ERRATA TO "SOME PROBLEMS OF ERDŐS ON THE SUM-OF-DIVISORS FUNCTION"

PAUL POLLACK AND CARL POMERANCE

(i) The statement of Proposition 2.2 should be modified as follows.

Proposition 2.2'. The number of convenient solutions to $\sigma(n) \equiv a(\bmod n)$ with $|a|<n \leq x$ is at most $x^{1 / 2+o(1)}$, as $x \rightarrow \infty$, uniformly in a with $|a| \leq x$.

In other words, we need to impose the additional requirement that $n>|a|$.
We overlooked that both Lemma 6 and Theorem 1 in [1] use the condition $n>|a|$ in their proofs. Apart from this oversight, the proof of Proposition 2.2 is unchanged.
Proposition 2.2 is applied in the proof of Lemma 2.3 to count certain solutions to $\sigma(m) \equiv a$ $(\bmod m)$; it is clear from the third display in the proof of that lemma that the condition $m>|a|$ required to apply Proposition 2.2^{\prime} is satisfied.
(ii) Conjecture 2.4 was stated incorrectly; regular solutions to the congruence $\sigma(n) \equiv a(\bmod n)$ were intended to be excluded from the count. Unfortunately, even in this corrected form, the conjecture is false; this is shown in recent joint work of the authors with L. Thompson [2].

References

[1] A. Anavi, P. Pollack, and C. Pomerance, On congruences of the form $\sigma(n) \equiv a(\bmod n)$, Int. J. Number Theory 9 (2013), 115-124.
[2] P. Pollack, C. Pomerance, and L. Thompson, Divisor-sum fibers, preprint.

```
University of Georgia, Mathematics Department, Athens, GA 30602, USA
```

E-mail address: pollack@uga.edu
Dartmouth College, Mathematics Department, Hanover, NH 03755, USA
E-mail address: carl.pomerance@dartmouth.edu

