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We study the distribution of solutions n to the congruence σ(n) ≡ a (mod n). After
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most x1/2+o(1), as x → ∞, uniformly for integers a with |a| ≤ x1/4. As a concrete
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is at most x1/2+o(1). These results are analogues of theorems established for the Euler
ϕ-function by the third-named author.
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1. Introduction

In this paper, we continue the investigations of the third-named author [Pom75,
Pom76,Pom77] into the congruences

n ≡ a (mod ϕ(n)) (1.1)

and

σ(n) ≡ a (mod n). (1.2)

These congruences have connections to various unsolved problems in number theory.
Most prominent among these is Lehmer’s question [Leh32] of whether there are any
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composite solutions to (1.1) when a = 1. We also note here the many classical
problems concerning multiply perfect numbers, which are those n satisfying (1.2)
with a = 0.

It is observed in [Pom75] that for both (1.1) and (1.2), there is a natural clas-
sification of solutions as either regular or sporadic. For (1.1), there are no regular
solutions unless a > 0 and ϕ(a) | a; in that case, we define a regular solution as a
number n of the form pa, where p is a prime not dividing a. By a regular solution
to (1.2), we mean a natural number n of the form

n = pm, where p ! m, m | σ(m), and σ(m) = a. (1.3)

(It is straightforward to check that these “regular solutions” really are solutions.) In
both cases, all other solutions are called sporadic. From the prime number theorem,
it is easily seen that if there are any regular solutions to (1.1) or (1.2), then the
number of such up to x is " x

log x for large x, where the implied constant depends
on a. In [Pom75, Theorem 3], it is shown that sporadic solutions are much rarer:
For any fixed a, the number of sporadic solutions to either (1.1) or (1.2) is at most

x/ exp

((

1√
2
+ o(1)

)

√

log x log log x

)

, as x → ∞. (1.4)

For solutions to the ϕ-congruence (1.1), the upper bound (1.4) has seen substan-
tial improvement, first to x2/3+o(1) [Pom76] and soon after to x1/2+o(1) [Pom77]
(both results are again for fixed a). There has been a fair amount of work
chipping away at the size of the o(1)-term in the exponent of this last result
[Sha85,BL07,BGN08,LP], but a new idea will be required to replace 1

2 with anything
smaller.

All of the results of the last paragraph apply only to (1.1) and not the σ-
version (1.2). The behavior of the Euler ϕ-function on prime powers is much sim-
pler than that of σ, and complications arise if one tries to mimic the arguments
of [Pom76,Pom77]. Recently, the second-named author and V. Shevelev described
how to overcome these difficulties for the arguments of [Pom76], proving that the
sporadic solutions in [1, x] to (1.2) number at most x2/3+o(1) [PS, Lemma 8]. (In
fact, their result is uniform for |a| < x2/3.) The purpose of this note is to reduce
the exponent 2

3 to 1
2 .

Theorem 1. As x → ∞, the number of sporadic solutions n ≤ x to the congruence
(1.2) is at most

A(a)x1/2 exp

(

(2 + o(1))

√

log x

log log x

)

, (1.5)

uniformly in integers a with |a| ≤ x1/4. Here A is defined by A(0) := 1 and, for
a '= 0,

A(a) :=
∏

pb‖a

(

1 +
b2 + b

2

)

.
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Remark 1. The factor A in (1.5) is fairly tame, displaying similar behavior to the
number of divisors of a. In particular, a theorem of Drozdova and Frĕıman [DF58]
(see also [Pos88, Chapter 4]) yields

A(a) ≤ exp

(

(log 2 + o(1))
log |a|

log log |a|

)

, as |a| → ∞.

(This should be compared with [HaWr08, Theorem 317, p. 345], where the same
inequality is proved for the usual divisor function.) Hence, the bound (1.5) is indeed
of the shape x1/2+o(1), uniformly for |a| ≤ x1/4. Thus (apart from secondary terms),
(1.2) is no longer a second-class citizen compared to (1.1); both congruences are now
on the same theoretical footing.

It seems plausible that the upper bound (1.5) can be replaced with a bounded
power of log x, even in the wider range |a| ≤ x/2. See Remark 3(i) at the end of
this paper. If this is correct, we have a long way to go!

We mention briefly an application of Theorem 1 to a problem considered in [PS].
Call a natural number n a near-perfect number if n is the sum of all of its proper
divisors with one exception. In other words, n is near-perfect if σ(n) = 2n + d
for some proper divisor d of n. Using Theorem 1, we can show that the number
of near-perfect n ≤ x is at most x3/4+o(1), as x → ∞. This result with exponent
5
6 appeared as Theorem 5 of [PS]. We omit the proof of our improvement, which
essentially amounts to replacing [PS, Lemma 8] with the upper bound (1.5).

Notation

As above, we employ the Landau–Bachmann o and O notation, as well as the
associated symbols (, ), and ", with their usual meanings. All of our implied
constants are absolute unless otherwise mentioned. The letter p, with or without
subscripts, always denotes a prime variable. We write π(x) =

∑

p≤x 1 for the number
of primes not exceeding x. We say that d is a unitary divisor of n if d divides n
and gcd(d, n/d) = 1. If p is a prime, the notation pe ‖ n means that pe | n but that
pe+1 ! n. The number of divisors of n is denoted τ(n). We use ω(n) for the number
of distinct prime divisors of n and Ω(n) for the number of primes dividing n counted
with multiplicity; thus, ω(n) =

∑

p|n 1 and Ω(n) =
∑

pk|n 1. We write rad(n) for
the radical of n, that is, the product of the distinct primes dividing n. We use P (n)
to denote the largest prime factor of n, with the convention that P (1) = 1.

2. Preparation

For the reader’s convenience, we record here some simple inequalities for the abun-
dancy ratio σ(n)

n .

Lemma 2. All of the following hold:

(i) For all integers n ≥ 1, we have σ(n)
n ≤ 1 + log n.
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(ii) If d divides n, then σ(d)
d ≤ σ(n)

n , with equality only if d = n.

(iii) If p1 is the least prime dividing n, then σ(n)
n ≤

(

p1

p1−1

)ω(n)
.

Proof. Both (i) and (ii) follow from the representation σ(n)
n =

∑

d|n
1
d ; we also use

that
∑

d|n
1
d ≤

∑

d≤n
1
d ≤ 1 +

∫ n
1

dt
t = 1 + log n. For (iii), we observe that

σ(n)

n
=
∏

pe‖n

(

1 +
1

p
+

1

p2
+ . . .

)

≤
∏

p|n

p

p− 1
≤
(

p1
p1 − 1

)ω(n)

.

We also need a technical lemma from the “anatomy of integers” concerning
numbers n ≤ x with small radical. The next result is due to de Koninck and Doyon
(compare with [DKD03, Théorème 4]).

Lemma 3. For each fixed z ≥ 1, we have (as x → ∞)

∑

d≤x1/z

∑

e≤x
d|e, rad(e)=rad(d)

1 ≤ x1/z exp

(

(2 + o(1))

√

2(1− 1/z) log x

log log x

)

.

Actually, de Koninck and Doyon prove the upper bound of Lemma 3 for the
number of n ≤ x with rad(n) < n1/z, which is a smaller quantity than that consid-
ered in Lemma 3. However, the first step in their proof (see [DKD03, eq. (19)]) is
to bound that above by the double sum

∑

d<x1/z

∑

m<x/d, rad(m)|d

1.

Setting e = md, one can easily check that this double sum coincides with the
quantity considered in our Lemma 3 (up to the inconsequential replacement of
strict inequalities with non-strict ones). The rest of the proof of Lemma 3 follows
the argument of de Koninck and Doyon.

In the remainder of this section, we show that a large, sporadic solution n ≤ x
to the congruence (1.2) has a divisor close to

√
x. The proofs are modeled on those

of [Pom77]. We begin by quoting that paper’s Lemma 4.

Lemma 4. Suppose that δ ≥ 0, and that 0 ≤ a1 ≤ a2 ≤ · · · ≤ at, where

ai+1 ≤ δ +
i
∑

j=1

aj for 1 ≤ i ≤ t− 1.

Then for any ρ with 0 ≤ ρ <
∑t

i=1 ai, there is a subset I of {1, 2, 3, . . . , t} for
which

ρ− δ − a1 <
∑

i∈I

ai ≤ ρ.

The following lemma establishes the σ-analogues of the assertions of [Pom77,
Lemma 2(i)-(iii)]:
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Lemma 5. Suppose a '= 0. Let n be a sporadic solution to the congruence σ(n) ≡ a
(mod n) with n > 6a2 log (6|a|). Then all of the following hold:

(i) k := σ(n)−a
n is an integer at least 2,

(ii) if d is a unitary divisor of n with d < n, then σ(d)
d < k,

(iii) there is a prime q > P (n) with σ(nq)
nq > k.

Proof. Since kn + a = σ(n) ≥ n > |a|, clearly k ≥ 1. Suppose for the sake of
contradiction that k = 1. If n is composite with smallest prime factor p, then

a = σ(n)− n =
∑

d|n, d<n

d ≥ n/p ≥
√
n > |a|,

which is absurd. So n is prime and a = σ(n) − n = 1. But prime values of n are
regular solutions to the congruence σ(n) ≡ 1 (mod n) (satisfying (1.3) with m = 1),
not sporadic solutions. This proves (i).

We turn now to (ii). If a < 0, then σ(d)
d ≤ σ(n)

n = k + a/n < k, and so (ii) is
trivial. So we may assume that a > 0. Now if d is a unitary divisor of n with d < n,
then d divides n/pe for some prime power pe ‖ n. By Lemma 2(ii), we may restrict
attention to the case when d = n/pe. In this case,

a = σ(n)− kn = σ(pe)σ(d)− kdpe

= (pe + σ(pe−1))σ(d)− kdpe = pe(σ(d)− kd) + σ(pe−1)σ(d),

and so

σ(d)− kd =
a− σ(pe−1)σ(d)

pe
. (2.1)

Let us show that the right-hand side of (2.1) is negative. This is easy if e > 1; then

σ(pe−1)σ(d) ≥ pe−1d ≥ (ped)1/2 = n1/2 > a,

and so we have (ii) in this case. Suppose e = 1. If d > a, then the right-hand side
of (2.1) is again negative, and so we again have (ii). So we can assume that d ≤ a.
Since n = pd > a2, we must have p > a. But then the right-hand side of (2.1)
is smaller than 1, and hence 0 or negative (since the left-hand side of (2.1) is an
integer). But it cannot be zero, since otherwise σ(d) = a = kd, making n = pd a
regular solution to (1.2) instead of a sporadic one. This completes the proof of (ii).

Finally, we prove (iii). If a > 0, then we can take any prime q > P (n). So we
suppose that a < 0. Let p := P (n) be the largest prime factor of n. We will show
below that p ≤ n

2|a| . Assuming this for now, we can take q to be any prime in the
interval (p, 2p]. (Such a choice exists by Bertrand’s postulate.) Indeed, since q ≤ n

|a| ,
we have

σ(nq)

nq
=
(

k +
a

n

)

(

1 +
1

q

)

≥ k

(

1−
|a|
nk

)(

1 +
|a|
n

)

= k +
|a|k
n

(

1−
1

k
−

|a|
nk

)

.
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Since |a| < n and k ≥ 2 (by part (i) of the lemma), the final parenthesized expression
is positive, and so σ(nq)

nq > k, as desired.
It remains to prove the upper bound on p. Suppose instead that p > n

2|a| . Write

n = ped, where pe ‖ n. Since n > 4|a|2, we have p >
√
n, and so e = 1. By (ii), we

know that kd− σ(d) ≥ 1, so that from (2.1) and Lemma 2(i),

p =
σ(d)− a

kd− σ(d)
≤ |a|+ σ(d) ≤ |a|+ d(1 + log d) ≤ |a|+ 2|a|(1 + log (2|a|)),

using d = n/p < 2|a|. It follows that

n = pd < 2a2 + 4a2(1 + log (2|a|))
< 6a2(1 + log (2|a|)) < 6a2 log (6|a|).

But this contradicts the lower bound on n assumed in the lemma statement.

Lemma 6. Suppose a '= 0. Let n be a sporadic solution to the congruence σ(n) ≡ a
(mod n) with n > 6a2 log (6|a|). Write

n = p1p2 · · · pt, where p1 ≤ p2 ≤ p3 ≤ · · · ≤ pt.

For 0 ≤ i ≤ t− 1, we have

pi+1 ≤ ∆p1 · · · pi, where ∆ := 8(log n)2. (2.2)

Proof. With k ≥ 2 as in the statement of Lemma 5(i), fix a prime q > P (n) so that
σ(nq)
nq > k, and put N := nq. Now let 0 ≤ i ≤ t − 1. If pi+1 = pi, then the desired

inequality (2.2) is obvious (since ∆ ≥ 1), and so we can assume that pi+1 > pi.
Then d := p1 · · · pi is a unitary divisor of N and the least prime factor of N/d is
pi+1. Recalling Lemma 2(iii), we see that

k <
σ(N)

N
=

σ(d)

d

σ(N/d)

N/d
≤

σ(d)

d

(

pi+1

pi+1 − 1

)ω(N/d)

.

Rearranging this inequality, we find that

1−
ω(N/d)

pi+1
≤
(

1−
1

pi+1

)ω(N/d)

≤
σ(d)

kd
,

which after some manipulation shows that

pi+1 ≤ ω(N/d)

(

1−
σ(d)

kd

)−1

= ω(N/d)
kd

kd− σ(d)
≤ ω(N/d)kd. (2.3)
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(For the last inequality, we use that kd− σ(d) ≥ 1, as established in Lemma 5(ii).)
Moreover, using the crude bound ω(n) ≤ Ω(n) ≤ logn

log 2 and Lemma 2(i), we have

ω(N/d)k ≤ (1 + ω(n))k ≤
(

1 +
log n

log 2

)(

σ(n)

n
+

|a|
n

)

≤
(

1 +
log n

log 2

)

(2 + log n) < 8(log n)2 = ∆.

(The last inequality here follows from a simple calculation, using that log n > 1.)
Since d = p1 · · · pi, the desired inequality (2.2) now follows from (2.3).

Lemma 7. Suppose a '= 0. Let n be a sporadic solution to the congruence σ(n) ≡ a
(mod n) with n > 6a2 log (6|a|). Let x > 1, and suppose that n ∈ (x1/2, x]. Then
there is a divisor d of n with

x1/2

64(log x)4
< d ≤ x1/2. (2.4)

Proof. Write n = p1 · · · pt, with p1 ≤ p2 ≤ · · · ≤ pt. Let ai = log pi for 1 ≤ i ≤ t.
Set δ := log (8(log x)2). Then from (2.2), we have

ai+1 ≤ δ +
i
∑

j=1

aj for 0 ≤ i ≤ t− 1.

In particular, taking i = 0, we see that a1 ≤ δ. Applying Lemma 4, we obtain the
existence of a subset I ⊂ {1, 2, . . . , t} with

(log
√
x)− 2δ <

∑

i∈I

log ai ≤ log
√
x.

Exponentiating now gives the desired result.

Remark 2. More generally, for any 1 ≤ y ≤ x1/2, the method of proof of Lemma
7 shows that n has a divisor in the interval (y/(64(log x)4), y]. Thus, the divisors
of n are dense, in the sense of Saias [Sai97]. We will only need the case y = x1/2,
however.

3. Proof of Theorem 1

Proof of Theorem 1. If a = 0, then the n satisfying (1.2) are precisely the mul-
tiply perfect numbers. According to a theorem of Hornfeck and Wirsing [HoWi57,
Satz 2], the number of these n ≤ x is xo(1), as x → ∞, which is a much stronger
bound than what is claimed in Theorem 1. So we can assume that a '= 0. We can
also assume that

n > max{x1/2, 6a2 log(6|a|)};
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indeed, since |a| ≤ x1/4, this inequality excludes ( x1/2 log x values of n, which is
acceptable. So by Lemma 7, there is a divisor d of n satisfying (2.4). Given d, let
e be the (unique) unitary divisor of n with rad(e) = rad(d); note that d | e. Since
e | n and σ(e) | σ(n), (1.2) implies the simultaneous congruences

σ(n) ≡ a (mod e) and σ(n) ≡ 0 (mod σ(e)).

By the Chinese remainder theorem, σ(n) belongs to a uniquely determined residue
class modulo lcm[e,σ(e)]. Since σ(n) ≤ n(1 + log n) ≤ 2x log x, the number of
possibilities for σ(n), given d and e, is at most

2x log x

lcm[e,σ(e)]
+ 1.

Now we sum over the possible pairs d, e. Since d ≤ x1/2, d | e, and rad(e) =
rad(d), we obtain from Lemma 3 (with z = 2) that

∑

d,e

(

2x log x

lcm[e,σ(e)]
+ 1

)

≤
∑

d,e

2x log x

lcm[e,σ(e)]
+ x1/2 exp

(

(2 + o(1))

√

log x

log log x

)

.

(3.1)
The second right-hand term is acceptable for us, and so we concentrate on estimating
the remaining double sum. Writing lcm[e,σ(e)] = eσ(e)

gcd(e,σ(e)) , we see that

∑

d,e

2x log x

lcm[e,σ(e)]
≤ 2x log x

∑

d,e

gcd(e,σ(e))

e2
.

Since σ(n) ≡ a (mod n) and gcd(e,σ(e)) divides both σ(n) and n, it must be that
gcd(e,σ(e)) divides a. Moreover, if we define an arithmetic function τ ′ by setting

τ ′(m) :=
∑

g|m
rad(g)=rad(m)

1,

then given e, there are only τ ′(e) possibilities for d. Hence, writing u = gcd(e,σ(e))
and e = uf ,

∑

d,e

gcd(e,σ(e))

e2
≤
∑

u|a

u
∑

x1/2

64u(log x)4
<f≤x/u

τ ′(uf)

(uf)2
≤
∑

u|a

τ ′(u)

u

∑

x1/2

64u(log x)4
<f≤x/u

τ(f)

f2
.

(3.2)
(To see the last inequality, observe that every divisor of uf with the same radical
as uf can be written as the product of a divisor of u with the same radical as u,
multiplied by a divisor of f , so that τ ′(uf) ≤ τ ′(u)τ(f).) Let S(t) :=

∑

m≤t τ(m). It
is well-known (see, for example, [HaWr08, Theorem 18, p. 347]) that S(t) ( t log t.
Hence,

∑

x1/2

64u(log x)4
<f≤x/u

τ(f)

f2
≤
∫ ∞

x1/2

64u(log x)4

dS(t)

t2
(
∫ ∞

x1/2

64u(log x)4

log t

t2
dt ( ux−1/2(log x)5.
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Referring back to (3.2), we see that the sum appearing on the right-hand side of
(3.1) is ( x1/2(log x)6

∑

u|a τ
′(u). Since τ ′ is multiplicative,

∑

u|a

τ ′(u) =
∏

pb‖a





b
∑

j=0

τ ′(pj)





=
∏

pb‖a

(

1 +
b2 + b

2

)

= A(a).

Taking stock, we have shown that the number of possibilities for σ(n) is

( A(a)x1/2(log x)6 + x1/2 exp

(

(2 + o(1))

√

log x

log log x

)

,

which we recognize as being bounded by (1.5).
Write σ(n) = kn+ a, so that n is determined by σ(n) and k. With k = σ(n)−a

n ,
we have by Lemma 2(i) and Lemma 5(i) that

2 ≤ k ≤
σ(n)

n
+ 1 ≤ 2 + log n ≤ 2 + log x,

and so there are O(log x) possibilities for k. It follows that the number of possibilities
for n is also bounded by (1.5).

Remark 3.

(i) Let Sa(x) denote the number of solutions to (1.2) with n ≤ x, and write
Sa(x) = S′

a(x)+S′′
a (x), where S

′
a(x) counts regular solutions and S′′

a (x) counts
sporadic ones. We have

∑

|a|≤x/2

Sa(x) =
∑

n≤x

∑

|a|≤x/2
a≡σ(n) (mod n)

1 =
∑

n≤x

(x

n
+O(1)

)

= x log x+O(x).

(3.3)
On the other hand, recalling the definition (1.3) of a regular solution, we see
that

∑

|a|≤x/2

S′
a(x) ≤

∑

|a|≤x/2

∑

m|σ(m)
σ(m)=a

π(x/m)

≤
∑

m≤x/2
m|σ(m)

π(x/m) (
x

log x

∑

m≤
√
x

m|σ(m)

1

m
+ x

∑

m>
√
x

m|σ(m)

1

m
.

Using partial summation in combination with the upper bound of Hornfeck
and Wirsing [HoWi57, Satz 2] alluded to above, the first of the two remaining
sums is absolutely bounded, while the latter is at most x−1/2+o(1), as x → ∞.
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Hence,
∑

|a|≤x/2 S
′
a(x) ( x/ log x. Combining this with (3.3), we obtain an

asymptotic result on the average number of sporadic solutions:

1

x

∑

|a|≤x/2

S′′
a (x) = log x+O(1).

This motivates the conjecture, already appearing in the introduction, that
S′′
a (x) ≤ (log x)O(1) whenever x ≥ 3 and |a| ≤ x/2.

(ii) Since the issue of uniformity seems to have been neglected in prior studies
of the ϕ-congruence (1.1), we point out that the proof of Theorem 1 can be
adapted to establish an upper bound of the form τ(|a|)x1/2(log x)O(1) for the
number of sporadic solutions n ≤ x to (1.1), uniformly for 0 < |a| ≤ x1/4.
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[Sai97] E. Saias, Entiers à diviseurs denses. I, J. Number Theory 62(1) (1997) 163–191.
[Sha85] Z. Shan, On composite n for which ϕ(n) | n − 1, J. China Univ. Sci. Tech.

15(1) (1985) 109–112.


