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Abstract. In 1909, Hilbert proved that for each fixed k, there is a number g
with the following property: Every integer N ≥ 0 has a representation in the form
N = xk

1 + xk
2 + · · · + xk

g , where the xi are nonnegative integers. This resolved a
conjecture of Edward Waring from 1770. Hilbert’s proof is somewhat unsatisfying,
in that no method is given for finding a value of g corresponding to a given k.
In his doctoral thesis, Rieger showed that by a suitable modification of Hilbert’s
proof, one can give explicit bounds on the least permissible value of g. We show
how to modify Rieger’s argument, using ideas of F. Dress, to obtain a better
explicit bound. While far stronger bounds are available from the powerful Hardy–
Littlewood circle method, it seems of some methodological interest to examine
how far elementary techniques of this nature can be pushed.

1. Introduction

In his Meditationes Algebraicæ, published in 1770, Edward Waring [17] put for-
ward the following conjectures:

Every integer is a cube or the sum of at most nine cubes; every integer
is also the square of a square, or the sum of up to nineteen such, and
so forth.

Waring had only numerical evidence for his assertions. The problem of supplying
proofs for his claims has engendered a whole area of mathematics, known as Waring’s
problem. In this article, we use the term Waring’s problem in a narrower sense, as
an abbreviation for the claim implicit in Waring’s words “. . . and so forth”:

Waring’s problem. Let k be a positive integer. Show that there is some number g,
depending only on k, with the property that every natural number n can be written
in the form

n = xk1 + xk2 + · · ·+ xkg ,

where each xi is a natural number.

Lagrange’s celebrated “four squares theorem” says precisely that g = 4 is admis-
sible when k = 2, and Waring claimed that g = 9 works when k = 3 and that g = 19
works when k = 4. We write g(k) for the smallest admisisble g corresponding to a
given k, provided that at least one such g exists. The existence of g(k) in certain
special cases was attacked over the next hundred years or so by Liouville (k = 4),
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Maillet (k = 3, 5, 8), Fleck (k = 6), Schur (k = 10), and Wieferich (k = 7). In 1909,
Hilbert found a general solution:

Theorem A (Hilbert, 1909). g(k) exists for all k.

Hilbert’s proof was a technical tour de force and a triumph of ingenuity. Hardy
[4] heaped praise upon it, writing:

It would be hardly possible for me to exaggerate the admiration which
I feel for the solution of this historic problem . . . it stands with the
work of Hadamard and de la Vallée-Poussin, in the theory of primes,
as one of the landmarks in the modern history of the theory of num-
bers.

But Hardy recognized that Hilbert’s argument also had its defects. For example, the
method is incapable (in its original form) of producing numerical bounds on g(k).
The reason for this ‘ineffectivity’ is as follows: Hilbert’s proof makes extensive use
of certain polynomial identities, coming from (we would now say) certain existence
theorems in convex geometry (such as Carathéodory’s theorem). Unfortunately, this
argument gives no information on the size of the coefficients in the identities which
arise, and such information is essential for bounding g(k).

Today, Hilbert’s proof of Theorem A is usually viewed as a historical curiosity,
and Hardy himself must be held partly responsible. In 1920, Hardy and Littlewood
[5] introduced a flexible analytic method for studying additive problems in number
theory. Their first paper on this subject gave a new proof of the existence of g(k).
After a century of development, the Hardy–Littlewood circle method, as it is now
called, occupies a central position in the arsenal of the analytic number theorist.
One of the most notable achievements of this method, which combines the work
of several mathematicians over the past century, is the determination of the exact
value of g(k), for every k. In particular, we now know that g(3) = 9 and g(4) = 19,
as Waring predicted, and in general we have that

(1) g(k) = 2k + b(3/2)kc − 2

for all but at most finitely many k. For more details, see the notes to Chapter XXI
in [6].

In 1953, Rieger ([12], [13]) decided to revisit Hilbert’s argument, with the goal of
obtaining explicit bounds for g(k). To carry out this plan, one needs an alternative
means of producing Hilbert’s polynomial identities, one which gives one control over
the size of the coefficients. Conveniently, such a construction had been given in the
interim by Hausdorff [7] and Stridsberg [15]. This permitted Rieger to show that

(2) g(k) < (2k + 1)260(k+3)3k+8

.

At the end of [14], Rieger remarks that the bound (2) can be lowered “unter konse-
quenterer Ausnutzung von Teilbarkeitseigenschaften”1 to

(3) g(k) < (2k + 1)260(k+1)8 .

1“by a more thorough utilization of divisibility properties”
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(Both of Rieger’s bounds are much weaker than (1)– the interest here is in probing
the limitations of the method, and not strictly in the result!) Unfortunately, no
further details are provided.

In 1971, Dress [2, 3] showed how an identity familiar from the study of the easier
Waring problem (Lemma 3 below) could be combined with (a simplified version of)
the convex geometry approach to yield a short and conceptually simple proof of
Theorem A. It seems of some historical and methodological interest to explain how
his ideas can be used to prove the following bound, somewhat stronger than that
claimed by Rieger:

Theorem 1. g(k) ≤ k(480+o(1))k
5

as k →∞.

Here and throughout the article, o(1) denotes a quantity which tends to zero as
k →∞.

For the sake of readability, we have been somewhat coy with our expression for
the exponent in Theorem 1. But it is easy to be completely explicit: Making trivial
estimates in our proof, we find that for every k ≥ 2,

g(k) ≤ 2420k3+420k2+139k−6(2k + 1)480k
5+1440k4+1644k3+828k2+162k

< (2k + 1)480k
5+1440k4+1854k3+1038k2+ 463

2
k−3 < (2k + 1)1808k

5

,

which is smaller than the bound (3) for every k.
Finally, we remark that a very different elementary proof of Theorem A was

proposed by Linnik [9]. Linnik’s proof uses Schnirelmann’s notion of density, first
introduced to study Goldbach’s problem, and is strongly influenced by the analytic
approach. Variants of Linnik’s argument are discussed by Newman [11], Hua [8,
§19.7], and Nesterenko [10, §3]. For the asymptotic Waring problem, concerning the
least number G(k) of nonnegative kth powers needed to represent all sufficiently
large integers, Bredikhin and Grishina [1] have shown by elementary methods that
G(k) = O(k log (2k)). Up to the value of the implied constant, this matches the
best result so far achieved by analytic means.

2. Preparation

We need the following explicit version of Hilbert’s identities:

Lemma 1. Let k be an integer with k ≥ 2. For some positive integer M with

M ≤ k(160+o(1))k
5

,

there is an identity in indeterminates X1, . . . , X5 of the form

(4) M(X2
1 +X2

2 + · · ·+X2
5 )k =

Q∑
i=0

(ai1X1 + ai2X2 + ai3X3 + ai4X4 + ai5X5)
2k,

where the aij are integers. Moreover, we can arrange that a0i = 0 for 1 ≤ i ≤ 4
while a05 = 1, so that the first summand on the right-hand side is X2k

5 .
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Remark. We may suppose that in the identity (4), none of the Q + 1 right-hand
summands vanishes identically. Then in the expansion of each summand, each of
X2k

1 , . . . , X
2k
5 appears with a nonnegative coefficient, and at least one appears with

a positive coefficient. Consequently, in (4), at least one of X2k
1 , . . . , X

2k
5 appears

with a coefficient not less than (Q+ 1)/5. Since each appears with coefficient M on
the left-hand side, we must have Q < 5M .

Proof. We describe how to derive this from Rieger’s work in [12] (see also [14, §1]).
Let n be a natural number and let β1, . . . , βn be n distinct real numbers. Choose
real numbers ρ1, . . . , ρn so that for all 0 ≤ l < n,

n∑
i=1

βliρi =

{
l!/ l

2
! if l is even,

0 otherwise.

The existence and uniqueness of the ρi is immediate since the coefficient matrix of
this system is of Vandermonde type.

For the remainder of the proof we put n := 2k + 1. Then if the βi and ρi are as
above, it is straightforward to check that

(5)
(2k)!

k!
(X2

1 + · · ·+X2
5 )k =

∑
λ1,...,λ5
1≤λi≤n

5∏
i=1

ρλi

(
5∑
j=1

βλjXj

)2k

.

One can show that the βi may be selected so that the corresponding ρi are all
positive: Indeed, suppose that β∗1 , β

∗
2 , . . . , β

∗
n are the roots of the polynomial

k∑
j=0

(−1)k−j
n!

(k − j)!(1 + 2j)!
x1+2j,

numbered so that β∗1 = 0. (Cognoscenti will recognize this as a Hermite polynomial
in disguise.) Then the β∗i are distinct [12, top of p. 5]; moreover, if we select βi = β∗i
for each i, then the corresponding ρi are all positive [12, top of p. 6]. It now follows
from Cramer’s rule that the ρi are positive whenever (β1, . . . , βn) is sufficiently close
(in Rn) to (β∗1 , . . . , β

∗
n). In fact, let

N0 : = 8 · (2k + 1)! · (2k + 1)4k
2+6k+3

= k(4+o(1))k
2

.

Let β1 = β∗1 , and for 1 < i ≤ n, let βi be the smallest rational number not less than
β∗i which can be written as a fraction with denominator N0. Rieger’s calculations
[12, pp. 17–23] show that the βi are all distinct and that the corresponding ρi
are all positive. Since the βi are rational, Cramer’s rule implies that the ρi are
rational. In fact ([12, pp. 23–24]), each of ρ1, . . . , ρn can be written as a fraction
with denominator not exceeding

(4k + 2)(
2k+1

2 )N
2(2k+1

2 )
0 ≤ k(16+o(1))k

4

.
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Let D be the least common denominator of ρ1, . . . , ρn; thus

D ≤ (k(16+o(1))k
4

)2k+1 ≤ k(32+o(1))k
5

.

We clear the denominators in (5) by multiplying through by D5N2k
0 ; this has the

effect of replacing each ρλi with Dρλi and each βλj with N0βλj . Then with

M : = D5N2k
0

(2k)!

k!

≤ k(160+o(1))k
5

,

we obtain a representation of M(X2
1 + · · · + X2

5 )k as a linear combination, with
positive integer coefficients, of terms of the form (

∑5
i=1 aiXi)

2k, where the ai are
integers. Thus M(X2

1 + · · ·+X2
5 )k has a representation in the form (4).

To complete the proof of Lemma 1, it remains only to argue that we can arrange
for the first right-hand summand in (4) to equal X2k

5 . To verify this, it is enough to
show that on the right-hand side of (5), there is some choice of the λi for which the
corresponding summand involves only the indeterminate X5. But this follows from
our selection of β1 = β∗1 = 0; we may take λi = 1 for i < 5 and λ5 = 2. �

If k is understood and h is a natural number, we write Σ(h) for the set of integers
that are expressible as a sum of h nonnegative integral kth powers. Lemma 1 has
the following important consequence:

Lemma 2. Suppose k ≥ 2. Fix an identity of the type described in Lemma 1. If l
is a nonnegative integer and x is any integer with |x| ≤

√
l, then Mlk−x2k ∈ Σ(Q).

Proof. Since l − x2 ≥ 0, Lagrange’s four squares theorem shows that we can write
l− x2 = x21 + x22 + x23 + x24 with integers xi. The result follows upon evaluating both
sides of (4) with Xi := xi for 1 ≤ i ≤ 4 and X5 := x. �

The following identity is familiar from the study of the so-called ‘easier Waring
problem’; it can be proved by applying the forward difference operator (2k − 1)
times to the polynomial T 2k. See, e.g., [18], [16, Exercise 1, p. 25].

Lemma 3. For every positive integer k, there is an identity in T of the form

R∑
i=1

(T + ai)
2k −

R∑
j=1

(T + a′j)
2k = AT +B.

Here R = 22k−2, A = (2k)!, B = 2k−1
2

(2k)!, and a1, . . . , aR, a
′
1, . . . , a

′
R are nonnega-

tive integers smaller than 2k.

Lemma 4. Let k be a positive integer and let κ := 1 − 1/k. Suppose x ≥ 0. For
each positive integer t, there are natural numbers z1, . . . , zt with

0 ≤ x− (zk1 + zk2 + · · ·+ zkt ) ≤ kkxκ
t

.
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Proof. We choose the zi successively by the greedy algorithm, i.e., each zi is chosen as
large as possible so that (x− (zk1 + · · ·+ zki−1))− zki ≥ 0. Starting from the estimate

0 ≤ x − bx1/kck ≤ kxκ furnished by the mean value theorem, a straightforward
induction shows that

0 ≤ x− (zk1 + · · ·+ zkt ) ≤ k1+κ+···+κ
t−1

xκ
t ≤ kkxκ

t

,

since
∑∞

j=0 κ
j = (1− κ)−1 = k. �

3. Proof of Theorem 1

Proof. We may assume that k ≥ 2. Given such a k, fix identities of the type
described in Lemma 1 and Lemma 3. We first investigate the number of kth powers
needed to represent an integer n satisfying

(6) n ≥ max{210k(RM)3, k4k}.

Put l = b(n/RM)1/kc. Since n ≥ RM , we have

(7) l ≥ 1

2
(n/RM)1/k.

Moreover, writing κ := 1− 1/k, we have by the mean value theorem that

0 ≤ (n/RM)− lk ≤ k(n/RM)κ,

so that

n = RMlk + r for some integer r with 0 ≤ r ≤ k(RM)1/knκ.

Let t be the smallest positive integer with κt ≤ (4k)−1; for future use, notice that
since

κt = (1− 1/k)t ≤ exp(−t/k),

we have t ≤ dk log 4ke. By Lemma 4, we may choose nonnegative integers z1, . . . , zt−1
so that if we put

r′ := r − (zk1 + zk2 + · · ·+ zkt−1),

then

r′ ≤ kkrκ
t−1 ≤ kk(k

1
2k (RM)

1
4kn

1
4k ) ≤ 2kk(nRM)

1
4k .

Here we have used that κt−1 ≤ 2κt ≤ (2k)−1, and that k
1
2k ≤ e

1
2e < 2.

Suppose now that x1, . . . , xR are integers each of absolute value not exceeding
√
l.

Then for each 1 ≤ i ≤ R, Lemma 2 shows that

(8) Mlk − x2ki ∈ Σ(Q).
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In the notation of Lemma 3, we now choose each xi := m + a′i, for some integer m
to be selected. Then with yi := m+ ai, Lemma 3 implies that

n = RMlk + r

=
R∑
i=1

(Mlk − x2ki ) +
R∑
i=1

x2ki +
t−1∑
j=1

zkj + r′

=
R∑
i=1

(Mlk − x2ki ) +
R∑
i=1

y2ki +
t−1∑
j=1

zkj + r′ − (Am+B).(9)

We choose m so that

(10) 0 ≤ r′ − (Am+B) < A, i.e., so that m := b(r′ −B)/Ac;
to see that this is permissible, we need to check that with this choice of m, each
xi = m+ a′i has absolute value not exceeding

√
l. We have

|xi| ≤ |m|+ |a′i| ≤ r′/A+B/A+ 2k = r′/A+ (2k − 1)/2 + 2k

<
2kk

(2k)!
(nRM)

1
4k + 3k ≤ (nRM)

1
4k + 3k ≤ 4(nRM)

1
4k .

Here we have used that

(2k)!

kk
≥ (2k)(2k − 1) · · · (k + 1)

kk
= 2(2− 1/k)(2− 2/k) · · · (2− (k − 1)/k) ≥ 2,

and that (from (6))

n ≥ k4k, so that k ≤ n
1
4k ≤ (nRM)

1
4k .

So from (7), we have |xi| ≤
√
l as long as

(4(nRM)
1
4k )2 ≤ 1

2
(RM)−1/kn1/k,

which is a consequence of our assumption in (6) that n ≥ 210k(RM)3.
From (9), together with (8) and (10), we see that n is a sum of

(11) RQ+R + (t− 1) + (A− 1)

nonnegative kth powers. We have

R = 22k−2, A = (2k)!, t ≤ dk log 4ke,
and by the remark following Lemma 1, we may assume that

Q < 5M ≤ k(160+o(1))k
5

.

Inserting these expressions into (11), we find that every n satisfying (6) is a sum of

at most k(160+o(1))k
5

nonnegative kth powers.
But if n does not satisfy (6), then trivially n is a sum of max{210k(RM)3, k4k} ≤

k(480+o(1))k
5
kth powers, each of which is either 0 or 1. �
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