A REMARK ON SOCIABLE NUMBERS OF ODD ORDER

PAUL POLLACK

Abstract

Write $s(n)$ for the sum of the proper divisors of the natural number n. We call n sociable if the sequence $n, s(n), s(s(n)), \ldots$ is purely periodic; the period is then called the order of sociability of n. The ancients initiated the study of order 1 sociables (perfect numbers) and order 2 sociables (amicable numbers), and investigations into higher-order sociable numbers began at the end of the 19th century.

We show that if k is odd and fixed, then the number of sociable $n \leq x$ of order k is bounded by $x /(\log x)^{1+o(1)}$ as $x \rightarrow \infty$. This improves on the previously best-known bound of $x /(\log \log x)^{1 / 2+o(1)}$, due to Kobayashi, Pollack, and Pomerance.

1. Introduction

Write $s(n)$ for the sum of the proper divisors of n, so that $s(n)=\sigma(n)-n$. We write $s_{0}(n)$ for n, and if $s_{k-1}(n)$ is defined and positive, we put $s_{k}(n):=s\left(s_{k-1}(n)\right)$. The natural number n is called sociable if for some $k \geq 1$, the numbers $n, s(n), \ldots, s_{k-1}(n)$ are all distinct while $n=s_{k}(n)$. In this case the set $\left\{n, s(n), \ldots, s_{k-1}(n)\right\}$ is called a sociable cycle and k is called the order of sociability of n. Observe that the sociable numbers of order 1 are precisely the perfect numbers, while those of order 2 are the amicable numbers. In [KPP09], it is shown (see [KPP09, Theorem 1]) that the count of sociable numbers in $[1, x]$ of order k is at most

$$
x / \exp \left((1+o(1)) \sqrt{\log _{3} x \log _{4} x}\right)
$$

if $k=o\left(\sqrt{\log _{3} x \log _{4} x} / \log _{5} x\right)$. (Here $\log _{1} x:=\max \{1, \log x\}$ and for $j>1, \log _{j} x:=$ $\max \left\{1, \log \left(\log _{j-1} x\right)\right\}$.) For sociable numbers of odd order, one can do a bit better. From [KPP09, Theorem 2], the number of sociable numbers in $[1, x]$ of odd order k is bounded by

$$
x /\left(\log _{2} x\right)^{1 / 2+o(1)},
$$

if $k=o\left(\log _{3} x / \log _{5} x\right)$. Our purpose here is to further sharpen the upper bound when k is small and odd.

Theorem 1. Let $x \geq 3$, and let k be an odd natural number. The number of sociable numbers of order k contained in $[1, x]$ is at most $x /(\log x)^{1+o(1)}$, as $x \rightarrow \infty$, uniformly for $k=o\left(\log _{4} x\right)$.

Computational results on sociable numbers are recorded in [Coh70], [Fla91], [MM91], [MM93], and [Moe]. There are currently 175 known sociable cycles of order >2. Of these, only two have odd order, one having order 5 and the other order 9 .

[^0]Notation. For natural numbers d and n, we write $d \| n$ to mean that d is a unitary divisor of n, i.e., that $d \mid n$ and $\operatorname{gcd}(d, n / d)=1$. If p is a prime, we write $v_{p}(n)$ for the p-adic order of n, defined so that $p^{v_{p}(n)} \| n$.

2. Proof of Theorem 1

The proof requires a few preliminaries. The first of these is due to Erdős (see [Erd46, Theorem 2], [KPP09, Theorem B]).

Lemma 1. For $x>0$, the number of $n \leq x$ with $\sigma(n) / n>u$ is bounded by

$$
x / \exp \left(\exp \left(\left(e^{-\gamma}+o(1)\right) u\right)\right)
$$

as $u \rightarrow \infty$, uniformly in x. Here γ is the Euler-Mascheroni constant.
The next two results are taken from a recent preprint of Luca and Pomerance [LP].
Lemma 2 (cf. [LP, Corollary 1]). For any $\lambda \in(0,2]$ and $x \geq 3$, we have the estimate

$$
\begin{equation*}
\#\left\{n \leq x: v_{2}(\sigma(n)) \leq \lambda \log \log x\right\} \ll \frac{x}{(\log x)^{1+\lambda \log 2-\lambda \log \left(1+\frac{1+\sqrt{4 \lambda+1}}{2 \lambda}\right)-\frac{2 \lambda}{1+\sqrt{4 \lambda+1}}}, .} \tag{1}
\end{equation*}
$$

where the implied constant is absolute.
Lemma 3 (cf. [LP, Lemma 2]). Let $x \geq 2, z \geq 2$, and let \mathcal{P} be a set of odd primes contained in the interval $[1, z]$. The number of $n \leq x$ for which $\sigma(n)$ is coprime to every element of \mathcal{P} is bounded by

$$
\frac{x}{(\log x)^{1-g_{\mathcal{P}}}} \exp \left(O\left((\log z)^{2}\right)\right)
$$

where

$$
g_{\mathcal{P}}:=\prod_{p \in \mathcal{P}} \frac{p-2}{p-1}
$$

and the O-constant is absolute.
Actually both results are stated in [LP] with the Euler function φ in place of σ, but the proofs are trivially adapted to the σ-case. We will not need the full strength of Lemma 2 and require only the following easy consequence, corresponding to letting $\lambda \rightarrow 0$:

Lemma 4. Let $x \geq 2$ and let r be a natural number. The number of $n \leq x$ with $v_{2}(\sigma(n))<r$ is bounded by $x /(\log x)^{1+o(1)}$, provided that $r=o\left(\log _{2} x\right)$.

The next lemma describes the property of sociable cycles of odd order which plays the key role in our argument. If \mathcal{S} is a set of natural numbers, we write $\operatorname{gcd}(\mathcal{S})$ for the greatest common divisor of the elements of \mathcal{S}. We also write $\sigma(\mathcal{S})$ for the set $\{\sigma(m): m \in \mathcal{S}\}$.

Lemma 5. Let \mathcal{C} be a sociable cycle of odd order greater than 1 . Then $\operatorname{gcd}(\sigma(\mathcal{C}))$ divides $\operatorname{gcd}(\mathcal{C})$, except possibly if $2 \| \operatorname{gcd}(\sigma(\mathcal{C}))$, in which case $\left.\frac{1}{2} \operatorname{gcd}(\sigma(\mathcal{C})) \right\rvert\, \operatorname{gcd}(\mathcal{C})$.
Proof. For notational simplicity, put $d=\operatorname{gcd}(\sigma(\mathcal{C}))$. For each element $m \in \mathcal{C}$, observe that $s(m)=\sigma(m)-m \equiv-m(\bmod d)$. Applying this observation with m successively replaced by $s(m), s_{2}(m), \ldots$, we find that $s_{j}(m) \equiv(-1)^{j} m$, for every natural number $j \geq 1$. Now if we take j as the order of \mathcal{C}, this shows that $m \equiv-m(\bmod d)$, so that $d \mid 2 m$. Since this holds for every $m \in \mathcal{C}$, we get that $d \mid 2 \operatorname{gcd}(\mathcal{C})$. In particular, if d is odd, then d divides $\operatorname{gcd}(\mathcal{C})$, and whenever d is even, $d / 2$ divides $\operatorname{gcd}(\mathcal{C})$.

It remains to show that if d is even and $4 \mid d$, then $d \mid \operatorname{gcd}(\mathcal{C})$. Suppose that $2^{e} \| d$, where $e \geq 2$. From the preceding paragraph, we have that $2^{e-1} \mid \operatorname{gcd}(\mathcal{C})$, and we would like to prove that $2^{e} \mid \operatorname{gcd}(\mathcal{C})$. Otherwise, there is some $m \in \mathcal{C}$ for which $2^{e-1} \| m$. In this case, since $2^{e} \mid d$, we have that $2^{e-1} \| \sigma(m)-m=s(m)$. Iterating, we find that 2^{e-1} is a unitary divisor of every element of \mathcal{C}. Consequently, $\sigma\left(2^{e-1}\right) \mid \sigma(\mathcal{C})=d$. Since $\sigma\left(2^{e-1}\right)$ is odd, we infer from the last paragraph that $\sigma\left(2^{e-1}\right) \mid \operatorname{gcd}(\mathcal{C})$. Thus $2^{e-1} \sigma\left(2^{e-1}\right)$ divides every element of our cycle \mathcal{C}. But this impossible: Indeed, the number $2^{e-1} \sigma\left(2^{e-1}\right)$ is always either perfect or abundant, since

$$
\sigma\left(2^{e-1} \sigma\left(2^{e-1}\right)\right)=\sigma\left(2^{e-1}\right) \sigma\left(\sigma\left(2^{e-1}\right)\right) \geq \sigma\left(2^{e-1}\right)\left(1+\sigma\left(2^{e-1}\right)\right)=2\left(2^{e-1} \sigma\left(2^{e-1}\right)\right)
$$

It follows that every element of \mathcal{C} is either perfect or abundant, which is clearly impossible when $\# \mathcal{C}>1$.

Proof of Theorem 1. We can assume that $k>1$, since much stronger results are known about the distribution of sociable numbers of order 1 (perfect numbers); see [Wir59] for the best result in this direction.

Let $n \leq x$ be a sociable number of odd order k, and let \mathcal{C} be the corresponding cycle. We can assume that $\mathcal{C} \subset[1, X]$, where $X=x\left(2 \log _{3} x\right)^{k}$. Otherwise, for some $0 \leq j<k$, we have $s_{j}(n) \leq x\left(2 \log _{3} x\right)^{j}$ but $s_{j+1}(n) / s_{j}(n)>2 \log _{3} x$. In this case, the number of possibilities for $s_{j}(n)$ is $\ll x\left(2 \log _{3} x\right)^{j} / \log x$ by Lemma 1 . Since (for a given value of k) the number $n=s_{k-j}\left(s_{j}(n)\right)$ is determined by j and $s_{j}(n)$, the number of possibilities for n is $\ll k x\left(2 \log _{3} x\right)^{j} / \log x$. But both k and $\left(2 \log _{3} x\right)^{k}$ have the shape $(\log x)^{o(1)}$, and so this case presents us with at most $x /(\log x)^{1+o(1)}$ possible values of n.

The results of the last paragraph reduce the theorem to showing that the number of sociable cycles of length k contained in $[1, X]$ is bounded by $X /(\log X)^{1+o(1)}$. Put

$$
\begin{equation*}
r=\left\lfloor\sqrt{k \log _{3} x}\right\rfloor, \quad \text { so that for large } x, \quad \log _{3} x \geq r \geq \sqrt{\log _{3} x} \geq 2 . \tag{2}
\end{equation*}
$$

If $v_{2}(\operatorname{gcd}(\sigma(\mathcal{C})))<r$, then \mathcal{C} contains a term m with $v_{2}(\sigma(m))<r$. By Lemma 4 , the number of possibilities for m (and so also for its cycle) is bounded by $X /(\log X)^{1+o(1)}$.

So we can assume that $2^{r} \mid \operatorname{gcd}(\sigma(\mathcal{C}))$. By Lemma 5, we have that

$$
\begin{equation*}
2^{r}|\operatorname{gcd}(\sigma(\mathcal{C}))| \operatorname{gcd}(\mathcal{C}) \tag{3}
\end{equation*}
$$

Now we exploit the fact since $\# \mathcal{C}>1$, it must be that $\operatorname{gcd}(\mathcal{C})$ is deficient (cf. the conclusion of the proof of Lemma 5). Suppose that p is an odd prime divisor of $\operatorname{gcd}(\mathcal{C})$. Since $2^{r} p \mid \operatorname{gcd}(\mathcal{C})$, it must be that $2^{r} p$ is deficient, which implies (after a short computation) that $p>2^{r+1}$. So any odd prime divisor of $\operatorname{gcd}(\mathcal{C})$ exceeds 2^{r+1}, and now from (3), we deduce that the same is true for each odd prime divisor of $\operatorname{gcd}(\sigma(\mathcal{C}))$. Put

$$
\mathcal{P}:=\left\{p \text { prime }: 2<p \leq 2^{r+1}\right\}, \quad \text { and for each } m \in \mathcal{C}, \text { define } \quad \mathcal{P}_{m}:=\{p \in \mathcal{P}: p \nmid \sigma(m)\}
$$

Then $\mathcal{P} \subset \bigcup_{m} \mathcal{P}_{m}$, and so (in the notation of Lemma 3)

$$
\prod_{m \in \mathcal{C}} g_{\mathcal{P}_{m}} \leq g_{\mathcal{P}}=\prod_{2<p \leq 2^{r+1}} \frac{p-2}{p-1} \ll \frac{1}{\log \left(2^{r+1}\right)} \ll \frac{1}{\sqrt{\log _{3} x}}
$$

using Mertens's theorem to estimate the last product. Consequently, there is an $m \in \mathcal{C}$ with

$$
g_{\mathcal{P}_{m}} \ll\left(\log _{3} x\right)^{-\frac{1}{2 k}}
$$

The upper bound here is $o(1)$, since $k=o\left(\log _{4} x\right)$. So from Lemma 3 (with $x=X$ and $z=$ 2^{r+1}), the number of possibilities for m (and so for its cycle) is bounded by $X /(\log X)^{1+o(1)}$.
(Here we use the upper bound on r in (2).) Noting that the number of possibilities for the set \mathcal{P}_{m} is bounded by

$$
2^{\# \mathcal{P}} \leq 2^{2^{r+1}} \leq 2^{2^{\log _{3} x+1}}=(\log X)^{o(1)}
$$

the theorem follows.

3. Concluding Remarks

We close with the following problem, which in view of Theorem 1 may be tractable:
Problem: Prove that for each odd k, the sum of the reciprocals of the sociable numbers of order k converges.

This problem is open for every odd $k>1$.

Acknowledgements

This research was conducted while the author enjoyed the hospitality of the Institute for Advanced Study.

References

[Coh70] H. Cohen, On amicable and sociable numbers, Math. Comp. 24 (1970), 423-429.
[Erd46] P. Erdős, Some remarks about additive and multiplicative functions, Bull. Amer. Math. Soc. 52 (1946), 527-537.
[Fla91] A. Flammenkamp, New sociable numbers, Math. Comp. 56 (1991), no. 194, 871-873.
[KPP09] M. Kobayashi, P. Pollack, and C. Pomerance, On the distribution of sociable numbers, J. Number Theory 129 (2009), no. 8, 1990-2009.
[LP] F. Luca and C. Pomerance, On composite integers n for which $\varphi(n) \mid n-1$, preprint. Available online at http://math.dartmouth.edu/~carlp/.
[MM91] D. Moews and P. C. Moews, A search for aliquot cycles below 10^{10}, Math. Comp. 57 (1991), no. 196, 849-855.
[MM93] , A search for aliquot cycles and amicable pairs, Math. Comp. 61 (1993), no. 204, 935-938. [Moe] D. Moews, A list of aliquot cycles of length greater than 2, available from the author at http://djm.cc/sociable.txt.
[Wir59] E. Wirsing, Bemerkung zu der Arbeit über vollkommene Zahlen, Math. Ann. 137 (1959), 316-318.
6188 Kemeny Hall, Mathematics Department, Dartmouth College, Hanover, New HampSHIRE 03755

E-mail address: pppollac@illinois.edu

[^0]: 2000 Mathematics Subject Classification. Primary: 11A25, Secondary: 11N25.
 This material is based upon work supported by the National Science Foundation under agreement No. DMS-0635607. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of the National Science Foundation.

