
THE SMALLEST ROOT OF A POLYNOMIAL CONGRUENCE

VLAD CRIŞAN AND PAUL POLLACK

Abstract. Fix f(t) ∈ Z[t] having degree at least 2 and no multiple roots. We prove that
as k ranges over those integers for which the congruence f(t) ≡ 0 (mod k) is solvable, the
least nonnegative solution is almost always smaller than k/(log k)cf . Here cf is a positive
constant depending on f . The proof uses a method of Hooley originally devised to show that
the roots of f are equidistributed modulo k as k varies.

1. Introduction

Let f(t) be a nonconstant polynomial with integer coefficients. For each pair of integers h, k
with k > 0, put

S(h, k) =
∑

ν mod k
f(ν)≡0 (mod k)

e(hν/k),

where as usual e(x) = e2πix. The exponential sums S(h, k) were introduced by Hooley [11, 12]
to study the distribution of roots of polynomial congruences.

For each k, let %(k) denote the number of roots of f modulo k, so that

|S(h, k)| ≤ %(k)

trivially. In [12], Hooley supposes f is irreducible (over Q) of degree at least 2 and explains
how to bound

∑
k≤x S(h, k) nontrivially, for each (fixed) h; “nontrivially” means that the

upper bounds are of lower order than
∑

k≤x %(k). Invoking Weyl’s criterion, Hooley deduces
that the roots of f modulo k are equidistributed, as k varies, in the following sense. For each
positive integer k, let the roots of f modulo k belonging to the interval [0, k) be ν1, ν2, . . . , ν%(k).
(The νi may be taken in arbitrary order.) Then concatenating the lists

(1.1)
ν1
k
,
ν2
k
, . . . ,

ν%(k)
k

,

for k = 1, 2, 3, . . . , yields a sequence that is uniformly distributed in [0, 1). The assumption
that deg f ≥ 2 is easily seen to be necessary; if f(t) = at + b is linear, the corresponding
sequence has all of its limit points rational numbers with denominator dividing |a|.

While Hooley assumes f is irreducible in [12], this is a technical convenience, and the method
applies more generally to any f of degree at least 2 with distinct roots. We state this as our
first theorem.

Theorem 1.1. Suppose that f(t) ∈ Z[t] has degree at least 2 and no multiple roots. Then
the roots of f modulo k are equidistributed, as k varies (in the above sense).
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We give the proof of Theorem 1.1 in §2. It should be noted that quadratic f(t) with distinct
rational roots were treated by Martin and Sitar already in [15].

While Theorem 1.1 seems useful to record, its proof does not involve any essential new ideas
over and above [12]. The primary purpose of this article is to point out that the proof of
Theorem 1.1 can be modified to give a seemingly new result concerning the smallest root of a
polynomial congruence. Let Rf denote the set of positive integers k for which the congruence
f(t) ≡ 0 (mod k) is solvable.

Theorem 1.2. Suppose that f(t) ∈ Z[t] has degree at least 2 and no multiple roots. There is
a constant cf > 0 such that, for almost all k ∈ Rf , the least integer r with f(r) ≡ 0 (mod k)
satisfies r < k/(log k)cf .

In Theorem 1.2, “almost all” means that the complementary set has vanishing relative density;
that is, the number of exceptional k ≤ x is o(#Rf ∩ [1, x]), as x→∞. Theorem 1.2 is proved
in §3.

While there is an obvious affinity between the assertion that the roots of f are equidistributed
mod k, as k varies (Theorem 1.1), and the claim that when there is a root there is almost
always a small root (Theorem 1.2), the latter statement does not follow from the former.
Equidistribution has something to say about the number of small roots modulo k for k ≤ x,
relative to the size of the sum

∑
k≤x %(k). However (as we will see later), that sum is

dominated by atypical elements of Rf , rendering it impossible to draw a conclusion about
the roots of f modulo k for a typical k ∈ Rf .

It is natural to wonder how sharp Theorem 1.2 is. If f has a nonnegative integer root, then
its least such root is also the smallest root of f modulo k for all but finitely many k. Thus,
the upper bound of Theorem 1.2 is rather poor here. In the remaining cases, Theorem 1.2
fares much better.

Proposition 1.3. Suppose that f(t) is a nonconstant polynomial in Z[t] with no nonnegative
integer root. There is a constant Cf > 0 such that, for almost all k ∈ Rf , the least integer r
with f(r) ≡ 0 (mod k) satisfies r > k/(log k)Cf .

In particular, the bound of Theorem 1.2 is sharp up to the power of log k in the denominator.
Proposition 1.3 is in fact a simple consequence of a theorem of van der Corput on the average
order of d(f(m)) [22]; we explain this in §4.

In the fifth and final section of the paper, we provide a description of the set of quotients
|f(rk)|/k, where rk denotes the least nonnegative root of f modulo k.

We will see below (Lemma 3.3) that for a typical k ∈ Rf ∩ [1, x], we have %(k) ≈ (log x)κ for a
certain positive constant κ = κf . This suggests the conjecture that κ is the “correct” value of
cf in Theorem 1.2, in the sense that the smallest root of f modulo k is of size k/(log k)κ+o(1)

as k →∞ through a density 1 subset of Rf .

The proof of Theorem 1.2 goes by applying the method of [12] to bound
∑

k S(h, k) where, in
contrast to [12], k runs (only) over a set of integers in [1, x] on which %(k) exhibits its typical
behavior. It is a testimony to the flexibility of Hooley’s approach that this restriction on k
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does not lead to significant complications of the analysis. As further evidence for the reach of
Hooley’s method, we mention that this approach was recently used in [18] to show that the
square roots of −1 mod k are equidistributed as k ranges over the shifted primes p− 1.

We would like to conclude this introduction by drawing attention to other work concerning
small solutions of polynomial congruences. Here “small” is considerably smaller than in
our results. In [17], Murty shows that if k is prime and q | k − 1, and if xq ≡ a (mod k) is
solvable, then there is a solution x0 with |x0| � k3/2q−1. In particular, if q > k1/2+ε, then
we may take |x0| � k1−ε. Various refinements are then discussed. For instance, using a
character sum estimate of Bourgain–Glibichuk–Konyagin [3], Murty shows that if q > kδ,
then one may take |x0| � k1−ε for some ε = ε(δ) > 0. Gun obtains closely related results
valid also for composite k in [9]. Konyagin and Steger consider the number of small solutions
to polynomial congruences in [14]. In particular, they show that if f(t) ∈ Z[t] is monic of
degree n, then there are only On,ε(1) roots of f modulo k belonging to the interval [0, k1/n−ε).
Coppersmith has discussed extensively the computational problem of finding these very small
roots of f [4, 5, 6].

2. Equidistribution of roots of polynomial congruences:
Proof of Theorem 1.1

Throughout this section, we assume that f(t) is a fixed polynomial in Z[t] of degree n ≥ 2
without multiple roots. Implied constants may always depend on f ; further dependence will
be noted explicitly.

2.1. Setup. We begin with four lemmas taken from [12]; the proofs given there carry over
verbatim (irreducibility of f is never used).

Lemma 2.1. For every integer h,∑
a mod k

|S(ah, k)|2 = O(%(k)k · gcd(h, k)).

Lemma 2.2. If gcd(k, k′) = 1, then

S(h, k)S(h′, k′) = S(hk′ + h′k, kk′).

Lemma 2.2 has the following immediate corollary.

Lemma 2.3. If gcd(k, k′) = 1, then

S(h, kk′) = S(hk′, k)S(hk, k′),

where k is an inverse of k modulo k′ and k′ is an inverse of k′ modulo k.

Write D for the discriminant of f . Note that D 6= 0, since the roots of f are assumed
distinct.

Lemma 2.4. We have

(i) %(k) is a multiplicative function of k;
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(ii) if p - D, then %(p) = %(pα) ≤ n for every positive integer α;

(iii) %(pα) = O(1);

(iv) %(k) = O(nω(k)).

We will also use the following well-known upper bound for the mean value of nonnegative
multiplicative functions. It is a simple consequence of Theorem 01 on p. 2 of [10].

Lemma 2.5. Let F be a multiplicative function taking values in R≥0 whose values at prime
powers are uniformly bounded. For all x ≥ 3,∑

k≤x

F (k)� x

log x

∏
p≤x

(
1 +

F (p)

p
+
F (p2)

p2
+ . . .

)
.

The implied constant depends at most on the bound for the values of F at prime powers.

We are now ready to state what will be our workhorse estimate in the proofs of both Theorems
1.1 and 1.2. Recall that a number is said to be z-smooth if all of its prime factors are bounded
by z and z-rough if all of its prime factors exceed z; the z-smooth, resp. z-rough, part of a
number is its largest z-smooth, resp. z-rough, divisor.

Let x ≥ 10, and let K be a subset of [1, x]. For h a nonzero integer, set

R(h,K ) =
∑
k∈K

|S(h, k)|.

Put

X = x1/ log log x.

Let

Ksmooth = {k1 : k1 is the X-smooth part of some k ∈ K }.

Proposition 2.6. We have

R(h,K )� x

log x
(log log x)O(1)

(
1 +

∑
k1∈Ksmooth

%(k1)
1/2 gcd(h, k1)

1/2

k1

)
.

Proof. For the start of this proof, we will use k1 and k2 to denote the X-smooth and X-rough
parts of k, respectively. Then

R(h,K ) =
∑
k∈K

|S(h, k)| =
∑

1
+
∑

2
,
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where
∑

1 denotes the sum restricted to k ∈ K satisfying k1 ≤ x1/3 and
∑

2 denotes the sum
over the remaining k ∈ K . By Lemma 2.4 and Cauchy–Schwarz,∑

2
≤

∑
k≤x

k1>x1/3

%(k)�
∑
k≤x

k1>x1/3

nω(k)

≤
( ∑

k≤x
k1>x1/3

1

)1/2(∑
k≤x

n2ω(k)

)1/2

.(2.1)

An application of Lemma 2.5 shows that the second sum on k in (2.1) is � x(log x)O(1). On
the other hand, a theorem of Tenenbaum concerning the count of numbers with large smooth
components implies that the first sum on k is bounded, as x→∞, by

x exp(−(1/3 + o(1)) log log x · log log log x),

which is O(x/(log x)A) for any constant A. (See the estimate for Θ(x, y, z) at the bottom of
p. 9 in [10].) It follows that

(2.2)
∑

2
= O(x/(log x)A)

for every fixed A.

To deal with
∑

1, write S(h, k) = S(h, k1k2) = S(hk2, k1)S(hk1, k2). Then∑
1

=
∑
k∈K

|S(hk2, k1)S(hk1, k2)| ≤
∑

k1≤x1/3
k1∈Ksmooth

∑
k2≤x/k1
k1k2∈K

%(k2)|S(hk2, k1)|

≤
∑

k1≤x1/3
k1∈Ksmooth

Θ(x/k1, k1),(2.3)

where for y ∈ [x2/3, x] and k1 ≤ x1/3 we set

Θ(y, k1) =
∑
k2≤y

k1k2∈K

%(k2)|S(hk2, k1)|.

(From here on in the argument, k1 and k2 denote generic X-smooth and X-rough numbers,
respectively.) Discarding the condition that k1k2 ∈ K and applying Cauchy–Schwarz, we see
that

Θ(y, k1)
2 ≤

(∑
k2≤y

%(k2)
2

)(∑
k2≤y

|S(hk2, k1)|2
)
.

Applying Lemma 2.5 with F (k) = 1gcd(k,
∏

p≤X p)=1 · n2ω(k), we find that∑
k2≤y

%(k2)
2 �

∑
k2≤y

n2ω(k2) � y

log y

∏
X<p≤y

(
1 +

n2

p
+
n2

p2
+ . . .

)
� y

log x
(log log x)O(1).
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On the other hand,∑
k2≤y

|S(hk2, k1)|2 =
∑

0≤a<k1
gcd(a,k1)=1

|S(ah, k1)|2
∑
k2≤y

k2≡a (mod k1)

1.

By Brun’s sieve, the inner sum on k2 is O( y
ϕ(k1) logX

) (see Lemma 8 of [12]), so that∑
k2≤y

|S(hk2, k1)|2 �
y

ϕ(k1) logX

∑
a mod k1

|S(ah, k1)|2

� y(log log x)2

k1 log x
· %(k1)k1 · gcd(h, k1) =

y(log log x)2

log x
%(k1) · gcd(h, k1).

(To go from the first line to the second, we use the definition of X together with Lemma 2.1
and the bound ϕ(k1)� k1/ log log(3k1)� k1/ log log x.) Combining the above estimates, we
arrive at the upper bound

Θ(y, k1)�
y

log x
(log log x)O(1) · %(k1)

1/2 gcd(h, k1)
1/2.

Inserting this back into (2.3) shows that∑
1
� x

log x
(log log x)O(1)

∑
k1≤x1/3

k1∈Ksmooth

%(k1)
1/2 gcd(h, k1)

1/2

k1
.

Putting this together with our earlier estimate (2.2) for
∑

2, with A = 1, completes the proof
of the proposition. �

2.2. More on %(p). To proceed, we require somewhat precise information on the distribution
of the values %(p), as p varies. Say that a set P of rational primes has density δ if for all
x ≥ 3, ∑

p≤x
p∈P

1 = δ
x

log x
+OP

(
x

(log x)2

)
.

Note that if P has density δ, one can deduce by partial summation that for all x ≥ 3,∑
p≤x
p∈P

log p = δx+OP(x/ log x),

and that, for some constant κP ,∑
p≤x
p∈P

1

p
= δ log log x+ κP +OP

(
1

log x

)
.

Write g for the number of monic irreducible factors of f(t) in Q[t].

Lemma 2.7. For each j = 0, 1, 2, 3, . . . , the set of primes p with %(p) = j has a density. If
we denote this density by δj, then

(i) δj = 0 if j > n,
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(ii)
∑

j≥0 δj = 1,

(iii)
∑

j≥0 jδj = g.

Proof. We begin by recalling the notion of a Frobenian set of primes (in the terminology of
Serre [20]). Let K be a number field with K/Q Galois, and let C be a subset of Gal(K/Q)
stable under conjugation. We let P(K; C ) denote the set of rational primes p unramified in
K whose corresponding Frobenius conjugacy class Frobp is a subset of C . By a Frobenian
set of primes, we mean any set of primes arising as P(K; C ) for some K and C , or a set of
primes whose symmetric difference with some P(K; C ) is finite. The Chebotarev density
theorem with a reasonable error term (e.g., the form of the theorem appearing as [2, Satz
4]) implies that every Frobenian set has a density; more specifically, if P = P(K; C ) up to
finitely many exceptions, then P has density #C /[K : Q].

Let p be a prime not dividing the leading coefficient of f . Then the mod p reduction of f has
degree n, and the degrees of the irreducible factors of f mod p form a partition of n called
the factorization pattern of f modulo p. A well-known consequence of the Chebotarev density
theorem (see [21] or [19]) is that the set of primes p for which f has a given factorization
pattern is a Frobenian set. More precisely, let K denote the splitting field of f over Q, and
view Gal(K/Q) as a subgroup of the symmetric group on the roots of f . Each σ ∈ Gal(K/Q)
has a decomposition into disjoint cycles whose lengths describe a partition of n. Then — up
to finitely many exceptions — the factorization pattern of f mod p coincides with the cycle
type of Frobp. (By the cycle type of a conjugacy class, we mean the common cycle type of
any of its elements.)

As long as p - D — which occurs for all but finitely many p — the polynomial f factors into
distinct irreducibles modulo p, so that %(p) is determined by the factorization pattern of
f modulo p (being the number of linear factors). The existence of the densities δj follows
immediately from the preceding discussion. Explicitly, δj is the proportion of σ ∈ Gal(K/Q)
possessing precisely j fixed points when viewed as a permutation on the roots of f .

Assertions (i) and (ii) are now clear. To see (iii), notice that the sum
∑

j≥0 jδj computes the

expected number of fixed points of an element of Gal(K/Q) chosen uniformly at random.
Factor f = f1 · · · fg, where f1, . . . , fg are irreducible over Q having degrees n1, . . . , ng (so
that n1 + · · ·+ ng = n). List the roots of fi as θi,1, . . . , θi,ni

. Then∑
j≥0

jδj =
1

[K : Q]

∑
σ∈Gal(K/Q)

(# of θi,j fixed by σ) =
1

[K : Q]

g∑
i=1

ni∑
j=1

∑
σ∈Gal(K/Q)
σ(θi,j)=θi,j

1.

The innermost right-hand sum evaluates to #Gal(K/Q(θi,j)) = [K : Q(θi,j)]. Since

[K : Q(θi,j)]

[K : Q]
=

1

[Q(θi,j) : Q]
=

1

ni
,

we conclude that ∑
j≥0

jδj =

g∑
i=1

ni∑
j=1

1

ni
=

g∑
i=1

1 = g,
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as desired. �

2.3. Completion of the proof of Theorem 1.1. Let s1, s2, s3, . . . be the sequence obtained
by concatenating the lists (1.1), for k = 1, 2, 3, . . . . By Weyl’s criterion, establishing that
{sm} is uniformly distributed in [0, 1) comes down to checking that for each (fixed) nonzero
integer h, we have ∑

m≤M

e(hsm) = o(M), as M →∞.

It will be enough (for reasons explained at the end of this section) to check this for M of the
form %(1) + %(2) + · · ·+ %(m), i.e., to show that for each nonzero h,∑

k≤x

S(h, k) = o

(∑
k≤x

%(k)

)
, as x→∞.

We now take up the task of estimating
∑

k≤x %(k) and
∑

k≤x S(h, k).

Lemma 2.8. For some positive constant C depending on f , we have∑
k≤x

%(k) ∼ Cx(log x)g−1, as x→∞.

The following is a weakened form of a celebrated theorem of Wirsing [23, Satz 1]. It asserts
that if the values of F at the primes have a well-defined positive average, then the upper
bound of Lemma 2.5 can be sharpened to an asymptotic formula.

Proposition 2.9. Let F be a multiplicative function taking values in R≥0 and whose values
at prime powers are bounded. Suppose that for some τ > 0, we have

(2.4)
∑
p≤x

F (p) log p = (τ + o(1))x, as x→∞.

Then, as x→∞,

(2.5)
∑
k≤x

F (k) =
x

log x

e−γτ

Γ(τ)

∏
p≤x

(
1 +

F (p)

p
+
F (p2)

p2
+ . . .

)
.

Here γ is the Euler–Mascheroni constant and Γ(·) is the usual Gamma-function.

Proof of Lemma 2.8. We apply Proposition 2.9 with F = %. That % is bounded on prime
powers is Lemma 2.4(iii). We proceed to verify the hypothesis (2.4). Since %(p) ≤ n for all
but finitely many p (in fact, for all p not dividing the content of f),∑

p≤x

%(p) log p = O(1) +
∑

0≤j≤n

j
∑
p≤x
%(p)=j

log p = O(1) +
∑

0≤j≤n

j (δjx+O(x/ log x))

=

(∑
j≥0

jδj + o(1)

)
x = (g + o(1))x.
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Thus, (2.4) holds with τ = g. Examining the right-hand side of (2.5), we see that Lemma 2.8
will follow if it is shown that the product on p in (2.5) is asymptotic to a constant multiple

of (log x)g. Since log
(

1 + %(p)
p

+ %(p2)
p2

+ . . .
)

= %(p)
p

+O
(

1
p2

)
, it suffices to show that

(2.6)
∑
p≤x

%(p)

p
− g log log x

tends to a limit as x→∞. There are constants κ0, . . . , κn such that∑
p≤x

%(p)

p
−
∑
p≤x

%(p)>n

%(p)

p
=
∑

0≤j≤n

j
∑
p≤x
%(p)=j

1

p

=
∑

0≤j≤n

j(δj log log x+ κj +O(1/ log x)).

It follows that (2.6) tends to
∑

0≤j≤n jκj +
∑

p: %(p)>n
%(p)
p

, as x→∞. �

Lemma 2.10. For each fixed nonzero value of h,∑
k≤x

S(h, k)� x(log x)g−1−(n−n
1/2)/n!(log log x)O(1).

Here the constant implied by “�” may depend both on f (as usual) and on h.

Remark. The term n! appearing in the exponent of log x can sometimes be substantially
reduced. For instance, if f is a normal polynomial (meaning that f is irreducible over Q and
that f splits upon adjoining any one of its roots to Q), then n! can be replaced with n. This
will be clear from our proof.

Proof. Applying Proposition 2.6 with K the full set of integers in [1, x], and bounding
gcd(h, k1) trivially by h, we find that

(2.7)
∑
k≤x

S(h, k)�
∑
k≤x

|S(h, k)| � x

log x
(log log x)O(1)

∑
k1≤x1/3

k1 X-smooth

%(k1)
1/2

k1
.

Now ∑
k1≤x1/3

k1 X-smooth

%(k1)
1/2

k1
≤
∏
p≤X

(
1 +

%(p)1/2

p
+
%(p2)1/2

p2
+ . . .

)

≤ exp

(∑
p≤X

(
%(p)1/2

p
+
%(p2)1/2

p2
+ . . .

))
� exp

(∑
p≤X

%(p)1/2

p

)
.
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The remaining sum on p satisfies∑
p≤X

%(p)1/2

p
≤
∑

0≤j≤n

j1/2
∑
p≤x
%(p)=j

1

p
+O(1) ≤

n∑
j=0

j1/2(δj log log x+O(1)) +O(1)

≤

(∑
j≥0

j1/2δj

)
log log x+O(1).

Hence, the sum on the right-hand side of (2.7) is O
(

(log x)
∑

j≥0 j
1/2δj

)
. To conclude, it

suffices to observe that

g −
∑
j≥0

j1/2δj =
∑
j≥0

(j − j1/2)δj ≥ (n− n1/2)δn,

and that (from our description of the δj in the proof of Lemma 2.7, and with K denoting the
splitting field of f over Q) δn = 1

[K:Q]
≥ 1

n!
. �

Proof of Theorem 1.1. Fix h 6= 0. Comparing the estimates of Lemmas 2.8 and 2.10, keeping
in mind that n ≥ 2, we find that

∑
k≤x S(h, k) = o(

∑
k≤x %(k)), as x→∞. In other words,∑

m≤M e(hsm) = o(M), as M →∞ through values of the form M = %(1) + %(2) + · · ·+ %(m).
To complete the proof, it suffices to remove the restriction on the form of M . To this end,
for each M define m = mM as the largest positive integer m with

∑
k≤m %(k) ≤M . Then

1

M

∣∣∣∣∣∑
m≤M

e(hsm)

∣∣∣∣∣ ≤ 1∑
k≤m %(k)

∣∣∣∣∣∑
k≤m

S(h, k)

∣∣∣∣∣+
1∑

k≤m %(k)
%(m+ 1).

We have seen already that the first term on the right goes to 0, as M (or equivalently, m) tends
to infinity. The second term also tends to 0, since the denominator has size � m(logm)g−1

while the numerator is � nω(m+1) �ε m
ε for any ε > 0. �

3. Polynomial congruences usually have small roots:
Proof of Theorem 1.2

3.1. Rf and its typical elements. The following asymptotic formula for the counting
function of Rf can be proved analogously to Lemma 2.8, by applying Wirsing’s mean
value theorem (Proposition 2.9) with F = 1Rf

. Note that 1Rf
is indeed a multiplicative

function and that the the hypothesis (2.4) is satisfied with τ = 1− δ0, which is positive since
1− δ0 =

∑
j≥1 δj ≥ δn ≥ 1

n!
.

Lemma 3.1. For a certain positive constant C depending on f (not necessarily the same C
as in Lemma 2.8), ∑

k∈Rf

k≤x

1 ∼ Cx/(log x)δ0 , as x→∞.

Next, we consider the behavior of %(k) for a typical k ∈ Rf . For each j, let ωj(k) denote the
number of (distinct) primes p dividing k with %(p) = j.
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Lemma 3.2. Let ε > 0. As x→∞, all but o(#Rf ∩ [1, x]) elements k ∈ Rf ∩ [1, x] satisfy

(3.1) |ωj(k)− δj log log x| < ε log log x

for all j = 1, 2, 3, . . . , n.

Proof. We fix j ∈ {1, 2, . . . , n} and show that only o(#Rf ∩ [1, x]) elements k ∈ Rf ∩ [1, x]
violate (3.1). Let z ∈ [1/2, 3/2]. Applying Lemma 2.5 with F (k) = zωj(k) · 1Rf

(k), we find
that ∑

k≤x
k∈Rf

zωj(k) � x

log x

( ∏
1≤j′≤n
j′ 6=j

∏
p≤x

%(p)=j′

(
1 +

1

p
+ . . .

)) ∏
p≤x
%(p)=j

(
1 +

z

p
+ . . .

)
(3.2)

� x

log x
exp

(
(z − 1)

∑
p≤x
%(p)=j

1

p
+
∑

1≤j′≤n

∑
p≤x

%(p)=j′

1

p

)

� x

log x
(log x)(z−1)δj+δ1+···+δn =

x

(log x)δ0
(log x)(z−1)δj .

If we choose z ≥ 1, then any k with ωj(k) ≥ (δj + ε) log log x makes a contribution to the
left-hand side of (3.2) of size at least (log x)(δj+ε) log z. Hence, the number of these k is

� x

(log x)δ0
(log x)δj(z−1−log z)−ε log z.

The final exponent of log x, viewed as a function of z, vanishes when z = 1 and is decreasing
at z = 1 (with derivative −ε at z = 1). Now fixing z ∈ [1, 3/2] slightly larger than 1, we
deduce that the number of k ∈ Rf ∩ [1, x] with ωj(k) ≥ (δj + ε) log log x is o(x/(log x)δ0),
and (by Lemma 3.1) is therefore o(#Rf ∩ [1, x]), as x→∞.

We can bound the number of k ≤ x in Rf with ωj(k) ≤ (δj − ε) log log x similarly. If z ≤ 1,
each such k contributes at least (log x)(δj−ε) log z to the left-hand side of (3.2). Arguing as
above, if we now take z ∈ [1/2, 1] to be slightly smaller than 1, then we obtain a bound on
the number of these k is that is o(x/(log x)δ0). �

Put
κ =

∑
j≥1

δj log j.

Lemma 3.3. For each ε > 0, all but o(#Rf ∩ [1, x]) elements k ∈ Rf ∩ [1, x] satisfy

(log x)κ−ε < %(k) < (log x)κ+ε.

Proof. For k ∈ Rf , write k = k′k′′, where every prime dividing k′ divides D, and k′′ is coprime
to D. Since %(·) is bounded on prime powers and only finitely many primes divide D,

%(k′′) ≤ %(k′)%(k′′) = %(k)� %(k′′).

Moreover, if pα ‖ k′′, then 1 ≤ %(p) = %(pα) ≤ n. Thus,

%(k′′) =
∏

1≤j≤n

jωj(k
′′).
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Since ωj(k
′′) = ωj(k) +O(1), we conclude that

%(k) �
n∏
j=1

jωj(k)

for all k ∈ Rf . Now apply Lemma 3.2. �

3.2. Detecting k for which f admits no small roots. We let ε, c denote positive constants
whose values will be fixed later.

Let E denote the set of k ∈ Rf ∩ [1, x] for which the least root of f modulo k exceeds
k/(log k)c. We let E ′ be the subset of E consisting of those k satisfying

(log x)κ−ε < %(k) < (log x)κ+ε.

By Lemma 3.3, passing from E to E ′ requires discarding only o(#Rf ∩ [1, x]) elements,
as x → ∞. Thus, to prove Theorem 1.2, with cf = c, it will be enough to show that
#E ′ = o(#Rf ∩ [1, x]), as x→∞.

To detect elements of E ′, we use a result of Montgomery [16, Corollary 1.2].

Proposition 3.4. Let s1, s2, s3, . . . , sM be real numbers. Suppose that H is a positive integer
for which ∑

h≤H

∣∣∣∣∣∑
m≤M

e(hsm)

∣∣∣∣∣ < 1

10
M.

Then for every pair α, β satisfying α ≤ β ≤ α + 1 and

(3.3) β − α ≥ 4

H + 1
,

we have that

(3.4) #{m ≤M : sm ∈ [α, β] mod 1} ≥ 1

2
(β − α)M.

Let {sm} be the sequence obtained by concatenating the lists (1.1) for k ∈ E ′. Thus,

M =
∑
k∈E ′

%(k).

Put α = 0, β = 1/(log x)c; then (3.3) holds if we take H = b4(log x)cc. By the choice of E ,
each sm ∈ (1/(log x)c, 1), so that the left-hand side of (3.4) vanishes. So either (3.4) fails or
M = 0; in either case, we deduce that

M ≤ 10
∑
h≤H

∣∣∣∣∣∑
m≤M

e(hsm)

∣∣∣∣∣ .
Thus,

(log x)κ−ε ·#E ′ ≤
∑
k∈E ′

%(k) = M ≤ 10
∑
h≤H

∣∣∣∣∣∑
k∈E ′

S(h, k)

∣∣∣∣∣ ,
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so that

(3.5) #E ′ � (log x)−κ+ε
∑
h≤H

∣∣∣∣∣∑
k∈E ′

S(h, k)

∣∣∣∣∣ .
By Proposition 2.6 (with K = E ′),

(3.6)
∑
k∈E ′

S(h, k)� x

log x
(log log x)O(1)

1 +
∑

k1∈E ′smooth

%(k1)
1/2 gcd(h, k1)

1/2

k1

 .

If k1 ∈ E ′smooth is the X-smooth part of the integer k ∈ E ′, then k, k1 both belong to Rf . By
the proof of Lemma 3.3,

%(k) �
n∏
j=1

jωj(k), %(k1) �
n∏
j=1

jωj(k1);

as ωj(k1) ≤ ωj(k) for each j, we have that

%(k1)� %(k) < (log x)κ+ε.

Using these observations in (3.6), we find that

(3.7)
∑
k∈E ′

S(h, k)� x(log x)κ/2+ε/2−1(log log x)O(1)

 ∑
k∈Rf∩[1,x]

gcd(h, k)1/2

k

 .

If h is a positive integer not exceeding H, k ∈ Rf ∩ [1, x], and gcd(h, k) = d, then d ≤ H,
and k′ := k/d is itself an element of Rf ∩ [1, x]. Thus,

∑
h≤H

∑
k∈Rf∩[1,x]

gcd(h, k)1/2

k
≤
∑
d≤H

d1/2

(∑
h≤H
d|h

1

) ∑
k′∈Rf∩[1,x]

1

dk′

� H
∑
d≤H

d−3/2
∑

k′∈Rf∩[1,x]

1

k′
� H(log x)1−δ0 � (log x)1+c−δ0 .

(We used the bound
∑

k∈Rf∩[1,x] k
−1 � (log x)1−δ0 , which follows from Lemma 3.1 by partial

summation.) Using this in (3.5) and (3.7), we conclude that

#E ′ � x

(log x)δ0
(log log x)O(1)(log x)3ε/2+c−κ/2.

Fixing c < κ/2, we then choose ε > 0 so that the final exponent of log x on the right-hand
side is negative. Then

#E ′ = o(x/(log x)δ0) = o(#Rf ∩ [1, x]).

This shows that Theorem 1.2 holds with any value of cf < κ/2. (This result should be
measured against the conjecture from the introduction that any cf < κ is admissible.)
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Remark. Fix c < κ/2. The following result in Diophantine approximation can be shown by
an argument analogous to the above. For every α ∈ R, almost all k ∈ Rf are such that there
is an integer ν satisfying both

(3.8) f(ν) ≡ 0 (mod k) and
∥∥∥ν
k
− α

∥∥∥ ≤ 1

(log k)c
.

(As is customary, ‖ · ‖ denotes distance to the nearest integer.) In this connection, we note
that Hooley [13] has proved the existence of an infinite sequence of k ∈ Rf for which (3.8) is
solvable with (log k)c replaced by a certain positive power of k.

4. Small but not too small: Proof of Proposition 1.3

The following estimate is due to van der Corput [22].

Proposition 4.1. Let f(t) be a nonconstant polynomial in Z[t]. For all x ≥ 3,

(4.1)
∑
r≤x
f(r)6=0

d(f(r))� x(log x)O(1),

where the implied constants may depend on f .

Subsequent ideas of Erdős can be used to prove Proposition 4.1 with x(log x)g on the right-
hand side of (4.1). (As usual, g denotes the number of monic irreducible factors of f over
Q.) See [8]. There Erdős assumes f is irreducible, but that assumption can be dispensed
with, as detailed in [7, Theorem 7.1].

Proof of Proposition 1.3. Assume that f(t) ∈ Z[t] is nonconstant with no nonnegative integer
roots. Fix a constant Cf having the property that, as x→∞,∑

0≤r≤x/(log x)Cf

d(f(r)) = o(x/(log x)δ0);

such a choice of Cf is possible by Proposition 4.1. In fact, by the remarks above, we can take
any value of Cf > g + δ0.

Let x be a large real number. If k ∈ [x/2, x] and f has a root r modulo k, where 0 ≤ r ≤
k/(log k)Cf , then

k | f(r), and r ≤ x/(log x)Cf .

Thus, k is counted by the sum
∑

0≤r≤x/(log x)Cf d(f(r)), and so there are o(x/(log x)δ0) possibili-

ties for k. Summing dyadically, we deduce that there are only o(x/(log x)δ0) values of k ∈ [1, x]
for which f has a root modulo k not exceeding k/(log k)Cf . Since #Rf ∩ [1, x] � x/(log x)δ0 ,
Proposition 1.3 follows. �
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5. A parting shot: Root quotient sets

We define the root quotient set Qf corresponding to a given f(t) ∈ Z[t] as follows. For
each k ∈ Rf , we let rk denote the smallest nonnegative integer r with f(r) ≡ 0 (mod k).
Then

Qf := {|f(rk)|/k : k = 1, 2, 3, . . . }.

In the case when f has no nonnegative integer roots, it is easy to see that Qf ⊂ Rf . We
conclude the paper by proving the following.

Theorem 5.1. Suppose that f(t) ∈ Z[t] has at least two distinct roots and no nonnegative
integer root. Then

Qf = Rf .

For the polynomials f(t) = (t+ 2)n − 1 (with n ≥ 2), Theorem 5.1 was proved by Andrica
and Crişan in [1]. It is easy to see that neither assumption on f in the statement of Theorem
5.1 can be removed.

Proof. We may assume that the leading coefficient of f is positive. We have already remarked
that Qf ⊂ Rf , so we focus on proving that Rf ⊂ Qf .

Fix R ∈ Rf . A moment’s thought shows that R ∈ Qf if there are infinitely many positive
integers k with

(5.1) Rk ∈ f(Z≥0), but k, 2k, 3k, . . . , (R− 1)k /∈ f(Z≥0).

Indeed, our assumption that f has no nonnegative integer roots implies that rk →∞ with k.
Since f is eventually positive and increasing, and tends to infinity, all but finitely many of
the k satisfying (5.1) will satisfy |f(rk)|/k = Rk/k = R.

Since R ∈ Rf , for large K there are � K1/n positive integers k ≤ K with Rk ∈ f(Z≥0). It is
therefore enough to show that for each fixed R′ ∈ {1, 2, 3, . . . , R− 1}, only o(K1/n) integers
k ≤ K have both Rk and R′k lying in f(Z≥0), as K → ∞. (Here, as usual, n denotes the
degree of f .) To this end, suppose that

(5.2) f(u) = Rk, f(u′) = R′k, where u, u′ ∈ Z≥0.

Note that the point (u, u′) lies on the curve f(x) = R
R′
f(y). There is by now a well-developed

theory of integral points on curves of the form f(x) = g(y), but for our purposes it is simpler
to argue as follows.

We can write f(x) = α(x + β)n + O(xn−2) (for large x), where α, β are rational numbers
depending only on f . Assuming k is sufficiently large (which implies that u and u′ are also
large, and that u � u′), we deduce from (5.2) that((

R

R′

)1/n

· u
′ + β

u+ β

)n

= 1 +O

(
1

u2

)
.
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Taking nth roots and rearranging,

u′ + β

u+ β
=

(
R′

R

)1/n

+O

(
1

u2

)
,

and hence

(5.3) u′ + β − (u+ β)

(
R′

R

)1/n

= O

(
1

u

)
.

Writing β = A/B in lowest terms, and then multiplying the last display through by B, we
find that

(5.4) ‖(Bu+ A) · (R′/R)1/n‖ � u−1.

If (R′/R)1/n is irrational, we continue as follows. By a famous theorem of Bohl–Sierpiński–
Weyl, the positive integer multiples of (R′/R)1/n are equidistributed mod 1. This implies that
(5.4) is satisfied for only o(U) integers u ≤ U , as U →∞. Since f(u) = Rk and k ≤ K, we
have u� K1/n. Hence, the number of values of u that arise is o(K1/n), as K →∞. Noting
that u determines k gives the desired upper bound in this case.

To conclude the proof, we assume that (R′/R)1/n is rational and deduce a contradiction to
our hypothesis that f has at least two distinct roots. In this case, the left-hand side of (5.3)
has bounded denominator; so (5.3) implies that the left-hand side vanishes if k is sufficiently
large. Thus,

u′ = δu+ γ, where δ = (R′/R)1/n, γ = β((R′/R)1/n − 1).

Moreover,

f(u) =
R

R′
f(u′) =

R

R′
f(δu+ γ).

For this situation to arise for infinitely many different values of k, we need f(t) = R
R′
f(δt+ γ)

identically. In that case, the map θ 7→ δθ + γ induces a permutation on the roots of f . If the
permutation has order j (say), then every root of f is fixed by the map

θ 7→ δjθ + γ
δj − 1

δ − 1
.

But δj 6= 1, and so this map has a unique fixed point. Hence, f has a unique root. �
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[15] G. Martin and S. Sitar, Erdős-Turán with a moving target, equidistribution of roots of reducible quadratics,

and Diophantine quadruples, Mathematika 57 (2011), 1–29.
[16] H. L. Montgomery, Ten lectures on the interface between analytic number theory and harmonic analysis,

CBMS Regional Conference Series in Mathematics, vol. 84, published for the Conference Board of the
Mathematical Sciences, Washington, DC by the American Mathematical Society, Providence, RI, 1994.

[17] M. R. Murty, Small solutions of polynomial congruences, Indian J. Pure Appl. Math. 41 (2010), 15–23.
[18] P. Pollack, Nonnegative multiplicative functions on sifted sets, and the square roots of −1 modulo shifted

primes, Glasg. Math. J., to appear.
[19] M. Rosen, Polynomials modulo p and the theory of Galois sets, Theory and applications of finite fields,

Contemp. Math., vol. 579, Amer. Math. Soc., Providence, RI, 2012, pp. 163–178.
[20] J.-P. Serre, Divisibilité de certaines fonctions arithmétiques, Séminaire Delange-Pisot-Poitou, 16e année
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