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Abstract. For each positive integer n, let f(n) denote the number of multiplicative
partitions of n, meaning the number of ways of writing n as a product of integers
larger than 1, where the order of the factors is not taken into account. It was shown
by Oppenheim in 1926 that, as x→∞,

max
n≤x

n squarefree

f(n) = x/L(x)2+o(1),

where L(x) = exp(log x · log log log x
log log x ). Without the restriction to squarefree n, the

maximum is the significantly larger quantity x/L(x)1+o(1); this was proved by
Canfield, Erdős, and Pomerance in 1983. We prove the following theorem that
interpolates between these two results: For each fixed α ∈ [0, 1],

max
n≤x

rad(n)≥nα

f(n) = x/L(x)1+α+o(1).

We deduce, on the abc-conjecture, a nontrivial upper bound on how often values of
certain polynomials appear in the range of Euler’s ϕ-function.

1. Introduction.

By a multiplicative partition (or unordered factorization) of n, we mean a way of
decomposing n as a product of integers larger than 1, where two decompositions are
considered the same if they differ only in the order of the factors. Let f(n) denote
the number of multiplicative partitions of n. For example, f(12) = 4, corresponding
to the factorizations

2 · 6, 2 · 2 · 3, 3 · 4, and 12.

The function f(n) was introduced by MacMahon in 1923 and was shortly afterwards
the subject of two papers by Oppenheim [10, 11]. The main result of Oppenheim’s
first paper concerns the maximum size of f(n). Let logk x denoting the kth iterate of
the natural logarithm, and put

L(x) = exp

(
log x · log3 x

log2 x

)
.

In [10], Oppenheim claims to prove that f(n) ≤ n/L(n)2+o(1), as n→∞, and that this
is optimal: there is an infinite, increasing sequence of positive integers n along which
f(n) = n/L(n)2+o(1). However, in 1983, Canfield, Erdős, and Pomerance [2] disproved
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Oppenhein’s “theorem”, showing that the true maximal order is n/L(n)1+o(1); more
precisely,

(1) max
n≤x

f(n) = x/L(x)1+o(1),

as x→∞.
Oppenheim’s “proof” that f(n) ≤ n/L(n)2+o(1) rests on a mistaken assertion

concerning the maximal order of the k-fold divisor function dk(n). Specifically,
Oppenheim claims that

(2) dk(n) < klogn/ log2 n+logn/(log2 n)
2+O(logn/(log2 n)

3)

for all large n and all k. Now (2) is true when k = 2 (a result of Ramanujan [16]), and
in fact true for each fixed k (see [4] for sharper results), but it is not true uniformly
in k, and this invalidates his argument. Upper bounds for dk(n) which are uniform in
k were eventually supplied by Usol′tsev [20] and Norton [9], and using Norton’s work
one can prove that f(n) ≤ n/L(n)1+o(1) along the lines envisioned by Oppenheim.
(The proof in [2] is different, not relying on bounds for dk(n).)

It is worth observing that (2) does hold uniformly in k under the restriction that
n is squarefree. In that case, dk(n) = kω(n), and it is known that

(3) ω(n) ≤ log n

log2 n
+

log n

(log2 n)2
+O

(
log n

(log2 n)3

)
.

(The estimate (3) follows from the prime number theorem with error term. See [17,
Théorème 16] for an explicit determination of the O-constant.) Following Oppenheim’s
arguments leads one to a correct proof that

(4) max
n≤x

n squarefree

f(n) = x/L(x)2+o(1),

as x→∞. This asymptotic formula can also be obtained in other ways. For instance,
one can note that when n is squarefree with k prime factors, f(n) is the number
of set partitions of a k-element set, i.e., the kth Bell number. A sharp form of the
prime number theorem, together with known bounds on Bell numbers (as in Lemma
6 below), easily yields (4).

The main result of this note is the following “convex combination” of the estimates
(1) and (4). As usual, rad(n) denotes the radical of n, i.e., its largest squarefree
divisor.

Theorem 1. Fix α ∈ [0, 1]. As x→∞,

max
n≤x

rad(n)≥nα
f(n) = x/L(x)1+α+o(1).

Theorem 1 emerged during the author’s investigations into the value-distribution
of Euler’s ϕ-function. Let F (n) = #ϕ−1(n) denote the number of ϕ-preimages of n.
It was shown by Pomerance [13] that

max
n≤x

F (n) ≤ x/L(x)1+o(1),

and that equality holds if one assumes plausible conjectures on the distribution of
shifted primes without large prime factors (see also [15]). Under the same conjectures,
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arguments of Banks, Friedlander, Pomerance, and Shparlinski [1] establish that for
each fixed positive integer k,

max
nk≤x

F (nk) = x/L(x)1+o(1).

(A proof is carried out explicitly in [12]; be careful to note the Remark at the top of
that article’s page 4.) Thus, for the polynomial P (T ) = T k, there are values of P (T )
that are essentially “as popular as possible” in terms of the multiplicity with which
they appear in the range of ϕ. Under the abc conjecture, we deduce from Theorem 1
a contrasting result when P (T ) has at least two distinct roots.

Theorem 2 (conditional on the abc conjecture). Let P (T ) ∈ Z[T ] be a nonzero
polynomial with at least two distinct complex roots. There is a constant cP > 0 such
that, as x→∞,

max
n: 0<|P (n)|≤x

F (|P (n)|) ≤ x/L(x)1+cP+o(1).

2. ‘Radically’ refining (1) and (4): Proof of Theorem 1

Since (1) and (4) cover the cases α = 0 and α = 1 of Theorem 1, we will assume
that 0 < α < 1. We treat the upper bound half of Theorem 1 first. The following
estimate of Oppenheim plays a central role.

Lemma 3 (see eq. (1.52) in [10]). There are constants C1, C2 > 0 such that, for
all positive integers n ≥ 16 (> ee),

(5) f(n) ≤ C1 log n · max
1≤k≤ logn

log 2

dk(n)

k!
(C2 log3 n)k.

The next two lemmas are due to Norton.

Lemma 4 (see eq. (1.32) in [9]). For all integers n ≥ 16 and all integers k with
2 ≤ k ≤ 2 logn

log2 n
, we have

log dk(n) ≤ log k
log n

log2 n

(
1 +

log3 n

log2 n
+O

(
1

log2 n
+
k log3 n

log n

))
.

Lemma 5 (see eq. (1.34) in [9]). For all k ≥ 2 and all positive integers n,

(6) dk(n) < n2ek.

Remark. While Norton only claims (6) when k ≥ log n, it is clear from eq. (5.6)
in [9] that this result holds for all k ≥ 2.

Proof of the upper bound in Theorem 1. It suffices to show that for each
ε ∈ (0, 1/2), the maximum appearing in Theorem 1 is Oε(x/L(x)1+α−2ε) for all
x > x0(ε). Of course, f(n) ≤ x/L(x)1+α when n is bounded and x→∞, so we can
and will assume when convenient that n is sufficiently large.

If the maximum in (5) occurs at k where k ≥ 2 log n/ log2 n, then (keeping in
mind (6))

f(n)� log n · dk(n)

k!
(C2 log3 n)k ≤ log n · n

2 · ek

k!
(C2 log3 n)k

≤ n2 log n · (C2e
2 log3 n/k)k,
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where we used in the last step the elementary inequality k! ≥ (k/e)k. Our lower
bound on k implies that the last displayed quantity is of size no(1), as n→∞, which
is smaller than x/L(x)2 for large x. So the upper bound of the theorem holds in this
case, with much room to spare.

Now suppose the maximum occurs at a value k with

1.1 log3 n
log n

(log2 n)2
≤ k < 2 log n/ log2 n.

Write k = Z log n/(log2 n)2, so that

1.1 log3 n ≤ Z < 2 log2 n.

Then

log k
log n

log2 n
= log n− 2 logL(n) +O

(
logZ

log n

log2 n

)
,

log k
log n

log2 n
· log3 n

log2 n
= (1 + o(1)) logL(n),

and

log k
log n

log2 n
·
(

1

log2 n
+
k log3 n

log n

)
= o(logL(n)) +O

(
Z

log2 n
logL(n)

)
.

(Here and elsewhere in this paragraph, the limit implicit in the o(·) terms is as
n→∞.) Collecting these estimates and appealing to Lemma 4 reveals that

log dk(n) ≤ log n− (1 + o(1)) logL(n) +O

(
Z

log2 n
logL(n)

)
+O

(
logZ

log n

log2 n

)
.

Also,

log k! = k log k + o(logL(n))

≥ k(log2 n− 2 log3 n) + o(logL(n))

= Z
log n

log2 n
(1−O(log3 n/ log2 n)) + o(logL(n)).

Moreover, log((C2 log3 n)k) = o(logL(n)). So from (5), as n→∞,

log f(n) ≤ O(1) + log2 n+ log dk(n)− log k! + log((C2 log3 n)k)

≤ log n− (1 + o(1)) logL(n)− Z log n

log2 n
(1 + o(1)).

Inserting our lower bound on Z and exponentiating, we find that for large n,

f(n) ≤ n/L(n)2 ≤ x/L(x)2.

Thus, the upper bound in the theorem holds in this case as well.
We may therefore suppose the maximum occurs at k < 1.1 logn log3 n

(log2 n)
2 . Write

n = AB, where A = rad(n). Recall that dk is a submultiplicative function, meaning
that dk(ab) ≤ dk(a)dk(b) for every pair of positive integers a, b (see for instance [18]).
Thus,

f(n) = f(AB)� log n · dk(A)
dk(B)

k!
· (C2 log3 n)k.
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Applying (3) with n replaced by A shows that

(7) log dk(A) = ω(A) log k ≤
(

logA

log2A
+O(logA/(log2A)2)

)
log k.

Recall that A ≥ nα. Thus, assuming (as we may) that n is large, we have that

log k ≤ log2 n− 2 log3 n+O(log4 n)

≤ log2A− 2 log3A+O(log4A),

so that (7) yields log dk(A) ≤ logA− (2 + o(1)) logL(A), as n→∞. So for large n,

dk(A) < A/L(A)2−ε.

Also, log n · (C2 log3 n)k � L(x)ε, and a moment’s thought reveals that dk(B)/k! ≤
f(B). Hence, if n is large, then

f(n)� A

L(A)2−ε
f(B)L(x)ε.

If B < 16, then this upper bound is O(x/L(x)2−2ε), completing the proof of the
theorem. If B ≥ 16, we have from (1) that f(B)� B/L(B)1−ε, making

f(n)� n

L(A)2−εL(B)1−ε
L(x)ε.

To finish things off, notice that

log(L(A)2−εL(B)1−ε) = (2− ε) logA log3A

log2A
+ (1− ε) logB log3B

log2B

≥ (2− ε) logA log3 n

log2 n
+ (1− ε) logB log3 n

log2 n

=
logA log3 n

log2 n
+ (1− ε) logL(n) ≥ (1 + α− ε) logL(n).

Hence,

f(n)� n

L(n)1+α−ε
L(x)ε � x

L(x)1+α−2ε
,

as desired. �

The lower bound half of Theorem 1 is easier. We use the following asymptotic
estimate for Bell numbers, which is a weak form of a result proved in [3, Chapter 6].

Lemma 6. The kth Bell number Bk satisfies, for k ≥ 3,

logBk = k log k − k log log k +O(k).

Proof of the lower bound in Theorem 1. It is enough to show that for
all ε ∈ (0, 1

2
(1− α)), the maximum indicated in Theorem 1 is at least x/L(x)1+α+4ε

once x > x0(ε). Let B be a positive integer in [1, x1−α−ε] for which f(B) is as as large
as possible; from (1), we know that for large x,

(8) f(B) > x1−α−ε/L(x1−α−ε)1+
1
2
ε ≥ B/L(B)1+

1
2
ε.

Since the value of f(B) depends only on the array of exponents in the prime factoriza-
tion of B, and not on the primes themselves, we may assume that the primes dividing
B are precisely the primes not exceeding its largest prime factor q. Since B ≤ x1−α−ε,
we have by the prime number theorem that q < log x (for large x). Let A be the
product of the consecutive primes exceeding log x, with the product extending as far
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as possible with A ≤ x/B. Then A and B are relatively prime, and so (concatenating
factorizations) we see that

(9) f(AB) ≥ f(A)f(B).

The proof will be completed by showing that rad(AB) ≥ xα, and that f(A)f(B) ≥
x/L(x)1+α+4ε.

To get started, we observe that (log x)ω(A) ≤ A ≤ x/B, so that

ω(A) ≤ log (x/B)/ log2(x).

For large x, this implies that the first ω(A) + 1 primes exceeding log x all belong to
the interval (log x, 3 log x]. Now the choice of A implies that

rad(AB) ≥ rad(A) = A ≥ x

3B log x
≥ xα.

Moreover, since (3 log x)ω(A) ≥ A ≥ x/(3B log x), we have

ω(A) ≥ log(x/(3B log x))/ log(3 log x)

=
log(x/B)

log2 x
(1 +O(1/ log2 x)) .

Combining this with our earlier upper bound for ω(A), we see that

ω(A) =
log(x/B)

log2 x
(1 +O(1/ log2 x)) .

Hence

logω(A) = log2 x− log3 x+O(1), log2 ω(A) = log3 x+O(log3 x/ log2 x).

Now a straightforward calculation using Lemma 6 reveals that

log f(A) = logBω(A) = log(x/B)− 2 log(x/B)
log3 x

log2 x
+ o(logL(x)),

as x→∞. Recalling (8) and (9), and observing that (8) implies that B > x1−α−2ε,
we find that

log f(AB) ≥ log f(A) + log f(B)

≥ log x− 2 log(x/B)
log3 x

log2 x
−
(

1 +
1

2
ε

)
logB

log3B

log2B
+ o(logL(x))

≥ log x− 2 log(x/B)
log3 x

log2 x
− (1 + ε) logB

log3 x

log2 x
+ o(logL(x))

= log x− (1 + o(1)) logL(x)− log(x/B)
log3 x

log2 x
− ε logB

log3 x

log2 x
.

Since x
B
≤ xα+2ε and B ≤ x, we deduce that

log f(AB) ≥ log x− (1 + α + 3ε+ o(1)) logL(x),

and so for large x, we have f(AB) ≥ x/L(x)1+α+4ε, as desired. �
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3. (Un)popular polynomial values: Proof of Theorem 2

We use the following consequence of the abc conjecture, due to Langevin [8] (see
also Granville [7]).

Proposition 7 (conditional on abc). Fix a polynomial P (T ) ∈ Z[T ] with degree
d ≥ 2 and no repeated roots. Then

rad(P (n)) ≥ |n|d−1−o(1),
for integers n with |n| → ∞.

We also need the following lemma comparing F (n) and f(n). A similar result, for
the Dedekind ψ-function in place of ϕ, was given by Pomerance [14].

Lemma 8. For every positive integer n, we have F (n) ≤ 4f(n).

Proof. By an extended factorization of n, we mean a multiplicative partition of
n, but with 1 now allowed to appear as a factor at most once. Clearly, the number of
extended factorizations of n is exactly 2f(n).

Suppose that ϕ(m) = n, and write m = pe11 · · · p
ek
k , where the pi are distinct

primes and the ei are positive integers; then

n =
k∏
i=1

ei−1 times︷ ︸︸ ︷
pi · · · pi · · · pi ·(pi − 1).

We view the right-hand side as describing an extended factorization of n into∑k
i=1((ei − 1) + 1) = Ω(m) parts. It suffices to show that each such extended

factorization of ϕ(m) corresponds to at most two different preimages m.
Starting from the (extended) factorization of ϕ(m), one might attempt to recover

m as follows: Such a factorization contains a unique smallest term p1− 1, where p1 is
the smallest prime factor of m. We read off the multiplicity of p1 in m as 1 + the
multiplicity of p1 in our factorization. We then remove p1 − 1 and the copies of p1
from our factorization and start over to determine the next largest prime factor of m
and the multiplicity with which it appears. We continue in this way until the entire
factorization of ϕ(m) is exhausted.

However, this procedure can fail if p1 = 2, since the number of 2’s appearing
in the factorization of ϕ(m) depends not only on the power of 2 in m but also on
whether or not 3 | m. We work around this as follows:

• If p1 = 2, and the factorization of ϕ(m) contains 3 as a term, we know
3 | m, which is enough to resolve all ambiguity: If 2 appears in the given
factorization of ϕ(m) k times, then 2k ‖ m. Having figured out the power
of 2 dividing m, we remove the factor 1 and k − 1 factors of 2 from the
factorization of ϕ(m) and proceed to determine the remaining components
of m by the procedure of the last paragraph.
• Suppose p1 = 2 and 3 does not appear in the factorization of ϕ(m). If 2

appears in the factorization k times, then either 2k+1 ‖ m or 2k · 3 ‖ m. In
either case, we may remove 1 and all factors of 2 from the factorization of
ϕ(m) and continue with the algorithm above to determine the remaining
components of m.

In either case, the factorization of ϕ(m) determines m in at most two ways, finishing
the proof. �
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Proof of Theorem 2. Write P (T ) = ±
∏

i Pi(T )ei , where the Pi(T ) are dis-
tinct nonconstant irreducibles in Z[T ], each with positive leading coefficient. Let
Q(T ) =

∏
i Pi(T ). Then Q(T ) has distinct roots, and d := degQ(T ) ≥ 2. By

Proposition 7, as |n| → ∞,

rad(P (n)) ≥ rad(Q(n)) ≥ |n|d−1−o(1) ≥ |P (n)|1−
1
d
−o(1).

It follows from Lemma 8 and Theorem 1 that

F (P (n)) ≤ 4f(P (n)) ≤ |P (n)|/L(|P (n)|)2−
1
d
+o(1).

Theorem 2 follows with cP = 1− 1
d
. �

Probably the conclusion of Theorem 2 is still quite far from the truth. For each
fixed α ∈ [0, 1],

(10) #{n ≤ x : F (n) ≥ xα} ≤ x1−α+o(1),

as x → ∞. This follows from the easy estimate #ϕ−1([1, x]) � x log2 x. (In fact,
x log2 x can be improved to x [5].) Now a naive probabilistic argument suggests that
if P (T ) is a polynomial of degree d, then

(11) max
n: 0<|P (n)|≤x

F (|P (n)|) ≤ x
1
d
+o(1),

as x→∞. This conclusion should be taken with a grain of salt; for the polynomials
P (T ) = T k, this maximum can be shown rigorously to be at least x0.7038 (and as
pointed out in the introduction, we expect it to be x1−o(1)). (See [6], which develops
arguments of [1].) But it may be that (11) holds generically, perhaps whenever P (T )
has distinct roots.

Remark. It would also be sensible to study f(|P (n)|) rather than F (|P (n)|).
Clearly, Theorem 2 remains valid in this context. Moreover, one can show rig-
orously that maxnk≤x f(nk) = x/L(x)1+o(1), as x → ∞.1 Since

∑
n≤x f(n) ≤

x exp(O(
√

log x)) (see [11] or [19] for an asymptotic formula), one has the ana-
logue of (10), and our probabilistic heuristic suggests that the analogue of (11) holds
for a generic choice of P (T ).
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progress, Vol. 2 (Zakopane-Kościelisko, 1997), de Gruyter, Berlin, 1999, pp. 743–770.
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