Multiplicative partitions of numbers with a large squarefree divisor

Paul Pollack

Abstract

For each positive integer n, let $f(n)$ denote the number of multiplicative partitions of n, meaning the number of ways of writing n as a product of integers larger than 1 , where the order of the factors is not taken into account. It was shown by Oppenheim in 1926 that, as $x \rightarrow \infty$,

$$
\max _{\substack{n \leq x \\ n \text { squarefree }}} f(n)=x / L(x)^{2+o(1)},
$$

where $L(x)=\exp \left(\log x \cdot \frac{\log \log \log x}{\log \log x}\right)$. Without the restriction to squarefree n, the maximum is the significantly larger quantity $x / L(x)^{1+o(1)}$; this was proved by Canfield, Erdős, and Pomerance in 1983. We prove the following theorem that interpolates between these two results: For each fixed $\alpha \in[0,1]$,

$$
\max _{\substack{n \leq x \\ \operatorname{rad}(n) \geq n^{\alpha}}} f(n)=x / L(x)^{1+\alpha+o(1)} .
$$

We deduce, on the abc-conjecture, a nontrivial upper bound on how often values of certain polynomials appear in the range of Euler's φ-function.

1. Introduction.

By a multiplicative partition (or unordered factorization) of n, we mean a way of decomposing n as a product of integers larger than 1, where two decompositions are considered the same if they differ only in the order of the factors. Let $f(n)$ denote the number of multiplicative partitions of n. For example, $f(12)=4$, corresponding to the factorizations

$$
2 \cdot 6, \quad 2 \cdot 2 \cdot 3, \quad 3 \cdot 4, \quad \text { and } \quad 12 .
$$

The function $f(n)$ was introduced by MacMahon in 1923 and was shortly afterwards the subject of two papers by Oppenheim $[\mathbf{1 0}, \mathbf{1 1}]$. The main result of Oppenheim's first paper concerns the maximum size of $f(n)$. Let $\log _{k} x$ denoting the k th iterate of the natural logarithm, and put

$$
L(x)=\exp \left(\log x \cdot \frac{\log _{3} x}{\log _{2} x}\right)
$$

In [10], Oppenheim claims to prove that $f(n) \leq n / L(n)^{2+o(1)}$, as $n \rightarrow \infty$, and that this is optimal: there is an infinite, increasing sequence of positive integers n along which $f(n)=n / L(n)^{2+o(1)}$. However, in 1983, Canfield, Erdős, and Pomerance [2] disproved

[^0]Oppenhein's "theorem", showing that the true maximal order is $n / L(n)^{1+o(1)}$; more precisely,

$$
\begin{equation*}
\max _{n \leq x} f(n)=x / L(x)^{1+o(1)} \tag{1}
\end{equation*}
$$

as $x \rightarrow \infty$.
Oppenheim's "proof" that $f(n) \leq n / L(n)^{2+o(1)}$ rests on a mistaken assertion concerning the maximal order of the k-fold divisor function $d_{k}(n)$. Specifically, Oppenheim claims that

$$
\begin{equation*}
d_{k}(n)<k^{\log n / \log _{2} n+\log n /\left(\log _{2} n\right)^{2}+O\left(\log n /\left(\log _{2} n\right)^{3}\right)} \tag{2}
\end{equation*}
$$

for all large n and all k. Now (2) is true when $k=2$ (a result of Ramanujan [16]), and in fact true for each fixed k (see [4] for sharper results), but it is not true uniformly in k, and this invalidates his argument. Upper bounds for $d_{k}(n)$ which are uniform in k were eventually supplied by Usol'tsev [20] and Norton [9], and using Norton's work one can prove that $f(n) \leq n / L(n)^{1+o(1)}$ along the lines envisioned by Oppenheim. (The proof in [2] is different, not relying on bounds for $d_{k}(n)$.)

It is worth observing that (2) does hold uniformly in k under the restriction that n is squarefree. In that case, $d_{k}(n)=k^{\omega(n)}$, and it is known that

$$
\begin{equation*}
\omega(n) \leq \frac{\log n}{\log _{2} n}+\frac{\log n}{\left(\log _{2} n\right)^{2}}+O\left(\frac{\log n}{\left(\log _{2} n\right)^{3}}\right) \tag{3}
\end{equation*}
$$

(The estimate (3) follows from the prime number theorem with error term. See [17, Théorème 16] for an explicit determination of the O-constant.) Following Oppenheim's arguments leads one to a correct proof that

$$
\begin{equation*}
\max _{\substack{n \leq x \\ n \text { squarefree }}} f(n)=x / L(x)^{2+o(1)} \tag{4}
\end{equation*}
$$

as $x \rightarrow \infty$. This asymptotic formula can also be obtained in other ways. For instance, one can note that when n is squarefree with k prime factors, $f(n)$ is the number of set partitions of a k-element set, i.e., the k th Bell number. A sharp form of the prime number theorem, together with known bounds on Bell numbers (as in Lemma 6 below), easily yields (4).

The main result of this note is the following "convex combination" of the estimates (1) and (4). As usual, $\operatorname{rad}(n)$ denotes the radical of n, i.e., its largest squarefree divisor.

Theorem 1. Fix $\alpha \in[0,1]$. As $x \rightarrow \infty$,

$$
\max _{\substack{n \leq x \\ \operatorname{rad}(n) \geq n^{\alpha}}} f(n)=x / L(x)^{1+\alpha+o(1)} .
$$

Theorem 1 emerged during the author's investigations into the value-distribution of Euler's φ-function. Let $F(n)=\# \varphi^{-1}(n)$ denote the number of φ-preimages of n. It was shown by Pomerance [13] that

$$
\max _{n \leq x} F(n) \leq x / L(x)^{1+o(1)}
$$

and that equality holds if one assumes plausible conjectures on the distribution of shifted primes without large prime factors (see also [15]). Under the same conjectures,
arguments of Banks, Friedlander, Pomerance, and Shparlinski [1] establish that for each fixed positive integer k,

$$
\max _{n^{k} \leq x} F\left(n^{k}\right)=x / L(x)^{1+o(1)}
$$

(A proof is carried out explicitly in [12]; be careful to note the Remark at the top of that article's page 4.) Thus, for the polynomial $P(T)=T^{k}$, there are values of $P(T)$ that are essentially "as popular as possible" in terms of the multiplicity with which they appear in the range of φ. Under the abc conjecture, we deduce from Theorem 1 a contrasting result when $P(T)$ has at least two distinct roots.

Theorem 2 (conditional on the abc conjecture). Let $P(T) \in \mathbb{Z}[T]$ be a nonzero polynomial with at least two distinct complex roots. There is a constant $c_{P}>0$ such that, as $x \rightarrow \infty$,

$$
\max _{n: 0<|P(n)| \leq x} F(|P(n)|) \leq x / L(x)^{1+c_{P}+o(1)} .
$$

2. 'Radically' refining (1) and (4): Proof of Theorem 1

Since (1) and (4) cover the cases $\alpha=0$ and $\alpha=1$ of Theorem 1 , we will assume that $0<\alpha<1$. We treat the upper bound half of Theorem 1 first. The following estimate of Oppenheim plays a central role.

Lemma 3 (see eq. (1.52) in [10]). There are constants $C_{1}, C_{2}>0$ such that, for all positive integers $n \geq 16\left(>e^{e}\right)$,

$$
\begin{equation*}
f(n) \leq C_{1} \log n \cdot \max _{1 \leq k \leq \log n} \frac{d_{k}(n)}{\log 2}\left(C_{2} \log _{3} n\right)^{k} \tag{5}
\end{equation*}
$$

The next two lemmas are due to Norton.
Lemma 4 (see eq. (1.32) in [9]). For all integers $n \geq 16$ and all integers k with $2 \leq k \leq \frac{2 \log n}{\log _{2} n}$, we have

$$
\log d_{k}(n) \leq \log k \frac{\log n}{\log _{2} n}\left(1+\frac{\log _{3} n}{\log _{2} n}+O\left(\frac{1}{\log _{2} n}+\frac{k \log _{3} n}{\log n}\right)\right)
$$

Lemma 5 (see eq. (1.34) in [9]). For all $k \geq 2$ and all positive integers n,

$$
\begin{equation*}
d_{k}(n)<n^{2} e^{k} \tag{6}
\end{equation*}
$$

Remark. While Norton only claims (6) when $k \geq \log n$, it is clear from eq. (5.6) in [9] that this result holds for all $k \geq 2$.

Proof of the upper bound in Theorem 1. It suffices to show that for each $\epsilon \in(0,1 / 2)$, the maximum appearing in Theorem 1 is $O_{\epsilon}\left(x / L(x)^{1+\alpha-2 \epsilon}\right)$ for all $x>x_{0}(\epsilon)$. Of course, $f(n) \leq x / L(x)^{1+\alpha}$ when n is bounded and $x \rightarrow \infty$, so we can and will assume when convenient that n is sufficiently large.

If the maximum in (5) occurs at k where $k \geq 2 \log n / \log _{2} n$, then (keeping in mind (6))

$$
\begin{aligned}
f(n) \ll \log n \cdot \frac{d_{k}(n)}{k!}\left(C_{2} \log _{3} n\right)^{k} & \leq \log n \cdot \frac{n^{2} \cdot e^{k}}{k!}\left(C_{2} \log _{3} n\right)^{k} \\
& \leq n^{2} \log n \cdot\left(C_{2} e^{2} \log _{3} n / k\right)^{k}
\end{aligned}
$$

where we used in the last step the elementary inequality $k!\geq(k / e)^{k}$. Our lower bound on k implies that the last displayed quantity is of size $n^{o(1)}$, as $n \rightarrow \infty$, which is smaller than $x / L(x)^{2}$ for large x. So the upper bound of the theorem holds in this case, with much room to spare.

Now suppose the maximum occurs at a value k with

$$
1.1 \log _{3} n \frac{\log n}{\left(\log _{2} n\right)^{2}} \leq k<2 \log n / \log _{2} n
$$

Write $k=Z \log n /\left(\log _{2} n\right)^{2}$, so that

$$
1.1 \log _{3} n \leq Z<2 \log _{2} n .
$$

Then

$$
\begin{gathered}
\log k \frac{\log n}{\log _{2} n}=\log n-2 \log L(n)+O\left(\log Z \frac{\log n}{\log _{2} n}\right), \\
\log k \frac{\log n}{\log _{2} n} \cdot \frac{\log _{3} n}{\log _{2} n}=(1+o(1)) \log L(n),
\end{gathered}
$$

and

$$
\log k \frac{\log n}{\log _{2} n} \cdot\left(\frac{1}{\log _{2} n}+\frac{k \log _{3} n}{\log n}\right)=o(\log L(n))+O\left(\frac{Z}{\log _{2} n} \log L(n)\right) .
$$

(Here and elsewhere in this paragraph, the limit implicit in the $o(\cdot)$ terms is as $n \rightarrow \infty$.) Collecting these estimates and appealing to Lemma 4 reveals that

$$
\log d_{k}(n) \leq \log n-(1+o(1)) \log L(n)+O\left(\frac{Z}{\log _{2} n} \log L(n)\right)+O\left(\log Z \frac{\log n}{\log _{2} n}\right)
$$

Also,

$$
\begin{aligned}
\log k! & =k \log k+o(\log L(n)) \\
& \geq k\left(\log _{2} n-2 \log _{3} n\right)+o(\log L(n)) \\
& =Z \frac{\log n}{\log _{2} n}\left(1-O\left(\log _{3} n / \log _{2} n\right)\right)+o(\log L(n))
\end{aligned}
$$

Moreover, $\log \left(\left(C_{2} \log _{3} n\right)^{k}\right)=o(\log L(n))$. So from (5), as $n \rightarrow \infty$,

$$
\begin{aligned}
& \log f(n) \leq O(1)+\log _{2} n+\log d_{k}(n)-\log k!+\log \left(\left(C_{2} \log _{3} n\right)^{k}\right) \\
& \leq \log n-(1+o(1)) \log L(n)-Z \frac{\log n}{\log _{2} n}(1+o(1))
\end{aligned}
$$

Inserting our lower bound on Z and exponentiating, we find that for large n,

$$
f(n) \leq n / L(n)^{2} \leq x / L(x)^{2}
$$

Thus, the upper bound in the theorem holds in this case as well.
We may therefore suppose the maximum occurs at $k<1.1 \frac{\log n \log _{3} n}{\left(\log _{2} n\right)^{2}}$. Write $n=A B$, where $A=\operatorname{rad}(n)$. Recall that d_{k} is a submultiplicative function, meaning that $d_{k}(a b) \leq d_{k}(a) d_{k}(b)$ for every pair of positive integers a, b (see for instance [18]). Thus,

$$
f(n)=f(A B) \ll \log n \cdot d_{k}(A) \frac{d_{k}(B)}{k!} \cdot\left(C_{2} \log _{3} n\right)^{k}
$$

Applying (3) with n replaced by A shows that

$$
\begin{equation*}
\log d_{k}(A)=\omega(A) \log k \leq\left(\frac{\log A}{\log _{2} A}+O\left(\log A /\left(\log _{2} A\right)^{2}\right)\right) \log k \tag{7}
\end{equation*}
$$

Recall that $A \geq n^{\alpha}$. Thus, assuming (as we may) that n is large, we have that

$$
\begin{aligned}
\log k & \leq \log _{2} n-2 \log _{3} n+O\left(\log _{4} n\right) \\
& \leq \log _{2} A-2 \log _{3} A+O\left(\log _{4} A\right)
\end{aligned}
$$

so that (7) yields $\log d_{k}(A) \leq \log A-(2+o(1)) \log L(A)$, as $n \rightarrow \infty$. So for large n,

$$
d_{k}(A)<A / L(A)^{2-\epsilon}
$$

Also, $\log n \cdot\left(C_{2} \log _{3} n\right)^{k} \ll L(x)^{\epsilon}$, and a moment's thought reveals that $d_{k}(B) / k!\leq$ $f(B)$. Hence, if n is large, then

$$
f(n) \ll \frac{A}{L(A)^{2-\epsilon}} f(B) L(x)^{\epsilon} .
$$

If $B<16$, then this upper bound is $O\left(x / L(x)^{2-2 \epsilon}\right)$, completing the proof of the theorem. If $B \geq 16$, we have from (1) that $f(B) \ll B / L(B)^{1-\epsilon}$, making

$$
f(n) \ll \frac{n}{L(A)^{2-\epsilon} L(B)^{1-\epsilon}} L(x)^{\epsilon}
$$

To finish things off, notice that

$$
\begin{aligned}
\log \left(L(A)^{2-\epsilon} L(B)^{1-\epsilon}\right) & =(2-\epsilon) \frac{\log A \log _{3} A}{\log _{2} A}+(1-\epsilon) \frac{\log B \log _{3} B}{\log _{2} B} \\
& \geq(2-\epsilon) \frac{\log A \log _{3} n}{\log _{2} n}+(1-\epsilon) \frac{\log B \log _{3} n}{\log _{2} n} \\
& =\frac{\log A \log _{3} n}{\log _{2} n}+(1-\epsilon) \log L(n) \geq(1+\alpha-\epsilon) \log L(n)
\end{aligned}
$$

Hence,

$$
f(n) \ll \frac{n}{L(n)^{1+\alpha-\epsilon}} L(x)^{\epsilon} \ll \frac{x}{L(x)^{1+\alpha-2 \epsilon}},
$$

as desired.
The lower bound half of Theorem 1 is easier. We use the following asymptotic estimate for Bell numbers, which is a weak form of a result proved in [3, Chapter 6].

Lemma 6. The k th Bell number B_{k} satisfies, for $k \geq 3$,

$$
\log B_{k}=k \log k-k \log \log k+O(k)
$$

Proof of the lower bound in Theorem 1. It is enough to show that for all $\epsilon \in\left(0, \frac{1}{2}(1-\alpha)\right)$, the maximum indicated in Theorem 1 is at least $x / L(x)^{1+\alpha+4 \epsilon}$ once $x>x_{0}(\epsilon)$. Let B be a positive integer in $\left[1, x^{1-\alpha-\epsilon}\right]$ for which $f(B)$ is as as large as possible; from (1), we know that for large x,

$$
\begin{equation*}
f(B)>x^{1-\alpha-\epsilon} / L\left(x^{1-\alpha-\epsilon}\right)^{1+\frac{1}{2} \epsilon} \geq B / L(B)^{1+\frac{1}{2} \epsilon} \tag{8}
\end{equation*}
$$

Since the value of $f(B)$ depends only on the array of exponents in the prime factorization of B, and not on the primes themselves, we may assume that the primes dividing B are precisely the primes not exceeding its largest prime factor q. Since $B \leq x^{1-\alpha-\epsilon}$, we have by the prime number theorem that $q<\log x$ (for large x). Let A be the product of the consecutive primes exceeding $\log x$, with the product extending as far
as possible with $A \leq x / B$. Then A and B are relatively prime, and so (concatenating factorizations) we see that

$$
\begin{equation*}
f(A B) \geq f(A) f(B) \tag{9}
\end{equation*}
$$

The proof will be completed by showing that $\operatorname{rad}(A B) \geq x^{\alpha}$, and that $f(A) f(B) \geq$ $x / L(x)^{1+\alpha+4 \epsilon}$.

To get started, we observe that $(\log x)^{\omega(A)} \leq A \leq x / B$, so that

$$
\omega(A) \leq \log (x / B) / \log _{2}(x)
$$

For large x, this implies that the first $\omega(A)+1$ primes exceeding $\log x$ all belong to the interval $(\log x, 3 \log x]$. Now the choice of A implies that

$$
\operatorname{rad}(A B) \geq \operatorname{rad}(A)=A \geq \frac{x}{3 B \log x} \geq x^{\alpha}
$$

Moreover, since $(3 \log x)^{\omega(A)} \geq A \geq x /(3 B \log x)$, we have

$$
\begin{aligned}
\omega(A) & \geq \log (x /(3 B \log x)) / \log (3 \log x) \\
& =\frac{\log (x / B)}{\log _{2} x}\left(1+O\left(1 / \log _{2} x\right)\right)
\end{aligned}
$$

Combining this with our earlier upper bound for $\omega(A)$, we see that

$$
\omega(A)=\frac{\log (x / B)}{\log _{2} x}\left(1+O\left(1 / \log _{2} x\right)\right) .
$$

Hence

$$
\log \omega(A)=\log _{2} x-\log _{3} x+O(1), \quad \log _{2} \omega(A)=\log _{3} x+O\left(\log _{3} x / \log _{2} x\right)
$$

Now a straightforward calculation using Lemma 6 reveals that

$$
\log f(A)=\log B_{\omega(A)}=\log (x / B)-2 \log (x / B) \frac{\log _{3} x}{\log _{2} x}+o(\log L(x))
$$

as $x \rightarrow \infty$. Recalling (8) and (9), and observing that (8) implies that $B>x^{1-\alpha-2 \epsilon}$, we find that

$$
\begin{aligned}
\log f(A B) & \geq \log f(A)+\log f(B) \\
& \geq \log x-2 \log (x / B) \frac{\log _{3} x}{\log _{2} x}-\left(1+\frac{1}{2} \epsilon\right) \log B \frac{\log _{3} B}{\log _{2} B}+o(\log L(x)) \\
& \geq \log x-2 \log (x / B) \frac{\log _{3} x}{\log _{2} x}-(1+\epsilon) \log B \frac{\log _{3} x}{\log _{2} x}+o(\log L(x)) \\
& =\log x-(1+o(1)) \log L(x)-\log (x / B) \frac{\log _{3} x}{\log _{2} x}-\epsilon \log B \frac{\log _{3} x}{\log _{2} x} .
\end{aligned}
$$

Since $\frac{x}{B} \leq x^{\alpha+2 \epsilon}$ and $B \leq x$, we deduce that

$$
\log f(A B) \geq \log x-(1+\alpha+3 \epsilon+o(1)) \log L(x)
$$

and so for large x, we have $f(A B) \geq x / L(x)^{1+\alpha+4 \epsilon}$, as desired.

3. (Un)popular polynomial values: Proof of Theorem 2

We use the following consequence of the abc conjecture, due to Langevin [8] (see also Granville [7]).

Proposition 7 (conditional on abc). Fix a polynomial $P(T) \in \mathbb{Z}[T]$ with degree $d \geq 2$ and no repeated roots. Then

$$
\operatorname{rad}(P(n)) \geq|n|^{d-1-o(1)}
$$

for integers n with $|n| \rightarrow \infty$.
We also need the following lemma comparing $F(n)$ and $f(n)$. A similar result, for the Dedekind ψ-function in place of φ, was given by Pomerance [14].

Lemma 8. For every positive integer n, we have $F(n) \leq 4 f(n)$.
Proof. By an extended factorization of n, we mean a multiplicative partition of n, but with 1 now allowed to appear as a factor at most once. Clearly, the number of extended factorizations of n is exactly $2 f(n)$.

Suppose that $\varphi(m)=n$, and write $m=p_{1}^{e_{1}} \cdots p_{k}^{e_{k}}$, where the p_{i} are distinct primes and the e_{i} are positive integers; then

$$
n=\prod_{i=1}^{k} \overbrace{p_{i} \cdots p_{i} \cdots p_{i}}^{e_{i}-1 \text { times }} \cdot\left(p_{i}-1\right) .
$$

We view the right-hand side as describing an extended factorization of n into $\sum_{i=1}^{k}\left(\left(e_{i}-1\right)+1\right)=\Omega(m)$ parts. It suffices to show that each such extended factorization of $\varphi(m)$ corresponds to at most two different preimages m.

Starting from the (extended) factorization of $\varphi(m)$, one might attempt to recover m as follows: Such a factorization contains a unique smallest term $p_{1}-1$, where p_{1} is the smallest prime factor of m. We read off the multiplicity of p_{1} in m as $1+$ the multiplicity of p_{1} in our factorization. We then remove $p_{1}-1$ and the copies of p_{1} from our factorization and start over to determine the next largest prime factor of m and the multiplicity with which it appears. We continue in this way until the entire factorization of $\varphi(m)$ is exhausted.

However, this procedure can fail if $p_{1}=2$, since the number of 2 's appearing in the factorization of $\varphi(m)$ depends not only on the power of 2 in m but also on whether or not $3 \mid m$. We work around this as follows:

- If $p_{1}=2$, and the factorization of $\varphi(m)$ contains 3 as a term, we know $3 \mid m$, which is enough to resolve all ambiguity: If 2 appears in the given factorization of $\varphi(m) k$ times, then $2^{k} \| m$. Having figured out the power of 2 dividing m, we remove the factor 1 and $k-1$ factors of 2 from the factorization of $\varphi(m)$ and proceed to determine the remaining components of m by the procedure of the last paragraph.
- Suppose $p_{1}=2$ and 3 does not appear in the factorization of $\varphi(m)$. If 2 appears in the factorization k times, then either $2^{k+1} \| m$ or $2^{k} \cdot 3 \| m$. In either case, we may remove 1 and all factors of 2 from the factorization of $\varphi(m)$ and continue with the algorithm above to determine the remaining components of m.
In either case, the factorization of $\varphi(m)$ determines m in at most two ways, finishing the proof.

Proof of Theorem 2. Write $P(T)= \pm \prod_{i} P_{i}(T)^{e_{i}}$, where the $P_{i}(T)$ are distinct nonconstant irreducibles in $\mathbb{Z}[T]$, each with positive leading coefficient. Let $Q(T)=\prod_{i} P_{i}(T)$. Then $Q(T)$ has distinct roots, and $d:=\operatorname{deg} Q(T) \geq 2$. By Proposition 7, as $|n| \rightarrow \infty$,

$$
\operatorname{rad}(P(n)) \geq \operatorname{rad}(Q(n)) \geq|n|^{d-1-o(1)} \geq|P(n)|^{1-\frac{1}{d}-o(1)}
$$

It follows from Lemma 8 and Theorem 1 that

$$
F(P(n)) \leq 4 f(P(n)) \leq|P(n)| / L(|P(n)|)^{2-\frac{1}{d}+o(1)}
$$

Theorem 2 follows with $c_{P}=1-\frac{1}{d}$.
Probably the conclusion of Theorem 2 is still quite far from the truth. For each fixed $\alpha \in[0,1]$,

$$
\begin{equation*}
\#\left\{n \leq x: F(n) \geq x^{\alpha}\right\} \leq x^{1-\alpha+o(1)} \tag{10}
\end{equation*}
$$

as $x \rightarrow \infty$. This follows from the easy estimate $\# \varphi^{-1}([1, x]) \ll x \log _{2} x$. (In fact, $x \log _{2} x$ can be improved to $x[5]$.) Now a naive probabilistic argument suggests that if $P(T)$ is a polynomial of degree d, then

$$
\begin{equation*}
\max _{n: 0<|P(n)| \leq x} F(|P(n)|) \leq x^{\frac{1}{d}+o(1)} \tag{11}
\end{equation*}
$$

as $x \rightarrow \infty$. This conclusion should be taken with a grain of salt; for the polynomials $P(T)=T^{k}$, this maximum can be shown rigorously to be at least $x^{0.7038}$ (and as pointed out in the introduction, we expect it to be $\left.x^{1-o(1)}\right)$. (See [6], which develops arguments of [1].) But it may be that (11) holds generically, perhaps whenever $P(T)$ has distinct roots.

REmark. It would also be sensible to study $f(|P(n)|)$ rather than $F(|P(n)|)$. Clearly, Theorem 2 remains valid in this context. Moreover, one can show rigorously that $\max _{n^{k} \leq x} f\left(n^{k}\right)=x / L(x)^{1+o(1)}$, as $x \rightarrow \infty$. ${ }^{1}$ Since $\sum_{n \leq x} f(n) \leq$ $x \exp (O(\sqrt{\log x}))$ (see [11] or [19] for an asymptotic formula), one has the analogue of (10), and our probabilistic heuristic suggests that the analogue of (11) holds for a generic choice of $P(T)$.

Acknowledgements

The author is supported by NSF award DMS-1402268. He thanks Carl Pomerance for helpful comments.

References

1. W. D. Banks, J. B. Friedlander, C. Pomerance, and I. E. Shparlinski, Multiplicative structure of values of the Euler function, High primes and misdemeanours: lectures in honour of the 60th birthday of Hugh Cowie Williams, Fields Inst. Commun., vol. 41, Amer. Math. Soc., Providence, RI, 2004, pp. 29-47.
2. E. R. Canfield, P. Erdős, and C. Pomerance, On a problem of Oppenheim concerning "factorisatio numerorum", J. Number Theory 17 (1983), 1-28.

[^1]3. N. G. de Bruijn, Asymptotic methods in analysis, third ed., Dover Publications, Inc., New York, 1981.
4. J.-L. Duras, J.-L. Nicolas, and G. Robin, Grandes valeurs de la fonction d_{k}, Number theory in progress, Vol. 2 (Zakopane-Kościelisko, 1997), de Gruyter, Berlin, 1999, pp. 743-770.
5. P. Erdős, Some remarks on Euler's φ-function and some related problems, Bull. Amer. Math. Soc. 51 (1945), 540-544.
6. T. Freiberg, Products of shifted primes simultaneously taking perfect power values, J. Aust. Math. Soc. 92 (2012), 145-154.
7. A. Granville, $A B C$ allows us to count squarefrees, Internat. Math. Res. Notices (1998), no. 19, 991-1009.
8. M. Langevin, Partie sans facteur carré d'un produit d'entiers voisins, Approximations diophantiennes et nombres transcendants (Luminy, 1990), de Gruyter, Berlin, 1992, pp. 203-214.
9. K. K. Norton, Upper bounds for sums of powers of divisor functions, J. Number Theory 40 (1992), 60-85.
10. A. Oppenheim, On an Arithmetic Function, J. London Math. Soc. 1 (1926), 205-211.
11. \qquad , On an Arithmetic Function (II), J. London Math. Soc. 2 (1927), 123-130.
12. P. Pollack, How often is Euler's totient a perfect power?, J. Number Theory 197 (2019), 1-12.
13. C. Pomerance, Popular values of Euler's function, Mathematika 27 (1980), 84-89.
14. _ On the distribution of amicable numbers. II, J. Reine Angew. Math. 325 (1981), 183-188.
15._, Two methods in elementary analytic number theory, Number theory and applications (Banff, AB, 1988), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 265, Kluwer Acad. Publ., Dordrecht, 1989, pp. 135-161.
16. S. Ramanujan, Highly composite numbers, Proc. London Math. Soc. 14 (1915), 347-409.
17. G. Robin, Estimation de la fonction de Tchebychef θ sur le k-ième nombre premier et grandes valeurs de la fonction $\omega(n)$ nombre de diviseurs premiers de n, Acta Arith. 42 (1983), 367-389.
18. J. Sándor, On the arithmetical functions $d_{k}(n)$ and $d_{k}^{*}(n)$, Portugal. Math. 53 (1996), 107-115.
19. G. Szekeres and P. Turán, Über das zweite Hauptproblem der "Factorisatio Numerorum", Acta Litt. Sci. Szeged 6 (1933), 143-154.
20. L. P. Usol'tsev, On an estimate for a multiplicative function, Additive problems in number theory (Russian), Kuŭbyshev. Gos. Ped. Inst., Kuybyshev, 1985, pp. 34-37.

Department of Mathematics, University of Georgia, Athens, GA 30602
E-mail address: pollack@uga.edu

[^0]: 2010 Mathematics Subject Classification. Primary 11A51; Secondary 11N32, 11N56, 11N64.
 Key words and phrases. multiplicative partition, factorization, divisor functions, factorisatio numerorum, abc conjecture.

[^1]: ${ }^{1}$ In view of (1), only the implicit lower bound needs discussion. One modifies the proof of Theorem 1 in [12] as follows: Rather than choose t distinct primes $p \leq X$ with $p-1 y$-smooth, choose $t y$-smooth integers $m_{1}<\cdots<m_{t} \leq X$. Each choice of m_{1}, \ldots, m_{t} corresponds to a factorization of $N:=m_{1} \cdots m_{t}$, where $N \leq x$. The argument for Theorem 1 in [12] shows that there are at least $x / L(x)^{1+o(1)}$ choices of the m_{i} for which N is a k th power. But N is y-smooth, and there are only $L(x)^{o(1)} y$-smooth integers in $[1, x]$. Thus, $f(N) \geq x / L(x)^{1+o(1)}$ for some N.

