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Abstract. Let s′(n) =
P
d|n, 1<d<n d be the sum of the nontrivial divisors of the

natural number n, where nontrivial excludes both 1 and n. For example, s′(20) = 2 + 4 +
5 + 10 = 21. A natural number n is called quasiperfect if s′(n) = n, while n and m are
said to form a quasiamicable pair if s′(n) = m and s′(m) = n; in the latter case, both n
and m are called quasiamicable numbers. In this paper, we prove two statistical theorems
about these classes of numbers.

First, we show that the count of quasiperfect n ≤ x is at most x1/4+o(1) as x → ∞.
In fact, we show that for each fixed a, there are at most x1/4+o(1) natural numbers n ≤ x
with σ(n) ≡ a (mod n) and σ(n) odd. (Quasiperfect n satisfy these conditions with a = 1.)
For fixed δ 6= 0, define the arithmetic function sδ(n) := σ(n)− n− δ. Thus, s1 = s′. Our
second theorem says that the number of n ≤ x which are amicable with respect to sδ is
at most x/(log x)1/2+o(1).

1. Introduction. Some of the oldest problems in number theory con-
cern the behavior of the sum-of-proper-divisors function s(n) :=

∑
d|n, d<n d.

In the mid-twentieth century, S. Chowla (see [19]) proposed studying the
variant arithmetic function

s′(n) :=
∑
d|n

1<d<n

d,

whose output is the sum of the nontrivial divisors of the natural number n.
Here nontrivial means that both 1 and n itself are excluded. With respect
to this function, the analogue of a perfect number is an integer n satis-
fying s′(n) = n; these are usually called quasiperfect numbers, although
some authors prefer the more descriptive term reduced perfect. Similarly,
the analogue of an amicable pair—termed a quasiamicable or reduced ami-
cable pair—is a pair n and m with s′(n) = m and s′(m) = n.

No quasiperfect numbers are known. Any such example must be an odd
square [4], must possess at least seven distinct prime factors, and must have
more than than 35 decimal digits (for these last two results, see [9]). For
other theoretical work on quasiperfect numbers, see [1, 23, 5, 16, 6, 15].
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2 P. POLLACK AND C. POMERANCE

About quasiamicable pairs, almost all of what we know has been gleaned
from computer searches [17, 10, 3]. There are 1946 quasiamicable pairs with
smaller member less than 1012.

In this paper, we take a statistical approach with the goal of establishing
new upper bounds for the counting functions of the quasiperfect and quasi-
amicable numbers. In both cases, our results are more general, and (for
instance) apply also to almost-perfect numbers and augmented amicable
pairs (for these concepts, see [8, Sections B2 and B5]).

The natural number n is quasiperfect precisely when σ(n) = 2n + 1.
(Here and below, σ(n) :=

∑
d|n d always denotes the usual sum-of-divisors

function.) In particular, σ(n) is odd and σ(n) ≡ 1 (mod n). Our first theorem
concerns the problem of bounding from above the number of solutions n ≤ x
to a congruence of the form

(1) σ(n) ≡ a (mod n)

for which σ(n) is odd; here a is an arbitrary (but fixed) nonzero integer.
In a recent paper [2], the present authors and Aria Anavi studied the

number of n ≤ x satisfying (1), without a restriction on the parity of σ(n).
After discarding ‘trivial’ solutions (see §2 below), they obtained an upper
bound of roughly x1/2 (for x large compared to |a|). However, the require-
ment that σ(n) is odd all by itself restricts n to a set of size O(x1/2), namely
the set of squares and their doubles. Thus, the main result of [2] is trivial
in the context of quasiperfect numbers. Adding a new idea to [2], we prove
the following theorem.

Theorem 1.1. As x → ∞, the number of solutions n ≤ x to the con-
gruence (1) for which σ(n) is odd is at most

(2) |a|x1/4 exp(O(log x/log log x)),

uniformly in integers a with 0 < |a| ≤ x1/4. In particular, for fixed a 6= 0,
there are at most x1/4+o(1) solutions.

Note that the estimate (2) would be trivial for |a| > x1/4. When a = 0,
the work of Hornfeck and Wirsing [14, Satz 2] gives an upper bound of
Oε(xε) for the number of n ≤ x with σ(n) ≡ 0 (mod n).

Let δ be a fixed integer. For each natural number n, put sδ(n) =
σ(n)− n− δ. For example, s0 is the usual sum-of-proper-divisors function,
while s1 is Chowla’s function. We say that n and m form a δ-amicable pair if
sδ(n) = m and sδ(m) = n; in this case, both n and m are called δ-amicable
numbers. We can now state our second theorem.

Theorem 1.2. Fix an integer δ 6= 0. For x ≥ 3, the count of δ-amicable
numbers in [1, x] is

�δ
x

(log x)1/2
(log log x)4.
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In previous work, the first author proved that the quasiamicable numbers
have asymptotic density zero [21]. However, it would not be easy to extract
a quantitative upper bound from that argument, and the final result would
be very poor in comparison to Theorem 1.2.

We believe that neither of our upper bounds is very close to the truth.
For example, a conjecture recorded in [2] implies that there are at most
(log x)O(1) quasiperfects in [1, x]. The quasiamicable numbers are likely to
be much more dense; we expect that for ε > 0, the number of quasiamicables
in [1, x] exceeds x1−ε once x > x0(ε). However, we also think that this count
is at most x/(log x)B for every B and all x > x0(B); for ordinary amicable
pairs, this upper bound was shown by the second author [22].

Notation. Throughout, we use O- and o-notation, as well as the as-
sociated Vinogradov � and � notations, with their standard meanings.
We write P (n) for the largest prime factor of n, with the convention that
P (1) = 1. We use τ(n) for the number of positive divisors of n, ω(n) for the
number of distinct prime divisors of n, and Ω(n) for the number of prime
divisors of n counted with multiplicity. We also write rad(n) for the largest
squarefree divisor of n. Other notation will be introduced as necessary.

In the proof of Theorem 1.2 given in §5, all implied constants may depend
on δ without further mention. Similarly, when we suppose in that section
that x is sufficiently large, the notion of large may depend on δ.

2. Preparation for the proof of Theorem 1.1. Our first lemma,
which follows from well-known results on smooth numbers, is implicit in
work of Erdős, Luca and Pomerance [7] and stated explicitly as [20, Lem-
ma 4.2].

Lemma 2.1. Suppose that x ≥ 3. Let b be a natural number with b ≤ x.
The count of natural numbers a ≤ x for which rad(a) divides b is at most
exp(O(log x/log log x)).

Next, we bound the number of solutions to quadratic congruences.

Lemma 2.2. Let m be a natural number. Let a be an integer relatively
prime to m, and let b be any integer. The number of solutions mod m to the
quadratic congruence ax2 ≡ b (mod m) does not exceed

gcd(b,m)1/2 · 21+ω(m).

Proof. We can assume that a = 1 by replacing b with a′b, where a′a ≡ 1
(mod m).

It now suffices to show that if pe ‖m, then the number of solutions to
x2 ≡ b (mod pe) is at most

(3) 2δp · gcd(b, pe)1/2,
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where we put δ2 = 2 and δp = 1 for p > 2. We consider three cases for p:

• Suppose that p - b. If p is odd, then the congruence x2 ≡ b (mod pe)
has at most two solutions, since the unit group mod pe is cyclic. If p
is even, then the unit group mod pe is either cyclic or a product of
two cyclic groups, and so there are at most four square roots of b. In
either case, the bound (3) holds.
• Suppose that pf ‖ b, where 1 ≤ f < e. If there is any solution to x2 ≡ b

(mod m), then f is even and pf/2 |x. Putting x = pf/2x′ and b = pfb′,
the number of solutions to x2 ≡ b (mod pe) coincides with the number
of distinct x′ modulo pe−f/2 for which x′2 ≡ b′ (mod pe−f ). Since p - b′,
this latter congruence has at most 2δp solutions modulo pe−f , and so
at most 2δppf/2 = 2δp · gcd(b, pe)1/2 solutions modulo pe−f/2.
• If pe | b, then x2 ≡ b (mod pe) if and only if pde/2e |x. So there are
pbe/2c ≤ gcd(b, pe)1/2 choices for x mod pe. Thus, the bound (3) holds
in this case also.

The next two lemmas are taken from [2] (see that paper’s Lemma 2,
Lemma 5, and the remark following Lemma 7). To understand their state-
ments, we recall from [2] that the solutions to (1) can be divided into regular
solutions and sporadic solutions. A regular (or trivial) solution is a natural
number n of the form

(4) n = pm, where p -m, m |σ(m), and σ(m) = a.

It is straightforward to check that all these n really do satisfy (1). The
remaining solutions to (1) are called sporadic.

If n is a regular solution to (1) for which σ(n) is odd, then p = 2 in (4)
(otherwise 2 | p+1 |σ(n)). Also, a is positive and m ≤ a. Thus, n = pm ≤ 2a.
So if n > 2|a| is an odd solution to (1), then n is sporadic. This observation
will be important in what follows.

Lemma 2.3. Let a be a nonzero integer. Suppose that n is a sporadic
solution to the congruence (1) for which 6a2 log(6|a|) < n ≤ x. If we
write

σ(n) = kn+ a,

then the integer k satisfies 2 ≤ k ≤ 2 + log x.

Lemma 2.4. Let a be a nonzero integer. Suppose that n is a sporadic
solution to the congruence (1) for which

max{6a2 log(6|a|), x1/2} < n ≤ x.
For every real number y with 1 ≤ y ≤ x1/2, there is a divisor d of n with

y

64(log x)4
< d ≤ y.
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3. Proof of Theorem 1.1. Since σ(n) is odd, either n = m2 or
n = 2m2. We give a complete proof of the upper bound (2) for the count of
solutions of the form n = m2, and at the end of the proof we make some
comments about the (very similar) case when n = 2m2.

We may assume that

(5) max{6a2 log(6|a|), x1/2} < m2 ≤ x.
Indeed, since |a| ≤ x1/4, the failure of (5) implies that m� x1/4

√
log x, and

this upper bound is negligible in comparison to (2).
Since m2 > 2|a|, our remarks in the last section show that m2 is a

sporadic solution to (1). Write σ(m2) = km2 + a, where k is an inte-
ger. By Lemma 2.3, we have 2 ≤ k ≤ 2 + log x; in particular, there are
only O(log x) possibilities for k. Since log x is dwarfed by the factor of
exp(O(log x/log log x)) appearing in (2), we may assume for the remainder
of the proof that k is fixed.

By Lemma 2.4 with y = x1/4, we can choose a divisor d of m2 with

x1/4

64(log x)4
< d ≤ x1/4.

There is a unique unitary divisor e ofm (that is, gcd(e,m/e) = 1) that is sup-
ported on the primes dividing d. Since d |m2, it must be that

∏
pv‖d p

dv/2e | e,
so that

(6) e ≥ d1/2 >
x1/8

8(log x)2
.

Put m = ef . Since e and f are relatively prime, we find that

ke2f2 + a = km2 + a = σ(m2) = σ(e2f2) = σ(e2)σ(f2),

and thus

(7) ke2f2 ≡ −a (mod σ(e2)).

Put D := gcd(ke2, σ(e2)). (D depends on e, but we suppress this in what
follows.) From (7), we see that D | a. Dividing the congruence (7) through
by D and applying Lemma 2.2, we find that f is restricted to at most

gcd(a/D, σ(e2)/D)1/2 · 21+ω(σ(e2)/D) ≤ (|a|/D)1/2 · 2τ(σ(e2)/D)

≤ 2|a|1/2D−1/2 · τ(σ(e2))

residue classes modulo σ(e2)/D. So given e, the number of corresponding
f ≤ x1/2/e is

�
(
x1/2/e

σ(e2)/D
+ 1
)

(|a|1/2D−1/2 · τ(σ(e2)))

≤ |a|1/2D1/2x1/2 τ(σ(e2))
e3

+ |a|1/2τ(σ(e2)).
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To bound the number of possible values of m, we sum over admissible
values of d and e. Put∑(1)

:=
∑
d,e

|a|1/2D1/2x1/2 τ(σ(e2))
e3

and
∑(2)

:=
∑
d,e

|a|1/2τ(σ(e2)).

By the maximal order of the divisor function (see, e.g., [13, Theorem 317]),

(8) τ(σ(e2)) ≤ exp(O(log x/log log x)).

As noted above, D divides a, and so

(9) D ≤ |a|.
Since d | e2, once e is given, d is restricted to at most exp(O(log x/log log x))
possible values. Now using (6), (8), and (9) with the definition of

∑(1), we
find that ∑(1)

≤ |a|x1/2 exp(O(log x/log log x))
∑

e> 1
8
x1/8/(log x)2

1
e3

= |a|x1/4 exp(O(log x/log log x)).

Inserting (8) into the definition of
∑(2), we obtain∑(2)

≤ |a|1/2 exp(O(log x/log log x))
∑
d,e

1

≤ |a|1/2x1/4 exp(O(log x/log log x));

here we used the fact that d ≤ x1/4 and that rad(e) | d, so that by Lemma 2.1,
e is determined from d in at most exp(O(log x/log log x)) ways. The desired
upper bound (2) follows upon combining our estimates for

∑(1) and
∑(2).

Now suppose that n = 2m2. The proof for this case is similar to the one
given above, and so we sketch it quickly. Using Lemma 2.4, choose a divisor
d0 of 2m2 with

x1/4

64(log x)4
< d0 ≤ x1/4.

Put d = d0 if d0 is odd and d = 1
2d0 if d0 is even. Then d |m2 and

x1/4

128(log x)4
< d ≤ x1/4.

Let e be the unitary divisor of m supported on the primes dividing d, and
write m = ef . If e is even, the relation σ(2m2) = 2ke2f2 + a implies that

2ke2f2 ≡ −a (mod σ(2e2)),

while if e is odd, we find that

2ke2f2 ≡ −a (mod σ(e2)).
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In either case, obvious changes to our previous arguments allow us to count
the number of solutions to this congruence with f ≤ (x/2)1/2/e. After sum-
ming over d and e, we eventually again obtain the desired upper bound (2).
This completes the proof of Theorem 1.1.

4. Preparation for the proof of Theorem 1.2. We begin by quoting
three lemmas taken from the study of the “anatomy of integers”. The first is
a consequence of Brun’s sieve; compare, for example, with [11, Theorem 2.2].

Lemma 4.1. Suppose that 3/2 ≤ y ≤ z ≤ x. The count of natural num-
bers n ≤ x with no prime factor from the interval (y, z] is

� x
log y
log z

.

Say that the natural number n is y-smooth (an alternative term is y-
friable) if P (n) ≤ y. Let Ψ(x, y) := #{n ≤ x : P (n) ≤ y} denote the
counting function of the y-smooth numbers. The following upper bound on
Ψ(x, y) appears as [24, Theorem 1, p. 359].

Lemma 4.2. Suppose that x ≥ y ≥ 2. Then

Ψ(x, y)� x exp(−u/2), where u :=
log x
log y

.

The next lemma, which bounds from above the count of n with extraor-
dinarily many prime factors, appears as [12, Exercise 05, p. 12]. The proof
is worked out explicitly in [18, Lemmas 12, 13].

Lemma 4.3. Let x ≥ 2. Let k be a natural number. The count of natural
numbers n ≤ x with Ω(n) ≥ k is

� k

2k
x log x.

In addition to these three results, we need the following simple conse-
quence of Lemma 4.1.

Lemma 4.4. Let E be the set of positive integers m for which m/P (m) ≤
exp((logm)1/2), and let E(x) := #E ∩ [1, x]. For x ≥ 2,

(10) E(x)� x/(log x)1/2.

Proof. It suffices to prove the upper bound (10) for large x. Summing
dyadically, this reduces to showing that for large v, the size of E ∩ (v, 2v] is
O(v/(log v)1/2). So suppose that m∈ (v, 2v] and m/P (m) ≤ exp((logm)1/2).
Then m has no prime factors between y := exp((log 2v)1/2) and z :=
v/exp((log 2v)1/2). By Lemma 4.1, the number of such m ≤ 2v is
� v log y/log z � v/(log v)1/2, as desired.
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5. Proof of Theorem 1.2. The proof is a variant of the argument
of [22].

5.1. Preliminary pruning. Recall that

lim sup
σ(n)

n log logn
= eγ < 2

(see, e.g., [13, Theorem 323]). So if n ≤ x is δ-amicable and x is sufficiently
large, then sδ(n) = σ(n)− n− δ < 2x log log x. For the rest of this section,
we assume X is defined in terms of x by

X := 2x log log x.

For large x, the count of δ-amicable n ≤ x is at most double the count
of δ-amicable pairs {n1, n2} with n1, n2 ≤ X. We now show that we may
ignore all δ-amicable pairs except those satisfying a certain list of technical
conditions.

Lemma 5.1. Suppose that x is sufficiently large. Among all δ-amicable
pairs {n1, n2} ⊂ [1, X], all but

(11) � x(log log x)4/(log x)1/2

satisfy each of the following conditions:

(i) each ni > x/log x,
(ii) each P (ni) > exp

(
1
2 log x/log log x

)
,

(iii) each ni has a prime factor from the interval(
exp((log log x)5/2), exp

(
1
4

√
log x/log log x

)]
,

(iv) the largest squarefull divisor of each ni is bounded above by (log x)2,
(v) if we write ni = P (ni)mi, then mi > exp

(
1
4 log x/log log x

)
,

(vi) for every prime p dividing each ni, we have Ω(p+ 1) < 5 log log x,
(vii) with the mi defined as in (v),

mi − δ
P (mi − δ)

> exp
(

1
3

√
log x/log log x

)
.

Proof. The number of δ-amicable pairs for which condition (i) fails is at
most x/log x, which is within the allowable bound (11). So such pairs may
be ignored. We can similarly ignore those pairs failing (ii), since the number
of these is at most

Ψ
(
X, exp

(
1
2 log x/log log x

))
≤ X/(log x)1+o(1) as x→∞,

by Lemma 4.2. Applying Lemma 4.1 with

y = exp((log log x)5/2) and z = exp
(

1
4

√
log x/log log x

)
,
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we see that the number of pairs where (iii) fails is

� X
(log log x)5/2√
log x/log log x

� x(log log x)4/(log x)1/2,

which is acceptable. Since the count of squarefull numbers in [1, t] is O(t1/2)
for all t ≥ 1, the number of failures of (iv) does not exceed

X
∑

d>(log x)2

d squarefull

1
d
� X/log x,

by partial summation. Again, this is allowable.
We have to work harder to deal with condition (v). Suppose that all

of (i)–(iv) hold but that (v) fails. For notational convenience, put Pi =
P (ni). Since each Pi > exp

(
1
2 log x/log log x

)
while ni = Pimi ≤ X, each

mi ≤ X/exp
(

1
2 log x/log log x

)
. So if (v) fails to hold, then the number of

possibilities for the pair {m1,m2} is at most

(12)
X

exp
(

1
2 log x/log log x

) · exp
(

1
4 log x/log log x

)
= X/exp

(
1
4 log x/log log x

)
.

We claim that m1 and m2 completely determine P1 and P2, and so also
determine n1 = P1m1 and n2 = P2m2. Since the right-hand side of (12)
satisfies the upper bound (11) with much room to spare, this shows that
those pairs where (v) fails are indeed negligible. To prove the claim, observe
that

P1m1 = s′(P2m2) = σ(P2m2)− P2m2 − δ
= (P2 + 1)σ(m2)− P2m2 − δ = P2s(m2) + σ(m2)− δ.

(To simplify σ(P2m2), we used the fact that P2 -m2; this follows from con-
ditions (ii) and (iv) above.) By symmetry, we also have

P2m2 = P1s(m1) + σ(m1)− δ.

Rearranging, we obtain the following system of equations in P1 and P2:

P1m1 + P2(−s(m2)) = σ(m2)− δ,
P1(−s(m1)) + P2m2 = σ(m1)− δ.

To show that P1 and P2 are uniquely determined by m1 and m2, it suffices
to show that the determinant ∆ := m1m2 − s(m1)s(m2) is not zero. If we
multiply the first equation by s(m1), the second by m1, and add, we find
that

(13) ∆ · P2 = s(m1)(σ(m2)− δ) +m1(σ(m1)− δ).
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We can assume that m1 and m2 both exceed δ. For example, if m1 ≤ δ
(so that δ > 0), then there are at most δ · π(X) � X/log x choices for
n1 = m1p, and similarly if m2 ≤ δ. This is negligible. But if each mi > δ,
then the right-hand side of (13) is positive, implying that ∆ > 0. This
completes the proof that we can assume (v).

We now turn to condition (vi). Suppose that ni has a prime divisor p with
Ω(p+ 1) ≥ 5 log log x. Putting Z := d5 log log xe, the number of possibilities
for ni is at most∑

p≤X
Ω(p+1)≥Z

X

p
≤

∑
p≤X

Ω(p+1)≥Z

2X
p+ 1

≤ 2
∑

d≤X+1
Ω(d)≥Z

X

d

� X
Z

2Z

X+1�

2

log t
t

dt� X
Z(logX)2

2Z
� X

log x
,

where we use partial summation and Lemma 4.3 in the second line. So the
number of pairs where (vi) fails is negligible.

Finally, we turn to condition (vii). We can suppose that all of (i)–(vi)
hold. Note that (v) implies that mi − δ > 0 for each i. We now show that,
ignoring a negligible set of pairs, each mi − δ falls outside of the set E of
Lemma 4.4. Indeed, suppose that some mi−δ is in E . Since ni = Pimi ≤ X,
the prime number theorem shows that the number of possibilities for Pi is

� X/mi

log(X/mi)
� X log log x

mi log x
,

using in the final step the inequality

exp
(

1
2 log x/log log x

)
≤ Pi ≤ X/mi.

So summing over the possibilities for mi, we find that the total number of
corresponding numbers ni is (again, for large x)

� X log log x
log x

∑
m≤X
m−δ∈E

1
m
� X log log x

log x

∑
m≤X
m−δ∈E

1
m− δ

≤ X log log x
log x

∑
e∈E∩[1,2X]

1
e
� X log log x√

log x
,

where the final step follows by partial summation and the estimate of Lem-
ma 4.4. This count of possible numbers ni is negligible, and so we may
assume that each mi − δ is outside E . But then (v) implies that

mi − δ
P (mi − δ)

> exp((log(mi − δ))1/2) > exp
(

1
3

√
log x/log log x

)
for large x, so that (vii) holds. This completes the proof of Lemma 5.1.
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5.2. Completion of the proof of Theorem 1.2. We finish off the
proof of Theorem 1.2 by establishing the following result.

Proposition 5.2. Let x be sufficiently large. The number of δ-amicable
pairs {n1, n2} ⊂ [1, X] satisfying all of the conditions of Lemma 5.1 is

� x/exp
(

1
10(log log x)3/2

)
.

The precise form of the upper bound is not essential; what is important
is that it is (much) smaller than the upper estimate asserted in Theorem 1.2.

Proof of Proposition 5.2. Suppose that {n1, n2} ⊂ [1, X] is a δ-amicable
pair. We choose the labeling so that P (n1) ≥ P (n2). As above, we adopt
the notation Pi = P (ni), and we write ni = Pimi. Since condition (iii) of
Lemma 5.1 is satisfied, we can choose a prime `1 |n1 with

exp((log log x)5/2) < `1 ≤ exp
(

1
4

√
log x/log log x

)
.

By (ii), we have `1 < P1, so that

(14) `1 |m1 = n1/P1.

Moreover, `21 -n1 by condition (iv), so that `1 + 1 = σ(`1) |σ(n1). Set

(15) r := P (`1 + 1);

recalling condition (vi), we find that

r ≥ (`1 + 1)1/Ω(`1+1) ≥ (`1 + 1)1/(5 log log x) ≥ exp
(

1
5(log log x)3/2

)
.

In what follows, we set

y := exp
(

1
5(log log x)3/2

)
.

Since r divides σ(n1) = n1 + n2 + δ = σ(n2), there is a prime power `e2 ‖n2

for which r |σ(`e2). Moreover,

2`e2 > `e2 + `e−1
2 + · · ·+ 1 = σ(`e2) ≥ r,

so that `e2 > r/2 ≥ y/2. So if e > 1, then n2 has the squarefull divisor
`e2 > y/2, contradicting condition (iv). Hence e = 1, so that `e2 = `2 and

(16) r |σ(`2) = `2 + 1.

Observing that

`2 |n2 = sδ(n1) = σ(P1m1)− P1m1 − δ = P1s(m1) + σ(m1)− δ,

we obtain the congruence

(17) P1s(m1) ≡ δ − σ(m1) (mod `2).

We now consider two cases, according to whether or not `2 | s(m1).
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Case I: `2 - s(m1). In this case, for a given m1, (17) places P1 in a
uniquely determined residue class modulo `2, say P1 ≡ a(m1) (mod `2). So
the number of possibilities for n1 = P1m1 is at most∑

r>y

∑
`1≡−1 (mod r)

`1≤X

∑
`2≡−1 (mod r)

`2≤X

∑
m1≡0 (mod `1)

m1≤X

∑
P1≡a(m1) (mod `2)
`2≤P1≤X/m1

1.

Here r, `1, `2, and P1 are understood to be prime; the congruence conditions
on `1, `2 follow from (15) and (16), the congruence m1 ≡ 0 (mod `1) comes
from (14), and the inequality P1 ≥ `2 follows from our initial assumption
that P (n1) ≥ P (n2). Making crude upper estimates at each step, we find
that our quintuple sum is

�
∑
r

∑
`1

∑
`2

∑
m1

X

m1`2
� X logX

∑
r

∑
`1

∑
`2

1
`1`2

(18)

� X(logX)3
∑
r

1
r2
� X(logX)3/y � x/exp

(
1
10(log log x)3/2

)
.

This completes the proof in this case.

Case II: `2 | s(m1). In this case, the congruence (17) implies that
`2 |σ(m1)− δ. So `2 | (σ(m1)− δ)− s(m1) = m1 − δ, and thus

m1 ≡ δ (mod `2).

By condition (vii) and the selection of `1,
m1 − δ
`2

≥ m1 − δ
P (m1 − δ)

≥ exp
(

1
3

√
log x/log log x

)
> `1 + |δ|,

so that m1 > `1`2 + `2|δ| + δ > `1`2. Hence, the number of possibilities for
n = P1m1 is at most∑

r>y

∑
`1≡−1 (mod r)

`1≤X

∑
`2≡−1 (mod r)

`2≤X

∑
m1≡0 (mod `1)
m1≡δ (mod `2)
`1`2<m1≤X

∑
P1≤X/m1

1.

Now consider the fourth sum appearing above. If `1 6= `2, then the simul-
taneous congruences m1 ≡ 0 (mod `1) and m1 ≡ δ (mod `2) have a unique
solution modulo `1`2. Otherwise, `1 = `2 > r > |δ|, so that `2 - δ and the
simultaneous congruences have no solution. So making crude estimates, we
find that our quintuple sum is

�
∑
r

∑
`1

∑
`2

∑
m1

X

m1
� X logX

∑
r

∑
`1

∑
`2

1
`1`2

.

Continuing as in (18), we get an upper bound of O
(
x/exp

(
1
10(log log x)3/2

))
.

This completes the proof of the proposition, and also that of Theorem 1.2
for large x. But for bounded values of x, Theorem 1.2 is vacuous.
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[7] P. Erdős, F. Luca, and C. Pomerance, On the proportion of numbers coprime to a

given integer, in: Anatomy of Integers, CRM Proc. Lecture Notes 46, Amer. Math.
Soc., Providence, RI, 2008, 47–64.

[8] R. K. Guy, Unsolved Problems in Number Theory, 3rd ed., Problem Books in Math.,
Springer, New York, 2004.

[9] P. Hagis Jr. and G. L. Cohen, Some results concerning quasiperfect numbers, J. Aus-
tral. Math. Soc. Ser. A 33 (1982), 275–286.

[10] P. Hagis Jr. and G. Lord, Quasi-amicable numbers, Math. Comp. 31 (1977), 608–611.
[11] H. Halberstam and H.-E. Richert, Sieve Methods, London Math. Soc. Monogr. 4,

Academic Press, London, 1974.
[12] R. R. Hall and G. Tenenbaum, Divisors, Cambridge Tracts in Math. 90, Cambridge

Univ. Press, Cambridge, 1988.
[13] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 6th ed.,

Oxford Univ. Press, Oxford, 2008.
[14] B. Hornfeck und E. Wirsing, Über die Häufigkeit vollkommener Zahlen, Math. Ann.

133 (1957), 431–438.
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