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Benford behavior and distribution in
residue classes of large prime factors
Paul Pollack and Akash Singha Roy

Abstract. We investigate the leading digit distribution of the 𝑘th largest prime factor of 𝑛 (for each fixed
𝑘 = 1, 2, 3, . . . ) as well as the the sum of all prime factors of 𝑛. In each case, we find that the leading
digits are distributed according to Benford’s law. Moreover, Benford behavior emerges simultaneously
with equidistribution in arithmetic progressions uniformly to small moduli.

1 Introduction

Benford’s law, named for physicist Frank Benford (though discovered almost 60 years prior
by Simon Newcomb), refers to the observation that in many naturally occurring data
sets, the leading digits are far from uniformly distributed, with smaller digits more likely
to occur. Let us make this precise. By the 𝑁 leading digits of the positive real number
𝑥, we mean the 𝑁 most significant digits. For example (working in base 10), 123.456
has first 4 leading digits 1234, and this is the same for 0.00123456. Now let 𝐷 and 𝑏 be
integers with 𝑏 ≥ 2. We say a positive real number “begins with 𝐷 in base 𝑏” if its most
significant digits in base 𝑏 are those of the base 𝑏 expansion of 𝐷 . Then Benford’s law, in
base 𝑏, predicts that the proportion of terms in the data set beginning with 𝐷 should be
approximately log(1 + 𝐷−1)/log 𝑏. For example, since log 2

log 10 = 0.3010 . . . , we expect to
see a leading digit 1 in base 10 about 30% of the time.

For general background on Benford’s law, see [5, 22]. In this paper, we are interested
in data sets arising from positive-valued arithmetic functions. Let 𝑓 : N→ R>0. We say
𝑓 obeys Benford’s law in base 𝑏 (or that 𝑓 is Benford in base 𝑏) if, for each positive integer 𝐷 ,
the asymptotic density of 𝑛 for which 𝑓 (𝑛) begins with𝐷 in base 𝑏 is log(1+𝐷−1)/log 𝑏.
Results on the “Benfordity” of particular arithmetic functions are scattered throughout
the literature. For example, 𝑓 (𝑛) = 𝑛! is Benford in every base 𝑏 (Diaconis [11]), as is the
“primorial” 𝑓 (𝑛) = ∏𝑛

𝑘=1 𝑝𝑘 (Massé–Schneider [21]). The classical partition function
𝑝(𝑛) is also Benford in every base (see Anderson–Rolen–Stoehr [2] or [21]). On the other
hand, 𝑓 (𝑛) = 𝑛 is not Benford; the asymptotic density in question does not exist. This
same obstruction to Benford’s law persists if 𝑓 (𝑛) is any positive-valued polynomial
function of 𝑛. (See, for instance, the final section of [21]. It should be noted that these
examples obey Benford’s law in a weaker sense; namely Benford’s law holds if asymptotic
density is replaced with logarithmic density.)

When 𝑓 is multiplicative, whether or not 𝑓 is Benford in base 𝑏 can be interpreted
as a problem in the theory of mean values of multiplicative functions. Namely, 𝑓 is
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2 P. Pollack and A. Singha Roy

Benford precisely when 𝑓 (𝑛)2𝜋𝑖ℓ/log 𝑏 has mean value zero for each nonzero integer ℓ.
This criterion was noted by Aursukaree and Chandee [3] and used by them to show that
the divisor function 𝑑 (𝑛) is Benford in base 10. A more systematic study of the Benford
behavior of multiplicative function, leveraging Halász’s celebrated mean value theorem,
was recently undertaken in [8]. For example, it is shown there that 𝜙(𝑛) is not Benford
but that |𝜏(𝑛) | is, where 𝜏 is Ramanujan’s 𝜏-function.1 All of the work in [8] is carried
out in base 10, but both of the quoted results hold, by simple modifications of the proofs,
in each fixed base 𝑏 ≥ 2.

Our concern in the present paper is with certain nonmultiplicative functions. Roughly
speaking, we show that (for each fixed 𝑘 ) the 𝑘th largest prime factor of 𝑛 obeys Benford’s
law, as does the sum of all of the prime factors of 𝑛. (Both results hold for each base 𝑏.) In
fact, our results are somewhat stronger than this.

We let 𝑃𝑘 (𝑛) denote the 𝑘th largest prime factor of 𝑛; when 𝑘 = 1, we write 𝑃(𝑛)
in place of the more cumbersome 𝑃1 (𝑛). More precisely, if 𝑛 = 𝑝1𝑝2𝑝3 · · · 𝑝Ω(𝑛) , with
𝑝1 ≥ 𝑝2 ≥ 𝑝3 ≥ · · · ≥ 𝑝Ω(𝑛) , we set 𝑃𝑘 (𝑛) = 𝑝𝑘 , with the convention that 𝑃𝑘 (𝑛) = 0
if 𝑘 > Ω(𝑛). Put

Ψ𝑘 (𝑥, 𝑦) := #{𝑛 ≤ 𝑥 : 𝑃𝑘 (𝑛) ≤ 𝑦}.
(When 𝑘 = 1, it is usual to writeΨ(𝑥, 𝑦) in place ofΨ1 (𝑥, 𝑦).) Let 𝑎 mod 𝑞 be a coprime
residue class. For real 𝑥, 𝑦 ≥ 2, define

Ψ𝑘 (𝑥, 𝑦; 𝑏, 𝐷, 𝑞, 𝑎) := #{𝑛 ≤ 𝑥 : 𝑃𝑘 (𝑛) ≤ 𝑦, 𝑃𝑘 (𝑛) ≡ 𝑎 (mod 𝑞),
𝑃𝑘 (𝑛) begins with 𝐷 in base 𝑏}.

Theorem 1.1 Fix positive integers 𝑘 , 𝑏, and 𝐷 , with 𝑏 ≥ 2. Fix real numbers𝑈 ≥ 1 and
𝜖 > 0. Then

Ψ𝑘 (𝑥, 𝑦; 𝑏, 𝐷, 𝑞, 𝑎) ∼ 1
𝜙(𝑞)

log(1 + 𝐷−1)
log 𝑏

Ψ𝑘 (𝑥, 𝑦),

as 𝑥, 𝑦 → ∞, uniformly for 𝑦 ≥ 𝑥1/𝑈 and coprime residue classes 𝑎 mod 𝑞 with 𝑞 ≤
log 𝑥

(log log 𝑥 )𝑘−1+𝜖 . In fact, if 𝑘 = 1, we can take 𝑞 ≤ (log 𝑥)𝐴 for any fixed 𝐴.

To deduce that 𝑃𝑘 (𝑛) is Benford, it suffices to take 𝑞 = 1 and 𝑦 = 𝑥. The additional
generality of Theorem 1.1 seems of some interest. For example, Theorem 1.1 contains
the result of Banks–Harman–Shparlinski [4] that 𝑃(𝑛), on integers 𝑛 ≤ 𝑥, is uniformly
distributed in coprime residue classes mod 𝑞, for 𝑞 up to an arbitrary fixed power of
log 𝑥. Theorem 1.1 gives the corresponding result for 𝑃𝑘 (𝑛), when 𝑘 > 1, in the more
restricted range 𝑞 ≤ log 𝑥/(log log 𝑥)𝑘−1+𝜖 . This appears to be new; moreover, this
range of 𝑞 is sharp up to the power of log log 𝑥, since≫ 𝑥(log log 𝑥)𝑘−2/log 𝑥 values of
𝑛 ≤ 𝑥 have 𝑃𝑘 (𝑛) = 2.

Turning to the sum of the prime factors, we let 𝐴(𝑛) = ∑
𝑝𝑘 ∥𝑛 𝑘 𝑝. That is, 𝐴(𝑛) is

the sum of the prime factors of 𝑛, counting multiplicity. (The sum of the distinct prime
factors of 𝑛 could be handled by similar arguments.) The function 𝐴(𝑛) was introduced
by Alladi and first investigated by Alladi and Erdős [1].

1In this latter result, the notion of “asymptotic density” in the definition of a Benford function should be
replaced with “asymptotic density relative to the set of 𝑛 with 𝜏 (𝑛) ≠ 0”.
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Benford behavior of large prime factors 3

Define
𝑁 (𝑥, 𝑦; 𝑏, 𝐷, 𝑞, 𝑎) := #{𝑛 ≤ 𝑥 : 𝑃(𝑛) ≤ 𝑦, 𝐴(𝑛) ≡ 𝑎 (mod 𝑞),

𝐴(𝑛) begins with 𝐷 in base 𝑏}.

Theorem 1.2 Fix an integer 𝑏 ≥ 2, and a positive integer 𝐷. Fix real numbers𝑈 ≥ 1 and
𝜖 > 0. Then

𝑁 (𝑥, 𝑦; 𝑏, 𝐷, 𝑞, 𝑎) ∼ 1
𝑞

log(1 + 𝐷−1)
log 𝑏

Ψ(𝑥, 𝑦),

as 𝑥, 𝑦 → ∞, uniformly for 𝑦 ≥ 𝑥1/𝑈 and residue classes 𝑎 mod 𝑞 with 𝑞 ≤ (log 𝑥) 1
2 −𝜖 .

As before, taking 𝑦 = 𝑥 and 𝑞 = 1 shows that 𝐴(𝑛) satisfies Benford’s law. Again,
the extra generality here seems interesting. For example, it is implicit in Theorem 1.2
that 𝐴(𝑛) is equidistributed mod 𝑞, uniformly for 𝑞 ≤ (log 𝑥) 1

2 −𝜖 , a result which we
have not seen explicitly stated in the literature before. (See Goldfeld [12] for the case of
fixed 𝑞.) The same range of uniformity may follow from the method of Hall in [15] (who
considered the distribution mod 𝑞 of

∑
𝑝 |𝑛, 𝑝∤𝑞 𝑝), but our proof exhibits the result as a

simple consequence of quantitative mean value theorems.
In addition to the already-mentioned references, the reader interested in number-

theoretic investigations of Benford’s law might also consult [20], [6], [9], [18], [7], and
[24].

Notation

Most of our notation is standard. Of note, we allow constants in𝑂-symbols to depend on
any parameter that has been declared as ‘fixed’.Whenwe refer to ‘large’ 𝑥, the threshold for
large enough may also depend on these parameters. We write 𝐴 ≳ 𝐵 as an abbreviation
for 𝐴 ≥ (1 + 𝑜(1))𝐵.

2 Benford’s law for 𝑃𝑘 (𝑛): Proof of Theorem 1.1

Wemake crucial use of both the results and methods of Knuth and Trabb Pardo [19], who
were the first to seriously investigate 𝑃𝑘 (𝑛) when 𝑘 > 1. We define functions 𝜌𝑘 (𝛼), for
integers 𝑘 ≥ 0 and real 𝛼, as follows:

𝜌𝑘 (𝛼) = 0 if 𝛼 ≤ 0 or 𝑘 = 0,

𝜌𝑘 (𝛼) = 1 for 0 < 𝛼 ≤ 1 and 𝑘 ≥ 1,

𝜌𝑘 (𝛼) = 1 −
∫ 𝛼

1
(𝜌𝑘 (𝑡 − 1) − 𝜌𝑘−1 (𝑡 − 1)) d𝑡

𝑡
, for 𝛼 > 1 and 𝑘 ≥ 1. (2.1)

Much is known about the asymptotic behavior of 𝜌𝑘 (𝛼) as 𝛼 → ∞; for 𝑘 = 1, see for
instance [10], while for 𝑘 ≥ 2, see equations (6.4) and (6.15) in [19]. For our purposes,
much weaker information suffices. We assume as known that each 𝜌𝑘 (𝑘 = 1, 2, 3, . . . )
is positive-valued and weakly decreasing on (0,∞), and that lim𝛼→∞ 𝜌𝑘 (𝛼) = 0.

The following result, which connects the 𝜌𝑘 with the distribution of 𝑃𝑘 (𝑛), appears
as eq. (4.7) in [19] (and is a consequence of the stronger assertion (4.8) shown there).
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4 P. Pollack and A. Singha Roy

Proposition 2.1 Fix a positive integer 𝑘 and a real number𝑈 ≥ 1. For all 𝑥, 𝑦 ≥ 2,

Ψ𝑘 (𝑥, 𝑦) = 𝜌𝑘 (𝑢)𝑥 +𝑂 (𝑥/log 𝑥), (2.2)

uniformly for 𝑦 ≥ 𝑥1/𝑈 , where 𝑢 := log 𝑥
log 𝑦 . In particular, Ψ𝑘 (𝑥, 𝑦) ∼ 𝜌𝑘 (𝑢)𝑥 as 𝑥 → ∞,

uniformly for 𝑦 ≥ 𝑥1/𝑈 .

(In [19], it is assumed that the ratio log 𝑥
log 𝑦 is fixed, rather than merely bounded. However,

the proof given actually establishes (2.2) in the full range of Proposition 2.1.)
The next result is a variant of Theorem 1.1 where we require that 𝑃𝑘 (𝑛) be bounded

below by a fixed power of 𝑥.

Proposition 2.2 Fix positive integers 𝑘 , 𝑏, and 𝐷 with 𝑏 ≥ 2. Fix real numbers 𝐴 ≥ 1,
𝑈 ≥ 1, and fix a real number𝑈′ > 𝑈. The number of 𝑛 ≤ 𝑥 for which 𝑃𝑘 (𝑛) ≡ 𝑎 (mod 𝑞),
𝑃𝑘 (𝑛) begins with the digits of 𝐷 in base 𝑏, and 𝑃𝑘 (𝑛) ∈ (𝑥1/𝑈′

, 𝑦] , is

1
𝜙(𝑞)

log(1 + 𝐷−1)
log 𝑏

(𝜌𝑘 (𝑢) − 𝜌𝑘 (𝑈′))𝑥 + 𝑜(𝑥/𝜙(𝑞)),

where 𝑢 := log 𝑥
log 𝑦 , where 𝑥, 𝑦 → ∞ with 𝑦 ≥ 𝑥1/𝑈 , and where 𝑎 mod 𝑞 is a coprime residue

class with 𝑞 ≤ (log 𝑥)𝐴.

The proof of Proposition 2.2 requires two classical results from the theory of primes
in arithmetic progressions. Let 𝜋(𝑥; 𝑞, 𝑎) denote the count of primes 𝑝 ≤ 𝑥 with 𝑝 ≡ 𝑎

(mod 𝑞).

Proposition 2.3 (Brun–Titchmarsh) If 𝑎 and 𝑞 are coprime integers with 0 < 2𝑞 ≤ 𝑥, then

𝜋(𝑥; 𝑞, 𝑎) ≪ 1
𝜙(𝑞)

𝑥

log(𝑥/𝑞) .

Here the implied constant is absolute.

Proposition 2.4 (Siegel–Walfisz) Fix a real number 𝐴 > 0. If 𝑎, 𝑞 are coprime integers with
1 ≤ 𝑞 ≤ (log 𝑥)𝐴, and 𝑥 ≥ 3, then

𝜋(𝑥; 𝑞, 𝑎) = 1
𝜙(𝑞)

∫ 𝑥

2

1
log 𝑡

d𝑡 +𝑂𝐴(𝑥 exp(−𝐶
√︁
log 𝑥)).

Here 𝐶 is a certain absolute constant.

For proofs of these results, see [23, Theorem 3.9, p. 90] and [23, Corollary 11.21, p.
382].

Proof First note that we can (and will) always assume that 𝑦 ≤ 𝑥, since the cases when
𝑦 > 𝑥 are covered by the case 𝑦 = 𝑥.

By a standard compactness argument, when proving Proposition 2.2 we may assume
that 𝑢 =

log 𝑥
log 𝑦 is fixed. To see this, suppose Proposition 2.2 holds when 𝑢 is fixed but
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Benford behavior of large prime factors 5

does not hold in general. Then for some 𝜖 > 0, there are choices of 𝑥, 𝑦, 𝑎 and 𝑞 with 𝑥
arbitrarily large, 𝑥 ≥ 𝑦 ≥ 𝑥1/𝑈 , and 𝑞 ≤ (log 𝑥)𝐴 for which our count exceeds

1
𝜙(𝑞)

log(1 + 𝐷−1)
log 𝑏

(𝜌𝑘 (𝑢) − 𝜌𝑘 (𝑈′) + 𝜖)𝑥, (2.3)

or there are such choices of 𝑥, 𝑦, 𝑎 and 𝑞 for which our count falls below

1
𝜙(𝑞)

log(1 + 𝐷−1)
log 𝑏

(𝜌𝑘 (𝑢) − 𝜌𝑘 (𝑈′) − 𝜖)𝑥.

We will assume we are in the former case; the latter can be handled analogously. By
compactness, we may choose 𝑥, 𝑦, 𝑎, 𝑞 so that 𝑢 → 𝑢0, for some 𝑢0 ∈ [1,𝑈].

We first rule out 𝑢0 = 1. As 𝑦 ≤ 𝑥, the condition 𝑃𝑘 (𝑛) ≤ 𝑦 is always at least as
strict as the condition 𝑃𝑘 (𝑛) ≤ 𝑥 (which holds vacuously, as we are counting numbers
𝑛 ≤ 𝑥). Moreover, the 𝑢 = 1 case of Proposition 2.2 is true by hypothesis. Putting these
observations together, we see that the count of 𝑛 corresponding to 𝑥, 𝑦, 𝑎, 𝑞 is at most

1
𝜙(𝑞)

log(1 + 𝐷−1)
log 𝑏

(𝜌𝑘 (1) − 𝜌𝑘 (𝑈′) + 𝑜(1))𝑥.

But if 𝑢 → 1, then 𝜌𝑘 (𝑢) → 𝜌𝑘 (1), and this estimate is eventually incompatible with
(2.3).

Thus, it must be that 𝑢0 > 1. Here wemay obtain a contradiction by a slightly tweaked
argument. For any fixed 𝛿 > 0,we eventually have𝑢 > 𝑢0−𝛿. So the condition𝑃𝑘 (𝑛) ≤ 𝑦

is eventually stricter than the condition 𝑃𝑘 (𝑛) ≤ 𝑥1/(𝑢0−𝛿 ) . If 𝛿 is fixed sufficiently small
(in terms of 𝜖 ), the 𝑢 = 𝑢0−𝛿 case of Proposition 2.2 gives an estimate contradicting (2.3).

We thus turn to proving the modified statement with the extra condition that 𝑢 is
fixed.

For each nonnegative integer 𝑗 , let I𝑗 denote the interval

I𝑗 := [𝑢 𝑗 , 𝑣 𝑗 ), where 𝑢 𝑗 := 𝐷𝑏 𝑗 , 𝑣 𝑗 := (𝐷 + 1)𝑏 𝑗 . (2.4)

Then our count of 𝑛 is given by∑︁
𝑗≥0

∑︁
𝑝∈I𝑗∩(𝑥1/𝑈

′
,𝑦 ]

𝑝≡𝑎 (mod 𝑞)

∑︁
𝑛≤𝑥

𝑃𝑘 (𝑛)=𝑝

1. (2.5)

Let J be the collection of nonnegative integers 𝑗 with I𝑗 ⊂ (𝑥1/𝑈′
, 𝑦/exp(

√︁
log 𝑥)).

Then at the cost of another error of size 𝑜(𝑥/𝜙(𝑞)), we can restrict the triple sum in (2.5)
to 𝑗 ∈ J . Indeed, the 𝑛 counted by the triple sum above that are excluded by this restric-
tion have either a prime divisor in 𝑃 := (𝑥1/𝑈′

, 𝑏𝑥1/𝑈
′ ] or in 𝑃′ := [𝑦/𝑏 exp(

√︁
log 𝑥), 𝑦] ,

and the number of such 𝑛 ≤ 𝑥 is at most

𝑥
∑︁

𝑝∈𝑃∪𝑃′

𝑝≡𝑎 (mod 𝑞)

1/𝑝 = 𝑜(𝑥/𝜙(𝑞)),

by partial summation and the Brun–Titchmarsh theorem (Proposition 2.3). We proceed
to estimate, for each 𝑗 ∈ J , the corresponding inner sums in (2.5) over 𝑝 and 𝑛.
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6 P. Pollack and A. Singha Roy

If 𝑝 is prime and 𝑃𝑘 (𝑛) = 𝑝, then 𝑛 = 𝑚𝑝 where 𝑚 ≤ 𝑥/𝑝, 𝑃𝑘 (𝑚) ≤ 𝑝, and
𝑃𝑘−1 (𝑚) ≥ 𝑝. The converse also holds. Thus, if 𝑗 ∈ J and 𝑝 ∈ I𝑗 ,∑︁

𝑛≤𝑥
𝑃𝑘 (𝑛)=𝑝

1 = Ψ𝑘 (𝑥/𝑝, 𝑝) − Ψ𝑘−1 (𝑥/𝑝, 𝑝 − 𝜖)

for (say) 𝜖 = 1
2 . Hence,∑︁

𝑝∈I𝑗
𝑝≡𝑎 (mod 𝑞)

∑︁
𝑛≤𝑥

𝑃𝑘 (𝑛)=𝑝

1 =
∑︁
𝑝∈I𝑗

𝑝≡𝑎 (mod 𝑞)

Ψ𝑘 (𝑥/𝑝, 𝑝) −
∑︁
𝑝∈I𝑗

𝑝≡𝑎 (mod 𝑞)

Ψ𝑘−1 (𝑥/𝑝, 𝑝 − 𝜖).

To continue, observe that for 𝑗 ∈ J ,∑︁
𝑝∈I𝑗

𝑝≡𝑎 (mod 𝑞)

Ψ𝑘 (𝑥/𝑝, 𝑝) −
1

𝜙(𝑞)

∫
I𝑗
Ψ𝑘 (𝑥/𝑡, 𝑡)

d𝑡
log 𝑡

=
∑︁

𝑢 𝑗≤𝑝<𝑣 𝑗
𝑝≡𝑎 (mod 𝑞)

∑︁
𝑛≤𝑥/𝑝

𝑃𝑘 (𝑛)≤𝑝

1 − 1
𝜙(𝑞)

∫ 𝑣 𝑗

𝑢 𝑗

∑︁
𝑛≤𝑥/𝑡

𝑃𝑘 (𝑛)≤𝑡

1
log 𝑡

d𝑡

=
∑︁

𝑛≤𝑥/𝑢 𝑗

©­­­«
∑︁

𝑚<𝑝≤𝑀
𝑝≡𝑎 (mod 𝑞)

1 − 1
𝜙(𝑞)

∫ 𝑀

𝑚

d𝑡
log 𝑡

+𝑂 (1)
ª®®®¬ ,

where 𝑚 and 𝑀 are defined by

𝑚 := max{𝑢 𝑗 , 𝑃𝑘 (𝑛)}, 𝑀 := min{𝑥/𝑛, 𝑣 𝑗 },

and where the last displayed sum on 𝑛 is understood to be extended only over those
𝑛 ≤ 𝑥/𝑢 𝑗 for which 𝑚 ≤ 𝑀 . By the Siegel–Walfisz theorem (Proposition 2.4),∑︁

𝑚<𝑝≤𝑀
𝑝≡𝑎 (mod 𝑞)

1 − 1
𝜙(𝑞)

∫ 𝑀

𝑚

d𝑡
log 𝑡

≪ 𝑀 exp(−𝐶
√︁
log𝑀) ≪ 𝑥

𝑛
exp(−𝐶′√︁log 𝑥).

where 𝐶 is an absolute positive constant and 𝐶′ = 𝐶/
√
𝑈′. (This use of the Siegel–

Walfisz theorem explains the restriction 𝑞 ≤ (log 𝑥)𝐴 in the statement of Proposition
2.2.) Putting this back in above and summing on 𝑛, we find that (for large 𝑥)∑︁

𝑝∈I𝑗
𝑝≡𝑎 (mod 𝑞)

Ψ𝑘 (𝑥/𝑝, 𝑝)−
1

𝜙(𝑞)

∫
I𝑗
Ψ𝑘 (𝑥/𝑡, 𝑡)

d𝑡
log 𝑡

≪ 𝑥 log 𝑥 ·exp(−𝐶′√︁log 𝑥)+ 𝑥

𝑢 𝑗

.

(2.6)
A nearly identical calculation gives the same bound for the difference∑︁

𝑝∈I𝑗
𝑝≡𝑎 (mod 𝑞)

Ψ𝑘−1 (𝑥/𝑝, 𝑝 − 𝜖) − 1
𝜙(𝑞)

∫
I𝑗
Ψ𝑘−1 (𝑥/𝑡, 𝑡)

d𝑡
log 𝑡

.
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Since 𝑢 𝑗+1/𝑢 𝑗 ≥ 2 and the smallest 𝑗 ∈ J has 𝑢 𝑗 ≥ 𝑥1/𝑈
′ , the expression on the right-

hand side of (2.6), when summed on 𝑗 ∈ J , is≪ 𝑥(log 𝑥)2 exp(−𝐶′√︁log 𝑥) + 𝑥1−1/𝑈
′ ,

and this is certainly 𝑜(𝑥/𝜙(𝑞)). As a consequence, instead of our original triple sum (2.5),
it is enough to estimate

𝑥

𝜙(𝑞)
∑︁
𝑗∈J

1
𝑥

∫
I𝑗
(Ψ𝑘 (𝑥/𝑡, 𝑡) − Ψ𝑘−1 (𝑥/𝑡, 𝑡))

d𝑡
log 𝑡

. (2.7)

We now apply Proposition 2.1, noting that for each 𝑡 ∈ I𝑗 , we have
log (𝑥/𝑡 )

log 𝑡 =

log 𝑥
log 𝑡 − 1 ≤ 𝑈′ − 1 as well as log(𝑥/𝑡) ≥ log(𝑦/𝑡) ≥

√︁
log 𝑥. We find that

1
𝑥

∫
I𝑗
(Ψ𝑘 (𝑥/𝑡, 𝑡) − Ψ𝑘−1 (𝑥/𝑡, 𝑡))

d𝑡
log 𝑡

=

∫
I𝑗

1
𝑡

(
𝜌𝑘

(
log 𝑥
log 𝑡

− 1
)
− 𝜌𝑘−1

(
log 𝑥
log 𝑡

− 1
))

d𝑡
log 𝑡

+𝑂

(∫
I𝑗

1
𝑡
√︁
log 𝑥

d𝑡
log 𝑡

)
.

The error term, when summed on 𝑗 ∈ J , is≪ 1√
log 𝑥

∫ 𝑥

2
d𝑡

𝑡 log 𝑡 ≪ log log 𝑥/
√︁
log 𝑥, and

so is 𝑜(1); inserted back into (2.7), we see this gives rise to a final error of size 𝑜(𝑥/𝜙(𝑞))
in our count, which is acceptable. To deal with the remaining integrals, we write 𝑢 𝑗 = 𝑥𝜇 𝑗

and 𝑣 𝑗 = 𝑥𝜈 𝑗 and make the change of variables 𝛼 =
log 𝑥
log 𝑡 . Then d𝛼 = − log 𝑥

𝑡 (log 𝑡 )2 d𝑡 , so that
d𝑡

𝑡 log 𝑡 = − d𝛼
𝛼

and

∑︁
𝑗∈J

∫
I𝑗

1
𝑡

(
𝜌𝑘

(
log 𝑥
log 𝑡

− 1
)
− 𝜌𝑘−1

(
log 𝑥
log 𝑡

− 1
))

d𝑡
log 𝑡

=
∑︁
𝑗∈J

∫ 1/𝜈 𝑗

1/𝜇 𝑗

− 𝜌𝑘 (𝛼 − 1) − 𝜌𝑘−1 (𝛼 − 1)
𝛼

d𝛼.

From (2.1), − 𝜌𝑘 (𝛼−1)−𝜌𝑘−1 (𝛼−1)
𝛼

= 𝜌′
𝑘
(𝛼), so that this last sum on 𝑗 simplifies to∑

𝑗∈J (𝜌𝑘 (1/𝜈 𝑗 ) − 𝜌𝑘 (1/𝜇 𝑗 )). Now, following [19], we introduce the notation 𝐹𝑘 (𝛽) =
𝜌𝑘 (1/𝛽). By the mean value theorem,

𝜌𝑘 (1/𝜈 𝑗 ) − 𝜌𝑘 (1/𝜇 𝑗 ) = 𝐹𝑘 (𝜈 𝑗 ) − 𝐹𝑘 (𝜇 𝑗 )

= (𝜈 𝑗 − 𝜇 𝑗 )𝐹′
𝑘 (𝑡 𝑗 ) =

log(1 + 𝐷−1)
log 𝑥

𝐹′
𝑘 (𝑡 𝑗 )

for some 𝑡 𝑗 ∈ (𝜇 𝑗 , 𝜈 𝑗 ). Thus,∑︁
𝑗∈J

(𝜌𝑘 (1/𝜈 𝑗 ) − 𝜌𝑘 (1/𝜇 𝑗 )) =
log(1 + 𝐷−1)

log 𝑏

∑︁
𝑗∈J

𝐹′
𝑘 (𝑡 𝑗 ) ·

log 𝑏
log 𝑥

=
log(1 + 𝐷−1)

log 𝑏

∑︁
𝑗∈J

𝐹′
𝑘 (𝑡 𝑗 ) · (𝜇 𝑗+1 − 𝜇 𝑗 ).
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Since each 𝑡 𝑗 ∈ (𝜇 𝑗 , 𝜈 𝑗 ) ⊂ (𝜇 𝑗 , 𝜇 𝑗+1), the final sum on 𝑗 is essentially a Riemann sum.
To make this precise, let 𝑗0 = minJ and 𝑗1 = maxJ . Then

𝐹′
𝑘 (1/𝑈

′)
(
𝜇 𝑗0 −

1
𝑈′

)
+

∑︁
𝑗∈J

𝐹′
𝑘 (𝑡 𝑗 ) (𝜇 𝑗+1 − 𝜇 𝑗 ) + 𝐹′

𝑘 (1/𝑢)
(
1
𝑢
− 𝜇 𝑗1+1

)

is a genuine Riemann sum for
∫ 1/𝑢
1/𝑈′ 𝐹

′
𝑘
(𝑡) d𝑡, whose mesh size goes to 0 as 𝑥 → ∞.

But the terms we have added to the sum on 𝑗 ∈ J contribute 𝑜(1), as 𝑥 → ∞. It
follows that

∑
𝑗∈J 𝐹′

𝑘
(𝑡 𝑗 ) (𝜇 𝑗+1 − 𝜇 𝑗 ) →

∫ 1/𝑢
1/𝑈′ 𝐹

′
𝑘
(𝑡) d𝑡 = 𝐹𝑘 (1/𝑢) − 𝐹𝑘 (1/𝑈′) =

𝜌𝑘 (𝑢) − 𝜌𝑘 (𝑈′). Collecting estimates completes the proof of the proposition in the case
when 𝑢 is fixed. ■

To deduce Theorem 1.1, it remains to handle the contribution from 𝑛 with 𝑃𝑘 (𝑛) ≤
𝑥1/𝑈

′ .
The following lemma bounds the number of integers with a large smooth divisor. A

proof is sketched in Exercise 293 on p. 554 of [26], with a solution in [25, pp. 305–306].
By the 𝑦-smooth part of a number 𝑛, we mean

∏
𝑝𝑒 ∥𝑛
𝑝≤𝑦

𝑝𝑒 .

Lemma 2.5 For all 𝑥 ≥ 𝑧 ≥ 𝑦 ≥ 2, the number of 𝑛 ≤ 𝑥 whose 𝑦-smooth part exceeds 𝑧 is
𝑂

(
𝑥 exp

(
− 1

2
log 𝑧
log 𝑦

))
.

Lemma 2.6 Fix a positive integer 𝑘 and a real number 𝐵 ≥ 1.

• When 𝑘 = 1, the number of 𝑛 ≤ 𝑥 with 𝑃𝑘 (𝑛) ≤ 𝑦 and 𝑃𝑘 (𝑛) ≡ 𝑎 (mod 𝑞) is

≪ 𝑥

𝜙(𝑞) exp
(
−1
8
𝑢

)
+ 𝑥

(
log(3𝑞)
log 𝑥

)𝐵
· exp

(
−1
8
𝑢

)
,

uniformly for 𝑥 ≥ 𝑦 ≥ 3 with 𝑦 ≤ 𝑥1/4, and 𝑎 mod 𝑞 any coprime residue class with
𝑞 ≤ 𝑥1/8. As usual, 𝑢 =

log 𝑥
log 𝑦 .

• When 𝑘 ≥ 2, the number of 𝑛 ≤ 𝑥 with 𝑃𝑘 (𝑛) ≤ 𝑦 and 𝑃𝑘 (𝑛) ≡ 𝑎 (mod 𝑞) is

≪ 𝑥

log 𝑥
(log log 𝑥)𝑘−2 log (3𝑞) + 𝑥

𝜙(𝑞)
(log 𝑢)𝑘−2

𝑢
,

uniformly in the same range of 𝑥, 𝑦, and 𝑞.

Proof We will restrict attention to 𝑛 > 𝑥3/4; this is permissible, since 𝑥3/4 is dwarfed
by either of our target upper bounds. We let 𝑝 = 𝑃𝑘 (𝑛) and write 𝑛 = 𝑝1 · · · 𝑝𝑘−1𝑝𝑠,
where 𝑝1 ≥ 𝑝2 ≥ · · · ≥ 𝑝𝑘−1 ≥ 𝑝 and 𝑃(𝑠) ≤ 𝑝.

We first showwe can assume 𝑠 ≤ 𝑥1/2. Indeed, suppose 𝑠 > 𝑥1/2. Then, with𝑚 = 𝑛/𝑝,
we have that 𝑚 ≤ 𝑥/𝑝 and that the 𝑝-smooth part of 𝑚 exceeds 𝑥1/2. Applying Lemma
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2.5, we see that for every 𝑝 ≤ 𝑦, the number of corresponding 𝑚 is

≪ 𝑥

𝑝
exp(−1

4
log 𝑥
log 𝑝

) ≪ 𝑥

𝑝
exp(−1

8
log 𝑥
log 𝑝

) · exp(−1
8
log 𝑥
log 𝑝

)

≪ 𝑥

(log 𝑥)𝐵
(log 𝑝)𝐵

𝑝
exp(−1

8
log 𝑥
log 𝑝

)

≪ 𝑥

(log 𝑥)𝐵
(log 𝑝)𝐵

𝑝
exp(−1

8
𝑢).

Now we sum on 𝑝 ≤ 𝑦 with 𝑝 ≡ 𝑎 (mod 𝑞). We split the sum at 3𝑞2, using
Mertens’ theorem to bound the first half and the Brun–Titchmarsh theorem (with partial
summation) for the second; this gives∑︁

𝑝≤𝑦
𝑝≡𝑎 (mod 𝑞)

(log 𝑝)𝐵
𝑝

≤
∑︁
𝑝≤3𝑞2

(log 𝑝)𝐵
𝑝

+
∑︁

3𝑞2<𝑝≤𝑦
𝑝≡𝑎 (mod 𝑞)

(log 𝑝)𝐵
𝑝

≪ (log(3𝑞))𝐵−1
∑︁
𝑝≤3𝑞2

log 𝑝
𝑝

+ 1
𝜙(𝑞) (log 𝑦)

𝐵

≪ (log (3𝑞))𝐵 + (log 𝑦)𝐵
𝜙(𝑞) .

Substituting this estimate into the previous display, we conclude that the 𝑛 with 𝑠 > 𝑥1/2

contribute

≪ 𝑥

𝑢𝐵𝜙(𝑞) exp(−
1
8
𝑢) + 𝑥

(
log(3𝑞)
log 𝑥

)𝐵
· exp(−1

8
𝑢)

≪ 𝑥

𝜙(𝑞) exp(−
1
8
𝑢) + 𝑥

(
log(3𝑞)
log 𝑥

)𝐵
· exp(−1

8
𝑢). (2.8)

This is already enough to settle the 𝑘 = 1 case of Lemma 2.6. Indeed, in that case
𝑛 = 𝑝𝑠, where 𝑝 = 𝑃(𝑛), and 𝑠 = 𝑛/𝑃(𝑛) ≥ 𝑛/𝑦 > 𝑥3/4/𝑦 ≥ 𝑥1/2.

Now suppose that 𝑘 ≥ 2 and that 𝑠 ≤ 𝑥1/2. Then

𝑝𝑘1 ≥ 𝑝1 · · · 𝑝𝑘−1𝑝 = 𝑛/𝑠 > 𝑥3/4/𝑥1/2 = 𝑥1/4,

so that 𝑝1 ≥ 𝑥1/4𝑘 . Hence, given 𝑝2, . . . , 𝑝𝑘−1, 𝑝, and 𝑠, the number of possibilities for 𝑝1
(and thus also for 𝑛) is≪ 𝜋(𝑥/𝑝2 · · · 𝑝𝑘−1𝑝𝑠) ≪ 𝑥/𝑝2 · · · 𝑝𝑘−1𝑝𝑠 log 𝑥. Observe that
𝑠 is 𝑝-smooth, while each 𝑝𝑖 ∈ [𝑝, 𝑥]. We have that

∑
𝑠 𝑝-smooth 1/𝑠 =

∏
prime ℓ≤𝑝 (1 −

1/ℓ)−1 ≪ log 𝑝. Also (when 𝑝 ≤ 𝑦),
∑

𝑝≤𝑝𝑖≤𝑥 1/𝑝𝑖 ≪ log log 𝑥
log 𝑝 . Hence, the number of

possibilities for 𝑛 given 𝑝 is

≪ 𝑥

log 𝑥

(
log

log 𝑥
log 𝑝

) 𝑘−2 log 𝑝
𝑝

.

Wenow sumon 𝑝 ≤ 𝑦with 𝑝 ≡ 𝑎 (mod 𝑞). Estimating crudely, we see that the 𝑝 ≤ 3𝑞2
contribute

≪ 𝑥

log 𝑥
(log log 𝑥)𝑘−2 log (3𝑞).
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To handle the remaining contribution in the case when 𝑦 > 3𝑞2, we apply partial
summation; by Brun–Titchmarsh,

∑︁
3𝑞2<𝑝≤𝑦

𝑝≡𝑎 (mod 𝑞)

(
log

log 𝑥
log 𝑝

) 𝑘−2 log 𝑝
𝑝

≪ 1
𝜙(𝑞) (log 𝑢)

𝑘−2 −
∫ 𝑦

3𝑞2
𝜋(𝑡; 𝑞, 𝑎)d

((
log

log 𝑥
log 𝑡

) 𝑘−2 log 𝑡
𝑡

)
.

Since
(
log log 𝑥

log 𝑡

) 𝑘−2 log 𝑡
𝑡

is a decreasing function of 𝑡 on [3𝑞2, 𝑦] , the bound 𝜋(𝑡; 𝑞, 𝑎) ≪
𝑡/𝜙(𝑞) log 𝑡 implies that

−
∫ 𝑦

3𝑞2
𝜋(𝑡; 𝑞, 𝑎) d

((
log

log 𝑥
log 𝑡

) 𝑘−2 log 𝑡
𝑡

)
≪ − 1

𝜙(𝑞)

∫ 𝑦

3𝑞2

𝑡

log 𝑡
d

((
log

log 𝑥
log 𝑡

) 𝑘−2 log 𝑡
𝑡

)
.

Integrating by parts again,∫ 𝑦

3𝑞2

𝑡

log 𝑡
d

((
log

log 𝑥
log 𝑡

) 𝑘−2 log 𝑡
𝑡

)
= −

∫ 𝑦

3𝑞2

(
log

log 𝑥
log 𝑡

) 𝑘−2 log 𝑡
𝑡

d
(

𝑡

log 𝑡

)
+𝑂 ((log log 𝑥)𝑘−2)

≪
∫ 𝑦

3𝑞2

(
log

log 𝑥
log 𝑡

) 𝑘−2 d𝑡
𝑡
+𝑂 ((log log 𝑥)𝑘−2).

Making the change of variables 𝛼 =
log 𝑡
log 𝑥 ,∫ 𝑦

3𝑞2

(
log

log 𝑥
log 𝑡

) 𝑘−2 d𝑡
𝑡

≤ log 𝑥
∫ 1/𝑢

0
(log(1/𝛼))𝑘−2 d𝛼 ≪ log 𝑥 · 1

𝑢
(log 𝑢)𝑘−2.

(In the last step, we use that
∫ 𝑧

0 (log(1/𝛼))𝑘−2 d𝛼 has the form 𝑧 ·𝑄(log(1/𝑧)), where𝑄
is a monic polynomial with degree 𝑘 − 2.) Collecting estimates, we conclude that when
𝑘 ≥ 2, the 𝑛 with 𝑠 ≤ 𝑥1/2 make a contribution

≪ 𝑥

log 𝑥
(log log 𝑥)𝑘−2 log (3𝑞) + 𝑥

𝜙(𝑞)
(log 𝑢)𝑘−2

𝑢
.

Since this upper bound dominates the contribution (2.8) from 𝑛 with 𝑠 > 𝑥1/2, the 𝑘 ≥ 2
cases of Lemma 2.6 follow. ■
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Proof Fix 𝜂 > 0. We will show that the count of 𝑛 in question is eventually2 larger than
1

𝜙 (𝑞)
log(1+𝐷−1 )

log 𝑏 (𝜌𝑘 (𝑢) − 𝜂) 𝑥 and eventually smaller than 1
𝜙 (𝑞)

log(1+𝐷−1 )
log 𝑏 (𝜌𝑘 (𝑢) + 𝜂) 𝑥,

and hence is ∼ 1
𝜙 (𝑞)

log(1+𝐷−1 )
log 𝑏 𝜌𝑘 (𝑢)𝑥. Since Ψ𝑘 (𝑥, 𝑦) ∼ 𝜌𝑘 (𝑢)𝑥, Theorem 1.1 then

follows.
The required lower bound is immediate from Proposition 2.2: It suffices to apply that

Proposition with𝑈′ fixed large enough that 𝜌𝑘 (𝑈′) < 𝜂.
We turn now to the upper bound. Apply Lemma 2.6, taking 𝐵 = 𝐴 + 1 in the case

𝑘 = 1. That lemma implies the existence of a constant𝐶 , depending only on 𝑘 (and on 𝐴,
if 𝑘 = 1) such that the following holds: For any fixed𝑈′ ≥ 4, the number of 𝑛 ≤ 𝑥 with
𝑃𝑘 (𝑛) ≡ 𝑎 (mod 𝑞) and 𝑃𝑘 (𝑛) ≤ 𝑥1/𝑈

′ is eventually at most 𝐶 𝑥
𝜙 (𝑞)

(log𝑈′ )𝑘−2
𝑈′ . If we

choose𝑈′ > 𝑈 so large that𝐶 (log𝑈′ )𝑘−2
𝑈′ < 𝜂

log(1+𝐷−1 )
log 𝑏 , the desired upper bound then

follows from Proposition 2.2. ■

3 Benford’s law for the sum of the prime factors: Proof of
Theorem 1.2

For multiplicative functions 𝐹, 𝐺 taking values on or inside the complex unit circle, we
define (following Granville and Soundararajan [13]) the distance between 𝐹 and 𝐺 , up to 𝑥,
by

D(𝐹, 𝐺; 𝑥) =

√√√∑︁
𝑝≤𝑥

1 − Re(𝐹 (𝑝)𝐺 (𝑝))
𝑝

.

The following statement (Corollary 4.12 on p. 494 of [26]), due to Montgomery and
Tenenbaum, makes quantitatively precise a result of Halász [14] that 𝐹 has mean value 0
unless 𝐹 “pretends” to be 𝑛𝑖𝑡 for some 𝑡.

Proposition 3.1 Let 𝐹 be a multiplicative function with |𝐹 (𝑛) | ≤ 1 for all 𝑛. For 𝑥 ≥ 2 and
𝑇 ≥ 2, let

𝑚(𝑥, 𝑇) = min
|𝑡 | ≤𝑇
D(𝐹, 𝑛𝑖𝑡 ; 𝑥)2.

Then ∑︁
𝑛≤𝑥

𝐹 (𝑛) ≪ 𝑥
1 + 𝑚(𝑥, 𝑇)
e𝑚(𝑥,𝑇 ) + 𝑥

𝑇
.

Here the implied constant is absolute.

When 𝐹 is real-valued, the following (slightly weakened version of a) theorem of Hall
and Tenenbaum [16] allows us to consider onlyD(𝐹, 1; 𝑥).

2Here and later in this proof, “eventually” refers to the limit as taken in Theorem 1.1. That is, a statement
holds eventually if there is a real number𝑇 such that the statement is true whenever 𝑥, 𝑦 ≥ 𝑇 , with 𝑦 ≥ 𝑥1/𝑈 ,
andwith 𝑎 mod 𝑞 a coprime residue classmodulo𝑞 ≤ log 𝑥

(log log 𝑥)𝑘−1+𝜖 or, when 𝑘 = 1,modulo𝑞 ≤ (log 𝑥 )𝐴.
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Proposition 3.2 Let 𝐹 be a real-valued multiplicative function with |𝐹 (𝑛) | ≤ 1 for all 𝑛.
Then ∑︁

𝑛≤𝑥

𝐹 (𝑛) ≪ 𝑥 exp(−0.3 · D(𝐹, 1; 𝑥)2).

Lemma 3.3 Fix 𝛿 > 0 and fix𝑈 ≥ 1. For all large 𝑥, the number of 𝑛 ≤ 𝑥 with 𝑃(𝑛) ≤ 𝑦

and 𝐴(𝑛) ≡ 𝑎 (mod 𝑞) is

Ψ(𝑥, 𝑦)
𝑞

+𝑂 (𝑥/(log 𝑥) 1
2 −𝛿),

for all 𝑥 ≥ 𝑦 ≥ 𝑥1/𝑈 and residue classes 𝑎 mod 𝑞 with 𝑞 ≤ log 𝑥.

Proof By the orthogonality relations for additive characters,∑︁
𝑛≤𝑥

𝑃 (𝑛)≤𝑦
𝐴(𝑛)≡𝑎 (mod 𝑞)

1 =
∑︁
𝑛≤𝑥

1𝑃 (𝑛)≤𝑦1𝐴(𝑛)≡𝑎 (mod 𝑞)

=
∑︁
𝑛≤𝑥

1𝑃 (𝑛)≤𝑦
©­« 1𝑞

∑︁
𝑟 mod 𝑞

e2𝜋𝑖𝑟 (𝐴(𝑛)−𝑎)/𝑞ª®¬
=

Ψ(𝑥, 𝑦)
𝑞

+ 1
𝑞

∑︁
𝑟 mod 𝑞

𝑟.0 (mod 𝑞)

e−2𝜋𝑖𝑎𝑟/𝑞
∑︁
𝑛≤𝑥

1𝑃 (𝑛)≤𝑦e2𝜋𝑖𝑟 𝐴(𝑛)/𝑞 .

Hence, it suffices to show that∑︁
𝑛≤𝑥

1𝑃 (𝑛)≤𝑦e2𝜋𝑖𝑟 𝐴(𝑛)/𝑞 = 𝑂 (𝑥/(log 𝑥)1/2−𝛿) (3.1)

for each nonzero residue class 𝑟 mod 𝑞.
Write 𝑟/𝑞 = 𝑟 ′/𝑞′ in lowest terms, so that 𝑞′ > 1. If 𝑞′ = 2, then 𝑟 ′ = 1, and 𝐹 (𝑛) :=

1𝑃 (𝑛)≤𝑦e2𝜋𝑖𝑟 𝐴(𝑛)/𝑞 = 1𝑃 (𝑛)≤𝑦 (−1)𝐴(𝑛) is a real-valued multiplicative function of
modulus at most 1. Moreover, D(𝐹, 1; 𝑥)2 ≥ ∑

2<𝑝≤𝑦 2/𝑝 = 2 log log 𝑥 + 𝑂 (1). By
Proposition 3.2, the left-hand side of (3.1) is 𝑂 (𝑥/(log 𝑥)0.6), which is more than we
need. So we may assume 𝑞′ > 2.

When 𝑞′ > 2, we apply Proposition 3.1 taking 𝑇 = log 𝑥. Let 𝑡 be any real number
with |𝑡 | ≤ 𝑇 . We set 𝑧 = exp((log 𝑥) 𝛿) and start from the lower bound

D(𝐹, 𝑛𝑖𝑡 ; 𝑥)2 ≥
∑︁

𝑧<𝑝≤𝑦

1 − Re(e2𝜋𝑖𝑟 ′ 𝑝/𝑞′
𝑝−𝑖𝑡 )

𝑝
. (3.2)

To estimate the right-hand sum, we split the range of summation into blocks on which
𝑝−𝑖𝑡 is essentially constant.

Cover (𝑧, 𝑦] with intervalsI = (𝑢, 𝑢(1+1/(log 𝑥)2)] , allowing the rightmost interval
to jut out slightly past 𝑦 but no further than 𝑦 + 𝑦/(log 𝑥)2. On each interval I, every

2022/10/05 10:56



Benford behavior of large prime factors 13

𝑝 ∈ I satisfies |𝑡 log 𝑝 − 𝑡 log 𝑢 | ≤ |𝑡 |/(log 𝑥)2 ≤ 1/log 𝑥, so that

|𝑝−𝑖𝑡 − 𝑢−𝑖𝑡 | =
����∫ 𝑡 log 𝑝

𝑡 log𝑢
exp(−𝑖𝜃) 𝑑𝜃

���� ≤ 1/log 𝑥,

and∑︁
𝑝∈I

1 − Re(e2𝜋𝑖𝑟 ′ 𝑝/𝑞′
𝑝−𝑖𝑡 )

𝑝
=

∑︁
𝑝∈I

1 − Re(e2𝜋𝑖𝑟 ′ 𝑝/𝑞′
𝑢−𝑖𝑡 )

𝑝
+𝑂 ©­« 1

log 𝑥

∑︁
𝑝∈I

1
𝑝

ª®¬ . (3.3)
The error term when summed over all intervals I will be𝑂 (log log 𝑥/log 𝑥), which is
negligible for us. So we focus on the main term. Observe that 𝑝 = (1 + 𝑜(1))𝑢 for every
𝑝 ∈ I. (Here and below, asymptotic notation refers to the behavior as 𝑥 → ∞.) Thus,∑︁

𝑝∈I

1 − Re(e2𝜋𝑖𝑟 ′ 𝑝/𝑞′
𝑢−𝑖𝑡 )

𝑝
≳

1
𝑢

∑︁
𝑝∈I

(1 − Re(e2𝜋𝑖𝑟 ′ 𝑝/𝑞′
𝑢−𝑖𝑡 ))

≳
1
𝑢

∑︁
𝑎′ mod 𝑞′

gcd(𝑎′ ,𝑞′ )=1

(1 − Re(e2𝜋𝑖𝑟 ′𝑎′/𝑞′
𝑢−𝑖𝑡 ))𝜋(I; 𝑞′, 𝑎′),

where 𝜋(I; 𝑞′, 𝑎′) denotes the number of primes 𝑝 ∈ I with 𝑝 ≡ 𝑎′ (mod 𝑞′). By the
Siegel–Walfisz theorem [26, Theorem 8.17, p. 376], 𝜋(I; 𝑞′, 𝑎′) ∼ 1

𝜙 (𝑞′ ) 𝜋(I), where
𝜋(I) is the total count of primes belonging to I. Thus, the above right-hand side is

≳
𝜋(I)
𝜙(𝑞′)𝑢

∑︁
𝑎′ mod 𝑞′

gcd(𝑎′ ,𝑞′ )=1

(1 − Re(e2𝜋𝑖𝑟 ′𝑎′/𝑞′
𝑢−𝑖𝑡 )) = 𝜋(I)

𝜙(𝑞′)𝑢 (𝜙(𝑞
′) − Re(𝜇(𝑞′)𝑢−𝑖𝑡 ))

≥ 1
2
𝜋(I)/𝑢 ≳ 1

2

∑︁
𝑝∈I

1
𝑝
; (3.4)

here we use that
∑

𝑎′ (mod 𝑞′ ) , gcd(𝑎′ ,𝑞′ )=1 e2𝜋𝑖𝑎
′𝑟 ′/𝑞′

= 𝜇(𝑞′) (see, for example, [17,
Theorem 272, p. 309]) and that 𝜙(𝑞′) −Re(𝜇(𝑞′)𝑢−𝑖𝑡 ) ≥ 𝜙(𝑞′) −1 ≥ 1

2𝜙(𝑞
′), as 𝑞′ > 2.

Combining the last two displays and summing on I,∑︁
I

∑︁
𝑝∈I

1 − Re(e2𝜋𝑖𝑟 ′ 𝑝/𝑞′
𝑢−𝑖𝑡 )

𝑝
≳

1
2

∑︁
I

∑︁
𝑝∈I

1
𝑝
≥ 1

2

∑︁
𝑧<𝑝≤𝑦

1
𝑝
≳

1
2
(1 − 𝛿) log log 𝑥.

From (3.3) (and the immediately following remark about the error term), the same lower
bound holds for

∑
I
∑

𝑝∈I
1−Re(e2𝜋𝑖𝑟′ 𝑝/𝑞′ 𝑝−𝑖𝑡 )

𝑝
. This double sum essentially coincides

with the right-hand side of (3.2), except for possibly including contributions from a few
values of 𝑝 > 𝑦. But those contributions are𝑂 (1), in fact≪ ∑

𝑦<𝑝<𝑦+𝑦/(log 𝑥 )2 1/𝑝 ≪
1/(log 𝑥)2. Thus,D(𝐹, 𝑛𝑖𝑡 ; 𝑥)2 ≳ 1

2 (1 − 𝛿) log log 𝑥. In particular,D(𝐹, 𝑛𝑖𝑡 ; 𝑥)2 ≥ ( 12 −9
10𝛿) log log 𝑥 once 𝑥 is sufficiently large (in terms of 𝛿 and𝑈). Since this lower bound
holds uniformly in 𝑡 with |𝑡 | ≤ 𝑇 , the desired inequality (3.1) follows from Proposition
3.1. ■

Using Lemma 3.3, we can establish the following 𝐴(𝑛)-analogue of Proposition 2.2.
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Proposition 3.4 Fix positive integers 𝑘, 𝐷 , and 𝑏 with 𝑏 ≥ 2. Fix real numbers𝑈′ > 𝑈 ≥ 1,
and fix 𝜖 > 0. The number of 𝑛 ≤ 𝑥 for which 𝐴(𝑛) ≡ 𝑎 (mod 𝑞), 𝑃(𝑛) begins with the
digits of 𝐷 in base 𝑏, and 𝑃(𝑛) ∈ (𝑥1/𝑈′

, 𝑦] is

1
𝑞

log(1 + 𝐷−1)
log 𝑏

(𝜌(𝑢) − 𝜌(𝑈′)) 𝑥 + 𝑜(𝑥/𝑞),

where 𝑢 := log 𝑥
log 𝑦 , where 𝑥, 𝑦 → ∞ with 𝑦 ≥ 𝑥1/𝑈 , and where 𝑎 mod 𝑞 is any residue class

with 𝑞 ≤ (log 𝑥) 1
2 −𝜖 .

Proof The proof is similar to the case 𝑘 = 1 of Proposition 2.2, with the needed input
on Ψ(𝑥, 𝑦) replaced by appeals to Lemma 3.3. We may assume 𝑦 = 𝑥1/𝑢 where 𝑢 ≥ 1 is
fixed. With the intervals I𝑗 defined as in (2.4), the desired count of 𝑛 is given by the triple
sum ∑︁

𝑗≥0

∑︁
𝑝∈I𝑗∩(𝑥1/𝑈′

,𝑦 ]

∑︁
𝑛≤𝑥

𝑃 (𝑛)=𝑝
𝐴(𝑛)≡𝑎 (mod 𝑞)

1. (3.5)

At the cost of a negligible error, we may restrict the outer sum to 𝑗 ∈ J , where J is the
collection of nonnegative integers 𝑗 with I𝑗 ⊂ (𝑥1/𝑈′

, 𝑦/exp(
√︁
log 𝑥)); indeed, defining

(as before) 𝑃 := (𝑥1/𝑈′
, 𝑏𝑥1/𝑈

′ ] and 𝑃′ := [𝑦/𝑏 exp(
√︁
log 𝑥), 𝑦] , the incurred error is of

size
≪ 𝑥

∑︁
𝑝∈𝑃∪𝑃′

1/𝑝 ≪ 𝑥/(log 𝑥)1/2,

which is 𝑜(𝑥/𝑞). Now suppose 𝑗 ∈ J and 𝑝 ∈ I𝑗 ; then by Lemma 3.3,∑︁
𝑛≤𝑥

𝑃 (𝑛)=𝑝
𝐴(𝑛)≡𝑎 (mod 𝑞)

1 =
∑︁

𝑚≤𝑥/𝑝
𝑃 (𝑚)≤𝑝

𝐴(𝑚)≡𝑎−𝑝 (mod 𝑞)

1 =
1
𝑞
Ψ(𝑥/𝑝, 𝑝) +𝑂

(
𝑥

𝑝(log (𝑥/𝑝)) 1
2 (1−𝜖 )

)
.

Summing on all 𝑗 ∈ J and all 𝑝 ∈ I𝑗 , the contribution from𝑂-terms is

≪ 𝑥
∑︁

𝑥1/𝑈′
<𝑝≤𝑥/2

1
𝑝(log (𝑥/𝑝)) 1

2 (1−𝜖 )
≪ 𝑥

(log 𝑥) 1
2 (1−𝜖 )

,

which is 𝑜(𝑥/𝑞). (Perhaps the simplest way to estimate this last sum on 𝑝 is to consider,
for each 𝑗 , the contribution from 𝑝 with 𝑥/𝑝 ∈ (𝑒 𝑗 , 𝑒 𝑗+1].) On the other hand, the
calculations from the proof of Proposition 2.2 (with 𝑘 = 1, 𝑞 = 1) already show that∑︁

𝑗∈J

∑︁
𝑝∈I𝑗

Ψ(𝑥/𝑝, 𝑝) = log(1 + 𝐷−1)
log 𝑏

(𝜌(𝑢) − 𝜌(𝑈′) + 𝑜(1))𝑥.

Collecting estimates, we deduce that (3.5) is 1
𝑞

log(1+𝐷−1 )
log 𝑏 (𝜌(𝑢) − 𝜌(𝑈′)) 𝑥 + 𝑜(𝑥/𝑞), as

desired. ■

Proposition 3.4 implies the following variant of Theorem 1.2, with the leading digits
of 𝑃(𝑛) prescribed (instead of those of 𝐴(𝑛)).
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Proposition 3.5 Fix positive integers 𝑘, 𝐷 , and 𝑏 with 𝑏 ≥ 2. Fix a real number𝑈 ≥ 1, and
fix 𝜖 > 0. The number of 𝑛 ≤ 𝑥 for which 𝐴(𝑛) ≡ 𝑎 (mod 𝑞), 𝑃(𝑛) begins with the digits
of 𝐷 in base 𝑏, and 𝑃(𝑛) ≤ 𝑦 is

∼ 1
𝑞

log(1 + 𝐷−1)
log 𝑏

Ψ(𝑥, 𝑦),

where 𝑥, 𝑦 → ∞ with 𝑦 ≥ 𝑥1/𝑈 , and where 𝑎 mod 𝑞 is any residue class with 𝑞 ≤
(log 𝑥) 1

2 −𝜖 .

Proof The proof parallels that of Theorem 1.1. It suffices to show that the count of
𝑛 in question is eventually larger than 1

𝑞

log(1+𝐷−1 )
log 𝑏 (𝜌(𝑢) − 𝜂) 𝑥 and eventually smaller

than 1
𝑞

log(1+𝐷−1 )
log 𝑏 (𝜌(𝑢) + 𝜂) 𝑥. The lower bound follows from Proposition 3.4, fixing

𝑈′ large enough that 𝜌(𝑈′) < 𝜂. For the upper bound, we fix 𝑈′ large enough that
𝜌(𝑈′) < 𝜂

log(1+𝐷−1 )
log 𝑏 ; the upper bound inequality then follows from Lemma 3.3 and

Proposition 3.4. ■

To finish the proof of Theorem 1.2, we show that 𝑃(𝑛) and 𝐴(𝑛) usually have the
same leading digits. We begin by observing that 𝑃(𝑛) and 𝐴(𝑛) are usually close.

Lemma 3.6 Fix 𝛿 > 0. For large 𝑥, the number of 𝑛 ≤ 𝑥 for which 𝐴(𝑛) > (1 + 𝛿)𝑃(𝑛) is
𝑂 (𝑥(log log 𝑥)2/log 𝑥).

Proof Put 𝑦 := 𝑥1/2 log log 𝑥 . We may suppose that 𝑃(𝑛) > 𝑦, since by standard results
on the distribution of smooth numbers (e.g., Theorem 5.1 on p. 512 of [26]) this condition
excludes only 𝑂 (𝑥/log 𝑥) integers 𝑛 ≤ 𝑥. If 𝐴(𝑛) > (1 + 𝛿)𝑃(𝑛) for one of these
remaining 𝑛, then 𝛿𝑃(𝑛) <

∑
𝑘>1 𝑃𝑘 (𝑛) ≤ Ω(𝑛)𝑃2 (𝑛) ≤ 2𝑃2 (𝑛) log 𝑥. Hence, 𝑛 is

divisible by 𝑝𝑝′ for primes 𝑝, 𝑝′ with 𝑝 > 𝑦 and 𝑝′ ∈ ( 𝛿2 𝑝/log 𝑥, 𝑝]. The number of
such 𝑛 ≤ 𝑥 is

𝑥
∑︁

𝑦<𝑝≤𝑥

∑︁
𝛿
2

𝑝

log 𝑥 <𝑝′≤𝑝

1
𝑝𝑝′

≪ 𝑥
∑︁

𝑦<𝑝≤𝑥

1
𝑝

log log 𝑥
log 𝑝

≪ 𝑥
log log 𝑥
log 𝑦

≪ 𝑥
(log log 𝑥)2

log 𝑥
.

Here the sum on 𝑝′ has been estimated using Mertens’ theorem with the usual 1/log
error term [26, Theorem 1.10, p. 18]. ■

Lemma 3.7 Fix positive integers 𝑁 and 𝑏, with 𝑏 ≥ 2, and fix a real number 𝜖 > 0. Among
all 𝑛 ≤ 𝑥 with 𝐴(𝑛) ≡ 𝑎 (mod 𝑞), the number of 𝑛 for which the 𝑁 leading base 𝑏 digits of
𝑃(𝑛) do not coincide with those of 𝐴(𝑛) is 𝑜(𝑥/𝑞), as 𝑥 → ∞, uniformly in residue classes
𝑎 mod 𝑞 with 𝑞 ≤ (log 𝑥) 1

2 −𝜖 .

Proof Since 𝑏 and 𝑁 are fixed, it is enough to prove the estimate of the lemma under
the assumption that the 𝑁 leading digits in the base 𝑏 expansion of 𝑃(𝑛) are fixed, say as
the digits of the positive integer 𝐷.
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For 𝑀 a (fixed) positive integer to be specified momentarily, we let 𝐷′ be the integer
obtained by tacking 𝑀 copies of the digit ‘𝑏 − 1’ on to the end of the 𝑏-ary expansion of
𝐷. Thus, 𝐷′ = 𝑏𝑀𝐷 + (𝑏𝑀 − 1).

Suppose 𝑃(𝑛) begins with 𝐷 in base 𝑏 but 𝐴(𝑛) does not. We take two cases. First,
it may be that 𝑃(𝑛) begins with 𝐷 but not 𝐷′; in that case, for 𝐴(𝑛) to not begin with
𝐷 we must have 𝐴(𝑛)/𝑃(𝑛) > 1 + 1/𝐷′. By Lemma 3.6, the number of such 𝑛 ≤ 𝑥 is
𝑂 (𝑥(log log 𝑥)2/log 𝑥), which is 𝑜(𝑥/𝑞). On the other hand, if 𝑃(𝑛) begins with 𝐷′, we
apply Proposition 3.5. Taking 𝑦 = 𝑥 there, we see that the number of 𝑛 ≤ 𝑥 for which
𝑃(𝑛) begins with 𝐷′ and 𝐴(𝑛) ≡ 𝑎 (mod 𝑞) is ∼ log(1+1/𝐷′ )

log 𝑏
𝑥
𝑞
. Since the coefficient

log(1+1/𝐷′ )
log 𝑏 of 𝑥

𝑞
in this estimate can be made as small as we like by fixing𝑀 large enough,

we obtain the lemma. ■

Theorem 1.2 follows from combining Proposition 3.5 with Lemma 3.7.

Remark The range of uniformity in 𝑞 can be widened under the assumption that 𝑞 is
supported on sufficiently large primes. More precisely, for any fixed𝑄 ≥ 2, the result of
Theorem 1.2 holds uniformly for 𝑞 ≤ (log 𝑥)1−1/𝑄−𝜖 , provided the least prime 𝑃− (𝑞)
dividing 𝑞 is at least𝑄 + 1. The key observation is that, in the notation of Lemma 3.3,
such 𝑞 have 𝜙(𝑞′) ≥ 𝑃− (𝑞) − 1 ≥ 𝑄, which shows that

𝜋(I)
𝜙(𝑞′)𝑢 (𝜙(𝑞

′) − Re(𝜇(𝑞′)𝑢−𝑖𝑡 )) ≥
(
1 − 1

𝑄

)
𝜋(I)
𝑢

in the display (3.4). The remainder of the proof requires only minor modifications.
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