
A REMARK ON SOCIABLE NUMBERS OF ODD ORDER

PAUL POLLACK

Abstract. Write s(n) for the sum of the proper divisors of the natural number n. We call
n sociable if the sequence n, s(n), s(s(n)), . . . is purely periodic; the period is then called
the order of sociability of n. The ancients initiated the study of order 1 sociables (perfect
numbers) and order 2 sociables (amicable numbers), and investigations into higher-order
sociable numbers began at the end of the 19th century.

We show that if k is odd and fixed, then the number of sociable n ≤ x of order k is
bounded by x/(log x)1+o(1) as x→∞. This improves on the previously best-known bound
of x/(log log x)1/2+o(1), due to Kobayashi, Pollack, and Pomerance.

1. Introduction

Write s(n) for the sum of the proper divisors of n, so that s(n) = σ(n)−n. We write s0(n)
for n, and if sk−1(n) is defined and positive, we put sk(n) := s(sk−1(n)). The natural number
n is called sociable if for some k ≥ 1, the numbers n, s(n), . . . , sk−1(n) are all distinct while
n = sk(n). In this case the set {n, s(n), . . . , sk−1(n)} is called a sociable cycle and k is called
the order of sociability of n. Observe that the sociable numbers of order 1 are precisely the
perfect numbers, while those of order 2 are the amicable numbers. In [KPP09], it is shown
(see [KPP09, Theorem 1]) that the count of sociable numbers in [1, x] of order k is at most

x/ exp((1 + o(1))
√

log3 x log4 x),

if k = o(
√

log3 x log4 x/ log5 x). (Here log1 x := max{1, log x} and for j > 1, logj x :=
max{1, log(logj−1 x)}.) For sociable numbers of odd order, one can do a bit better. From
[KPP09, Theorem 2], the number of sociable numbers in [1, x] of odd order k is bounded by

x/(log2 x)1/2+o(1),

if k = o(log3 x/ log5 x). Our purpose here is to further sharpen the upper bound when k is
small and odd.

Theorem 1. Let x ≥ 3, and let k be an odd natural number. The number of sociable
numbers of order k contained in [1, x] is at most x/(log x)1+o(1), as x → ∞, uniformly for
k = o(log4 x).

Computational results on sociable numbers are recorded in [Coh70], [Fla91], [MM91],
[MM93], and [Moe]. There are currently 175 known sociable cycles of order > 2. Of these,
only two have odd order, one having order 5 and the other order 9.
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Notation. For natural numbers d and n, we write d ‖ n to mean that d is a unitary divisor
of n, i.e., that d | n and gcd(d, n/d) = 1. If p is a prime, we write vp(n) for the p-adic order
of n, defined so that pvp(n) ‖ n.

2. Proof of Theorem 1

The proof requires a few preliminaries. The first of these is due to Erdős (see [Erd46,
Theorem 2], [KPP09, Theorem B]).

Lemma 1. For x > 0, the number of n ≤ x with σ(n)/n > u is bounded by

x/ exp(exp((e−γ + o(1))u))

as u→∞, uniformly in x. Here γ is the Euler–Mascheroni constant.

The next two results are taken from a recent preprint of Luca and Pomerance [LP].

Lemma 2 (cf. [LP, Corollary 1]). For any λ ∈ (0, 2] and x ≥ 3, we have the estimate

(1) #{n ≤ x : v2(σ(n)) ≤ λ log log x} � x

(log x)
1+λ log 2−λ log

(
1+ 1+

√
4λ+1

2λ

)
− 2λ

1+
√
4λ+1

,

where the implied constant is absolute.

Lemma 3 (cf. [LP, Lemma 2]). Let x ≥ 2, z ≥ 2, and let P be a set of odd primes contained
in the interval [1, z]. The number of n ≤ x for which σ(n) is coprime to every element of P
is bounded by

x

(log x)1−gP
exp(O((log z)2)),

where

gP :=
∏
p∈P

p− 2

p− 1

and the O-constant is absolute.

Actually both results are stated in [LP] with the Euler function ϕ in place of σ, but the
proofs are trivially adapted to the σ-case. We will not need the full strength of Lemma 2
and require only the following easy consequence, corresponding to letting λ→ 0:

Lemma 4. Let x ≥ 2 and let r be a natural number. The number of n ≤ x with v2(σ(n)) < r
is bounded by x/(log x)1+o(1), provided that r = o(log2 x).

The next lemma describes the property of sociable cycles of odd order which plays the
key role in our argument. If S is a set of natural numbers, we write gcd(S) for the greatest
common divisor of the elements of S. We also write σ(S) for the set {σ(m) : m ∈ S}.

Lemma 5. Let C be a sociable cycle of odd order greater than 1. Then gcd(σ(C)) divides
gcd(C), except possibly if 2 ‖ gcd(σ(C)), in which case 1

2
gcd(σ(C)) | gcd(C).

Proof. For notational simplicity, put d = gcd(σ(C)). For each element m ∈ C, observe that
s(m) = σ(m)−m ≡ −m (mod d). Applying this observation with m successively replaced
by s(m), s2(m), . . . , we find that sj(m) ≡ (−1)jm, for every natural number j ≥ 1. Now if
we take j as the order of C, this shows that m ≡ −m (mod d), so that d | 2m. Since this
holds for every m ∈ C, we get that d | 2 gcd(C). In particular, if d is odd, then d divides
gcd(C), and whenever d is even, d/2 divides gcd(C).
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It remains to show that if d is even and 4 | d, then d | gcd(C). Suppose that 2e ‖ d, where
e ≥ 2. From the preceding paragraph, we have that 2e−1 | gcd(C), and we would like to
prove that 2e | gcd(C). Otherwise, there is some m ∈ C for which 2e−1 ‖ m. In this case,
since 2e | d, we have that 2e−1 ‖ σ(m)−m = s(m). Iterating, we find that 2e−1 is a unitary
divisor of every element of C. Consequently, σ(2e−1) | σ(C) = d. Since σ(2e−1) is odd, we
infer from the last paragraph that σ(2e−1) | gcd(C). Thus 2e−1σ(2e−1) divides every element
of our cycle C. But this impossible: Indeed, the number 2e−1σ(2e−1) is always either perfect
or abundant, since

σ(2e−1σ(2e−1)) = σ(2e−1)σ(σ(2e−1)) ≥ σ(2e−1)(1 + σ(2e−1)) = 2(2e−1σ(2e−1)).

It follows that every element of C is either perfect or abundant, which is clearly impossible
when #C > 1. �

Proof of Theorem 1. We can assume that k > 1, since much stronger results are known
about the distribution of sociable numbers of order 1 (perfect numbers); see [Wir59] for the
best result in this direction.

Let n ≤ x be a sociable number of odd order k, and let C be the corresponding cycle.
We can assume that C ⊂ [1, X], where X = x(2 log3 x)k. Otherwise, for some 0 ≤ j < k,
we have sj(n) ≤ x(2 log3 x)j but sj+1(n)/sj(n) > 2 log3 x. In this case, the number of
possibilities for sj(n) is � x(2 log3 x)j/ log x by Lemma 1. Since (for a given value of k) the
number n = sk−j(sj(n)) is determined by j and sj(n), the number of possibilities for n is
� kx(2 log3 x)j/ log x. But both k and (2 log3 x)k have the shape (log x)o(1), and so this case
presents us with at most x/(log x)1+o(1) possible values of n.

The results of the last paragraph reduce the theorem to showing that the number of
sociable cycles of length k contained in [1, X] is bounded by X/(logX)1+o(1). Put

(2) r = b
√
k log3 xc, so that for large x, log3 x ≥ r ≥

√
log3 x ≥ 2.

If v2(gcd(σ(C))) < r, then C contains a term m with v2(σ(m)) < r. By Lemma 4, the number
of possibilities for m (and so also for its cycle) is bounded by X/(logX)1+o(1).

So we can assume that 2r | gcd(σ(C)). By Lemma 5, we have that

(3) 2r | gcd(σ(C)) | gcd(C).
Now we exploit the fact since #C > 1, it must be that gcd(C) is deficient (cf. the conclusion of
the proof of Lemma 5). Suppose that p is an odd prime divisor of gcd(C). Since 2rp | gcd(C),
it must be that 2rp is deficient, which implies (after a short computation) that p > 2r+1. So
any odd prime divisor of gcd(C) exceeds 2r+1, and now from (3), we deduce that the same
is true for each odd prime divisor of gcd(σ(C)). Put

P := {p prime : 2 < p ≤ 2r+1}, and for each m ∈ C, define Pm := {p ∈ P : p - σ(m)}.
Then P ⊂

⋃
mPm, and so (in the notation of Lemma 3)∏

m∈C

gPm ≤ gP =
∏

2<p≤2r+1

p− 2

p− 1
� 1

log(2r+1)
� 1√

log3 x
,

using Mertens’s theorem to estimate the last product. Consequently, there is an m ∈ C with

gPm � (log3 x)−
1
2k .

The upper bound here is o(1), since k = o(log4 x). So from Lemma 3 (with x = X and z =
2r+1), the number of possibilities for m (and so for its cycle) is bounded by X/(logX)1+o(1).
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(Here we use the upper bound on r in (2).) Noting that the number of possibilities for the
set Pm is bounded by

2#P ≤ 22r+1 ≤ 22log3 x+1

= (logX)o(1),

the theorem follows. �

3. Concluding remarks

We close with the following problem, which in view of Theorem 1 may be tractable:

Problem: Prove that for each odd k, the sum of the reciprocals of the sociable numbers of
order k converges.

This problem is open for every odd k > 1.
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