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Abstract. Let s(n) denote the sum of the proper divisors of n.
Set s0(n) = n, and for k > 0, put sk(n) := s(sk−1(n)) if sk−1(n) >
0. Thus, perfect numbers are those n with s(n) = n and amicable
numbers are those n with s(n) 6= n but s2(n) = n. We prove that
for each fixed k ≥ 1, the set of n which divide sk(n) has density
zero, and similarly for the set of n for which sk(n) divides n. These
results generalize the theorem of Erdős that for each fixed k, the
set of n for which sk(n) = n has density zero.

1. Introduction

For each natural number n, let s(n) :=
∑

d|n,d<n d be the sum of the

proper divisors of n. If s(n) = n, then n is said to be a perfect number,
while if s(n) 6= n but s(s(n)) = n, then n is said to be amicable. More
generally, let s0(n) = n and for k > 0, define sk(n) = s(sk−1(n)) if
sk−1(n) > 0. We call n sociable if sk(n) = n for some k.

The distribution of sociable numbers remains rather mysterious. For
example, it is not known whether there are infinitely many sociable
numbers, nor is it known if the set of sociable numbers has density
zero. Some recent progress in the direction of the latter statement is
reported in [7].

If we focus attention on solutions to sk(n) = n for a fixed value of
k, then more can be said. Indeed, it is implicit in the work of Erdős
[4] that such numbers have density zero. (This is also a special case of
our Lemma 2 below.) The aim of this note is to prove the following
two generalizations of this result:

Theorem 1. For each fixed k ≥ 1, the set of n for which sk(n) exists
and is a multiple of n has density zero.

Theorem 2. For each fixed k ≥ 1, the set of n for which sk(n) exists
and is a divisor of n has density zero.
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When k = 1, these theorems reduce to results of Kanold: Indeed,
Theorem 1 asserts in this case that the set of multiply perfect numbers
has density zero, which was established by Kanold [6] in 1955. As
for Theorem 2, a moment’s reflection on the definition of s(n) reveals
that s(n) can only be a divisor of n if s(n) = 1 or if s(n) = n, i.e.,
if n is prime or if n is perfect. So Theorem 2 follows from elementary
results in prime number theory and Kanold’s earlier theorem [5] that
the perfect numbers form a set of density zero.

2. Proof of Theorem 1

The following theorem of Erdős is the main result of [4]:

Theorem A. Fix an integer k ≥ 1 and an ε > 0. For all n outside of
a set of density zero the following holds: All of n, s(n), . . . , sk(n) are
defined, and moreover

sj+1(n)

sj(n)
>
s(n)

n
− ε for all 1 ≤ j < k.

It is immediate from Theorem A that, for each k, the set of n with
sk(n) = 0 has density zero. Indeed, if sk(n) = 0, then sk+1(n) is
undefined. Moreover, Theorem A easily implies that for each fixed k,
the set of n with sk(n) = n has density zero (this argument is spelled
out explicitly in [7]). Thus, to complete the proof of Theorem 1, it is
enough to establish the following proposition:

Proposition 1. For each fixed k ≥ 1, the number of n ≤ x for which
n divides sk(n) and sk(n)/n ≥ 2 is

(1) �k
x log3 x

log2 x
(log4 x)2k.

Here log1 x := max{log x, 1}, and logk+1 x = max{1, logk x} for k > 0.

Remark. In [1], Cohen et al. study pairs m,n for which s(m) divides
n while s(n) divides m; they call these multiamicable pairs. Their [1,
Proposition 3] asserts that the set of numbers belonging to a multi-
amicable pair has density zero. Now if n divides s2(n), then n and
s(n) form a multiamicable pair, and so their Proposition 3 implies the
case k = 2 of our Theorem 1. Their proof, which they attribute to the
referee, was the starting point of our argument for Proposition 1.

The following lemma, due to Erdős, is proved in [2] but stated in
a slightly weaker form there (see [2, Theorem 1]). Below, we write
σ(n) :=

∑
d|n d for the sum of the positive divisors of n.
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Lemma 1. For each x > 0, the number of n ≤ x with σ(n)/n > y is

≤ x/ exp(exp((e−γ + o(1))y)), as y →∞,

uniformly in x. Here γ is the Euler-Mascheroni constant.

We also need a lemma of Pomerance (see [8, Theorem 2]):

Lemma 2. Let x ≥ 3 and let m be any positive integer. The number
of n ≤ x for which m - σ(n) is � x/(log x)1/φ(m), where the implied
constant is absolute.

Proof of Proposition 1. Let Z denote expression appearing on the right
of (1). Clearly we may assume n > Z. We may also assume that for
all 0 ≤ j < k, we have

sj+1(n)

sj(n)
≤ 2 log4 x.

Indeed, if this fails, let j be the first index for which it fails. Then
m := sj(n) ≤ x(2 log4 x)j and s(m)/m > 2 log4 x. Let A be the set of
m ≤ x(2 log4 x)j for which s(m)/m > 2 log4 x. By Lemma 1,

(2) #A ≤ x(2 log4 x)k

exp(exp((e−γ + o(1))(2 log4 x)))
�k

x

(log2 x)k+2
.

(Here we use that 2e−γ > 1.) Hence sk(n) = sk−j(sj(n)) ∈ B, where

B := {sk−j(m) : m ∈ A and sk−j(m) exists}.

From the classical determination of the maximal order of the sum-of-
divisors function, we also have sk(n) ≤ X, where

X := x(2 log2 x)k.

Since n divides sk(n) > 0, the number of possibilities for n is at most∑
r∈B∩[1,X] d

′(r), where d′(r) :=
∑

d|r,r>Z 1 denotes the number of divi-

sors of the natural number r that are at least Z. Trivially d′(r) ≤ r/Z,
so that by (1) and (2),∑

r∈B∩[1,X]

d′(r) ≤ (X/Z)#B ≤ (X/Z)#A �k
x

log2 x log3 x(log4 x)2k
.

Summing over 0 ≤ j < k, we see the number of n of this type is o(Z)
and may be neglected.

So we may assume that if sk(n) divides n, then α := sk(n)/n is an
integer with 2 ≤ α ≤ (2 log4 x)k. We now fix an integer

2 ≤ α ≤ (2 log4 x)k
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and estimate the number of n ≤ x which satisfy sk(n) = αn. Let L be
a power of α chosen to satisfy

log2 x

log3 x
(2 log4 x)−k < L ≤ log2 x

log3 x
.

We can assume that L divides σ(sj(n)) for all 0 ≤ j < k. Indeed, if
this is false for a certain value of 0 ≤ j < k, then by Lemma 2 there
are

� x(2 log4 x)k

(log x)1/L
≤ x(2 log4 x)k

log2 x

possibilities for sj(n). But sj(n) determines αn through the relation
αn = sk(n) = sk−j(sj(n)). Summing over the k possibilities for j and
the at most (2 log4 x)k possibilities for α, we find that the number of n
that can arise in this way is

(3) �k
x(log4 x)2k

log2 x
,

which is again o(Z) and so is negligible.
Assuming now that L divides each σ(sj(n)), it follows that

sj+1(n) = σ(sj(n))− sj(n) ≡ −sj(n) (mod L)

for all 0 ≤ j < k. Hence

αn = sk(n) ≡ (−1)ks0(n) = (−1)kn (mod L),

so that L divides (α+(−1)k+1)n. Since L is a power of α, we have that
L is coprime to α+ (−1)k+1, so it must be that L divides n. Hence the
number of possibilities for n is

(4) � x/L� x log3 x

log2 x
(2 log4 x)k.

Summing over 2 ≤ α ≤ (2 log4 x)k, we obtain a total of

�k
x log3 x

log2 x
(log4 x)2k

possible values of n. �

3. Proof of Theorem 2

Our proof of Theorem 2 depends on the following result:

Proposition 2. Fix an integer k ≥ 1 and a real number α > 0. For
x ≥ 3, the number of solutions n ≤ x to

sk(n)

n
= α
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is Ok(x/ log3 x). The implied constant here depends only on k, and in
particular is independent of α.

A weaker version of Proposition 2, without uniformity in α, would
suffice for our application. But it seems that Proposition 2 as stated is
of some interest in itself.

The following result is proved in [7]; see the proof of [7, Theorem 7].

Lemma 3. For all sufficiently large x, there are sets E1(x) and E2(x)
with

max{#E1(x),#E2(x)} � x

(log2 x)1/4

and for which the following holds: If n ≤ x, then∣∣∣∣s(s(n))

s(n)
− s(n)

n

∣∣∣∣ ≤ (log3 x)2

(log2 x)1/4

or n ∈ E1(x) or s(n) ∈ E2(x).

The next lemma is proved by Erdős in [3]:

Lemma 4. Let ρ be any real number and t > 1. If x > t, then the
number of n ≤ x for which σ(n)/n ∈ [ρ, ρ + 1/t) is O(x/ log t). Here
the implied constant is absolute.

Proof of Proposition 2. When k = 1, one has the much stronger result,
due to Wirsing [9], that the number of solutions n ≤ x to s(n)/n = α
is Oε(x

ε), and so we may assume that k ≥ 2.
We may also assume that for all 0 ≤ j < k, we have sj+1(n)/sj(n) ≤

2 log4 x. To see this, suppose this inequality fails, and let j be the
minimal index for which it fails. Then as in the proof of Proposition
1, Lemma 1 forces m := sj(n) to belong to a set of size at most

x(2 log4 x)k

exp(exp((e−γ + o(1))(2 log4 x)))
≤ x(2 log4 x)k

log2 x
,

once x is large. But m determines sk−j(m) = sk(n) = αn, which in
turn determines n (since α 6= 0), and so the same bound holds on the
number of possibilities for n. Summing over j we see that a negligible
number of n can arise this way, and so our assumption is validated.

In particular, we may assume that {n, s(n), . . . , sk(n)} ⊂ [1, X], for
X := x(2 log4 x)k. We now consider two cases, according to whether
s(n)/n is particularly close to α1/k or not. Suppose first that

(5)
∣∣s(n)/n− α1/k

∣∣ < k
(log3 x)2

(log2 x)1/4
;

then by Lemma 4, n belongs to a set of size �k x/ log3 x, and we
are done. So we may suppose that (5) does not hold. By repeated
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application of Lemma 3, either one of n, s(n), . . . , sk−2(n) belongs to
E1(X), one of s(n), s2(n) . . . , sk−1(n) belongs to E2(X), or

(6)

∣∣∣∣sj+1(n)

sj(n)
− sj(n)

sj−1(n)

∣∣∣∣ ≤ (log3X)2

(log2X)1/4
<

(log3 x)2

(log2 x)1/4

for all 1 ≤ j < k. Since each of n, s(n), . . . , sk−1(n) determines n, the
exceptional possibilities give rise to

�k #E1(X) + #E2(X)� X

(log2X)1/4
�k x

(log4 x)k

(log2 x)1/4

values of n, which is negligible. If (6) holds for all 1 ≤ j < k, then∣∣∣∣sj+1(n)

sj(n)
− s(n)

n

∣∣∣∣ ≤ j
(log3 x)2

(log2 x)1/4

for all 0 ≤ j < k. Since we are supposing that (5) fails, it follows that
all the ratios sj+1(n)/sj(n) lie strictly on the same side of α1/k. But
then sk(n)/n =

∏
0≤j<k(sj+1(n)/sj(n)) cannot equal α. �

Proof of Theorem 2. Fix ε > 0. Choose u > 0 so that the n for which
s(n)/n < u form a set of upper density at most ε. (To see that such a
choice is possible, note that if s(n)/n < u, then n has no prime factors
up to u−1; the result now follows from an elementary sieve argument.
Alternatively, the needed result follows directly from Lemma 4.) We
claim that if s(n)/n ≥ u and sk(n) divides n, then n belongs to a set of
density zero. It follows that the n for which sk(n) divides n comprise
a set of upper density at most ε.

To prove the claim, suppose that s(n)/n ≥ u. By Theorem A, after
throwing away a set of density zero, we may assume that

sj+1(n)/sj(n) > u/2 for all 1 ≤ j < k,

so that

n

sk(n)
=

k−1∏
j=0

sj(n)

sj+1(n)
≤ (2/u)k.

Thus if sk(n) divides n, then sk(n)/n ∈ {1/1, 1/2, . . . , 1/B}, where
B := b(2/u)kc. But Theorem 2 implies that the set of n with this
property has density zero. �
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[2] P. Erdős, Some remarks about additive and multiplicative functions, Bull. Amer.
Math. Soc. 52 (1946), 527–537.

[3] , On the distribution of numbers of the form σ(n)/n and on some related
questions, Pacific J. Math. 52 (1974), 59–65.

[4] , On asymptotic properties of aliquot sequences, Math. Comp. 30 (1976),
641–645.
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