκ − a1 � exp(OE(m)). (6.2)

We are now in a position to apply Proposition 6.1. If CK is sufficiently large and c
is sufficiently small (both allowed to depend on K), then an n ∈ A (x) satisfies both of
the following conditions with probability �m 1:

(i) at least m of L1(n), . . . , Lκ(n) belong to P(C),

(ii) whenever a prime ` ≤ xc/(k
3 log k) divides

∏κ
i=1 Li(n)L̃i(n), ` also divides 2∆K .

Indeed, this follows from arguments seen already in the proofs of Theorems 1.1 and 1.2,
the only difference being that we appeal to Proposition 6.1 instead of Proposition 3.1.
We now introduce the statement

(iii) Whenever p = L(n) ∈P(C), with L ∈ {L1, . . . , Lκ}, the group E(Fp) is cyclic.

We will show that the probability (i) and (ii) hold but (iii) fails is o(1), as x → ∞, so
that (i)–(iii) hold with positive probability for all large x. This will complete the proof;
indeed, if n ∈ A (x) satisfies (i)–(iii), and p1 < p2 < · · · < pm are primes from P(C)
drawn from {L1(n), . . . , Lκ(n)}, then the claimed bound on pm − p1 follows from (6.2),
while the fact that each of the primes is of good ordinary reduction follows from the
choice of C.

Suppose (i) and (ii) hold and that p = Li(n) ∈P(C), where i ∈ {1, 2, . . . , κ}. As we
have just remarked, p is a prime of good ordinary reduction. If E(Fp) is not cyclic, then
p spits completely in K` for some ` 6= p. Then ` | p− 1 = 2L̃i(n), so that either ` | 2∆K

or ` ≥ xc/(k
3 log k). But if ` | 2∆K , then ` ∈ Q, and so the choice of C guarantees that
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p does not split completely in K`. So it must be that ` ≥ xc/(k
3 log k). Since p ≤ 5x for

large x, we also have that ` ≤
√

5x+ 1, after recalling (4.2).
Let us count primes p ≤ 5x of good ordinary reduction that split completely in K` for

some ` 6= p with
xc/(k

3 log k) ≤ ` ≤
√

5x+ 1. (6.3)

From Lemma 6.2, there is a πp ∈ ZF with πp ≡ 1 (mod `) and N(πp) = p. The number
of π ∈ ZF with π ≡ 1 (mod `) and N(π) ≤ 5x is O( x

`2
+ 1), by an elementary lattice

point counting argument (e.g., see [Mur83, Lemma 5] or [Coj03, Lemma 2.6]). Summing
on ` in the range (6.3) shows that the number of p in question is

� x
1− c

k3 log k + x1/2.

If n satisfies (i) and (ii), Proposition 6.1(1) shows that the probability mass at n is
OK,m(x−1(log x)k). Consequently, the probability that L(n) is one of the primes counted
in the preceding paragraph is o(1), as x→∞.
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