Remarks on a paper of Ballot and Luca concerning prime divisors of $a^{f(n)}-1$

Paul Pollack

Abstract

Let a be an integer with $|a|>1$. Let $f(T) \in \mathbf{Q}[T]$ be a nonconstant, integervalued polynomial with positive leading term, and suppose that there are infinitely many primes p for which f does not possess a root modulo p. Under these hypotheses, Ballot and Luca showed that almost all primes p do not divide any number of the form $a^{f(n)}-1$. More precisely, assuming the Generalized Riemann Hypothesis (GRH), their argument gives that the number of primes $p \leq x$ which do divide numbers of the form $a^{f(n)}-1$ is at most (as $x \rightarrow \infty$) $$
\frac{\pi(x)}{(\log \log x)^{r_{f}+o(1)}}
$$ where r_{f} is the density of primes p for which the congruence $f(n) \equiv 0(\bmod p)$ is insoluble. Under GRH, we improve this upper bound to $\ll x(\log x)^{-1-r_{f}}$, which we believe is the correct order of magnitude.

Contents

1. Introduction 1
2. Sieving the numbers $\ell(p)$ 3
3. The case when \mathscr{P} is infinite: Proof of Theorem 1 6
4. The case when \mathscr{P} is finite: Proof of Theorem 2 7
5. An exercise in heuristic reasoning 9
6. Concluding remarks 12
Acknowledgements 13
References 13

1. Introduction

Fix an integer a with $|a|>1$. From Fermat's little theorem, we know that the set of primes which divide $a^{n}-1$ for some n is precisely the set of primes not dividing a. Luca and Ballot [1] investigated what happens if we replace the exponent n here by a different

[^0]polynomial expression in n : Fix a nonconstant, integer-valued polynomial $f(T) \in \mathbf{Q}[T]$ with positive leading coefficient. Define
\[

$$
\begin{equation*}
\mathscr{P}:=\{q: q \text { prime }, f(n) \equiv 0 \quad(\bmod q) \text { has no solution }\} . \tag{1}
\end{equation*}
$$

\]

By the Chebotarev density theorem (see, e.g., [16]), the set \mathscr{P} has a Dirichlet density; call this r_{f}. The following is the main result of [1]; we write GRH for the Generalized Riemann Hypothesis, which for us is the assertion that the nontrivial zeros of all Dedekind zeta functions lie on the line $\Re(s)=\frac{1}{2}$.
Theorem A. Assume that f is irreducible of degree >1. Then the number of primes $p \leq x$ which divide some number of the form $a^{f(n)}-1$, where $n \in \mathbf{N}$, is at most

$$
\pi(x) /(\log \log \log x)^{r_{f}+o(1)},
$$

as $x \rightarrow \infty$. Assuming GRH, the upper bound can be improved to $\pi(x) /(\log \log x)^{r_{f}+o(1)}$.
A careful reading of the proof of Theorem A reveals that the stated estimates hold for all f, and that irreducibility is used only to guarantee that $r_{f}>0$; see [1, Lemma 3]. (Of course, the estimates are trivial if $r_{f}=0$.) By the density theorems in [16], one has $r_{f}>0$ exactly when \mathscr{P} is infinite. So as long as infinitely many primes do not divide values of $f(n)$, almost all primes (all but $o(\pi(x))$ of those in $[2, x]$, as $x \rightarrow \infty$) do not divide any expression of the form $a^{f(n)}-1$. Moreover, replacing the use of inclusion-exclusion in the argument of [1] with a more powerful sieve, one quickly obtains an unconditional proof of the upper bound claimed under GRH. In fact, one gets an upper bound that is $<_{a} \pi(x) /(\log \log x)^{r_{f}}$; notice that we have removed the $o(1)$ in the exponent. See the remark at the end of $\S 2$.

By a different method, we shall improve the conditional upper bound substantially:
Theorem 1. Assume GRH. Let a be an integer with $|a|>1$. Suppose that the set \mathscr{P} defined in (1) is infinite, with Dirichlet density $r_{f}>0$. For $x \geq 2$, the number of $p \leq x$ dividing some $a^{f(n)}-1$ is $<_{a, f} x /(\log x)^{1+r_{f}}$.
Remark. For later use, it will be helpful to observe that by the Chebotarev density theorem, f splits into linear factors modulo p for a set of primes p of positive density. Thus, $r_{f}<1$ always.

Theorem 1 leaves open the question of what happens when \mathscr{P} is finite. This turns out to be much simpler; indeed, we can establish an asymptotic formula.
Theorem 2. If \mathscr{P} is finite, then the set of primes dividing some $a^{f(n)}-1$ possesses a positive relative density. In other words, the number of such $p \leq x$ is $\sim c_{a, f} \pi(x)$, as $x \rightarrow \infty$, for some constant $c_{a, f}>0$.

We prove Theorem 2 in $\S 4$. There we also give a formula for $c_{a, f}$ when $a>0$, using explicit results of Wiertelak [19] (cf. Pappalardi [13], Moree [10]) concerning how often a given integer d divides the order of $a \bmod p$.

It seems difficult to prove a corresponding asymptotic formula in the case when \mathscr{P} is infinite. On the basis of our work in $\S 4$, we propose such a formula in $\S 5$ (again, assuming
$a>0$). One consequence of this formula is that the primes p dividing some $a^{f(n)}-1$ should have counting function asymptotic to a constant multiple of $x /(\log x)^{1+r_{f}}$. In $\S 6$, we conclude the paper with a discussion of the difficulties associated with proving a lower bound of the expected order of magnitude.

Notation. The unitalicized letter e denotes the base of the natural logarithm. We write ζ_{m} for the primitive m th root of unity $\mathrm{e}^{2 \pi i / m}$. The letters p and q are reserved for primes. We use Erdős's notation $\ell_{a}(m)$ for the order of a modulo m; if a is understood, we often omit the subscript. We write $\omega(n):=\sum_{p \mid n} 1$ for the number of distinct prime factors of n. The notation $d \| n$ means that d is a unitary divisor of n, i.e., $d \mid n$ and $\operatorname{gcd}(d, n / d)=1$. We employ the Landau-Bachmann O and o symbols, as well as Vinogradov's \ll notation, with subscripts indicating any dependence of implied constants. We use Li for the usual logarithmic integral, so that $\operatorname{Li}(x):=\int_{2}^{x} d t / \log t$.

2. Sieving the numbers $\ell(p)$

Fix an integer a with $|a|>1$. In this section, we prove an upper bound on the proportion of the time that $\ell(p)$ has a prime factor belonging to a prescribed set \mathscr{Q}. It seems that this result may be of some independent interest.

Theorem 3. Assume GRH. Let $x \geq 2$, and let \mathscr{Q} be a set of primes contained in $[2, x]$. The number of primes $p \leq x$ for which $\ell(p)$ is not divisible by any $q \in \mathscr{Q}$ is

$$
\begin{equation*}
\ll{ }_{a} \pi(x) \prod_{q \in \mathscr{Q}}(1-1 / q) \tag{2}
\end{equation*}
$$

uniformly in \mathscr{Q} and x.

Remarks.

(i) As we will see in Theorem C below, apart from $O_{a}(1)$ exceptional primes q, the probability that q divides $\ell(p)$ is $q /\left(q^{2}-1\right)$. So from a psychological standpoint, it would appear more natural if the factors on the right-hand side of (2) were $1-q /\left(q^{2}-1\right)$. However, replacing each term $1-1 / q$ with the more cumbersome factor $1-q /\left(q^{2}-1\right)$ would not change the magnitude of the right-hand side, and so would not affect the result. We have chosen to allow typography to trump psychology.
(ii) From Theorem 3, it is simple to deduce a (GRH-conditional) theorem of Murata and Pomerance [12, Theorem 4]: For $x \geq 2$, the number of odd primes $p \leq x$ for which $\ell_{2}(p)$ is prime is $<x x /(\log x)^{2}$. (Briefly, take \mathscr{Q} to be the set of primes $\leq x^{1 / 3}$, say, and recall that there are $o\left(x /(\log x)^{2}\right)$ primes $p \leq x$ with $\ell_{2}(p) \leq x^{1 / 3}$.) Our proof is similar in spirit to theirs.

Our argument rests on Lagarias and Odlyzko's explicit Chebotarev density theorem (on GRH) [8], as formulated by Serre [15, §2.4]:

Theorem B. Assume GRH. Let K be a finite Galois extension of \mathbf{Q} with Galois group G, and let C be a conjugacy class of G. The number of unramified primes $p \leq x$ whose Frobenius conjugacy class $(p, K / \mathbf{Q})=C$ is given by

$$
\frac{\# C}{\# G} \operatorname{Li}(x)+O\left(\frac{\# C}{\# G} x^{1 / 2}\left(\log \left|\Delta_{K}\right|+[K: \mathbf{Q}] \log x\right)\right)
$$

for all $x \geq 2$. Here Δ_{K} denotes the discriminant of K and the O-constant is absolute.
We also need an estimate extracted from Hooley's GRH-conditional proof of Artin's primitive root conjecture [5].
Lemma 4. Assume GRH. Let $x \geq 2$. There are $<_{a} x /(\log x)^{2}$ primes $p \leq x$ which have the following property: For some prime $q \in\left(\log x, x^{1 / 2}(\log x)^{-2}\right]$,

$$
q \mid p-1 \quad \text { and } \quad a^{\frac{p-1}{q}} \equiv 1 \quad(\bmod p) .
$$

Remark. Hooley's aim is to prove Artin's conjecture, and so he assumes from the start that a is not a perfect square. But Lemma 4 is valid without that restriction. It is enough that the number of $p \leq x$ which split completely in $K:=\mathbf{Q}\left(\zeta_{q}, a^{1 / q}\right)$ is $\frac{\mathrm{Li}(x)}{[K: \mathbf{Q}]}+O_{a}\left(x^{1 / 2} \log (q x)\right)$ and that $[K: \mathbf{Q}] \gg_{a} q \phi(q)$. This much holds without assuming that a is not a square (cf. the argument for Theorem 3 below).

Finally, we need a known estimate on the distribution of smooth numbers. Recall that a natural number n is said to be y-smooth if every prime divisor p of n satisfies $p \leq y$. We let $\Psi(x, y)$ denote the number of y-smooth natural numbers $n \leq x$.
Lemma 5. Fix a real number $A \geq 1$. Then $\Psi\left(x,(\log x)^{A}\right)=x^{1-\frac{1}{A}+o(1)}$, as $x \rightarrow \infty$.
For a proof of Lemma 5, see, e.g., [3, p. 291].
Proof of Theorem 3. There is no loss in assuming that $\mathscr{Q} \subset\left[2, x^{1 / 2}(\log x)^{-2}\right]$, since $\prod_{x^{1 / 2}(\log x)^{-2}<q \leq x}(1-1 / q) \asymp 1$. Let $p \leq x$ be a prime for which $\ell(p)$ is coprime to the members of \mathscr{Q}. The right-hand side of (2) is always $\gg x /(\log x)^{2}$, and so we can assume that p is not in the exceptional set considered in Lemma 4. Thus, if $q \in \mathscr{Q}$ is a divisor of $p-1$ with $q>\log x$, then $a^{(p-1) / q} \not \equiv 1(\bmod p)$. Let M be the largest divisor of $p-1$ supported on primes belonging to \mathscr{Q}. Since $\ell(p)$ is coprime to the members of \mathscr{Q}, we must have $a^{(p-1) / M} \equiv 1(\bmod p)$. It follows that M is supported entirely on primes not exceeding $\log x$.

We may assume that M does not exceed $\exp (\sqrt{\log x})$. Indeed, the total number of integers in $[1, x]$ divisible by some $(\log x)$-smooth integer $M>\exp (\sqrt{\log x})$ is at most

$$
\begin{equation*}
\sum_{\substack{\exp (\sqrt{\log x})<M \leq x \\ p \mid M \Rightarrow p \leq \log x}}\left\lfloor\frac{x}{M}\right\rfloor \leq x \int_{\exp (\sqrt{\log x})}^{x} \frac{d \Psi(t, \log x)}{t} \tag{3}
\end{equation*}
$$

When $t \geq \exp (\sqrt{\log x})$, we have $\log x \leq(\log t)^{2}$, and so $\Psi(t, \log x) \ll t^{2 / 3}$, say, by taking $A=2$ in Lemma 5. Hence, the right-hand side of (3) is $\ll x / \exp \left(\frac{1}{3} \sqrt{\log x}\right)$. This is negligible in comparison with the upper bound in the theorem statement.

We now fix a $(\log x)$－smooth integer $M \leq \exp (\sqrt{\log x})$ and use Selberg＇s Λ^{2}－sieve to count the number of corresponding $p \leq x$ ．Let

$$
\mathscr{A}:=\left\{p-1: p \leq x, M \mid p-1, a^{\frac{p-1}{M}} \equiv 1 \quad(\bmod p)\right\} \quad \text { and } \quad \mathscr{Q}^{\prime}:=\{q \in \mathscr{Q}: q \nmid a M\} .
$$

Then the number of $p \leq x$ corresponding to M is bounded above by

$$
S\left(\mathscr{A}, \mathscr{Q}^{\prime}\right):=\#\left\{A \in \mathscr{A}: \operatorname{gcd}\left(A, \prod_{q \in \mathscr{Q}^{\prime}} q\right)=1\right\} .
$$

We turn next to the preliminary estimates needed to apply the sieve．
Let $p \leq x$ be a prime not dividing $2 a$ ．From a well－known theorem of Kummer－Dedekind， $p-1 \in \mathscr{A}$ precisely when p splits completely in $K_{1}:=\mathbf{Q}\left(\zeta_{M}, a^{1 / M}\right)$ ．From［18，Proposition 4．1］，we have $\left[K_{1}: \mathbf{Q}\right] \asymp_{a} M \phi(M)$ ．Since the discriminant of $\mathbf{Q}\left(\zeta_{M}\right)$ divides $M^{\phi(M)}$ and the discriminant of $\mathbf{Q}\left(a^{1 / M}\right)$ divides $(a M)^{M}$ ，we obtain from the relation

$$
\Delta_{K_{1}} \mid \Delta_{\mathbf{Q}\left(a^{1 / M}\right)}^{\left[K_{1}: \mathbf{Q}\left(a^{1 / M}\right)\right]} \Delta_{\mathbf{Q}\left(\zeta_{M}\right)}^{\left[K_{1}: \mathbf{Q}\left(\zeta_{M}\right)\right]}
$$

（cf．［14，p．218，Proof of 7Q］）that

$$
\begin{aligned}
\log \left|\Delta_{K_{1}}\right| & \leq M \phi(M) \log (|a| M)+M \phi(M) \log M \\
& \ll{ }_{a} M \phi(M) \log (\mathrm{e} M) .
\end{aligned}
$$

So setting $X:=\frac{\mathrm{Li}(x)}{\left[K_{1}: \mathbf{Q}\right]}$ ，Theorem B yields

$$
\# \mathscr{A}:=X+O_{a}\left(x^{1 / 2} \log (M x)\right)=X+O_{a}\left(x^{1 / 2} \log x\right)
$$

Next，let d be a squarefree natural number supported on primes belonging to \mathscr{Q}^{\prime} ．Set $\mathscr{A}_{d}:=\{A \in \mathscr{A}: d \mid A\}$ ．If $p \leq x$ is a prime not dividing $2 a$ ，then $p-1 \in \mathscr{A}_{d}$ precisely when p splits completely in $K_{2}:=\mathbf{Q}\left(\zeta_{d M}, a^{1 / M}\right)$ ．View K_{2} as the compositum of K_{1} and $L:=\mathbf{Q}\left(\zeta_{d}\right)$ ．The discriminant of L divides $d^{\phi(d)}$ ，while the discriminant of K_{1} is supported on primes dividing $a M$ ．Hence， $\operatorname{gcd}\left(\Delta_{L}, \Delta_{K_{1}}\right)=1$ ．We deduce that

$$
\left[K_{2}: \mathbf{Q}\right]=[L: \mathbf{Q}]\left[K_{1}: \mathbf{Q}\right]=\phi(d)\left[K_{1}: \mathbf{Q}\right]
$$

and

$$
\Delta_{K_{2}}=\Delta_{K_{1}}^{[L: \mathbf{Q}]} \Delta_{L}^{\left[K_{1}: \mathbf{Q}\right]}
$$

so that

$$
\begin{aligned}
\log \left|\Delta_{K_{2}}\right| & \ll ⿱ 亠 ⿰ 亻_{a} \phi(d) \log \left|\Delta_{K_{1}}\right|+M \phi(M) \log \left|\Delta_{L}\right| \\
& \lll a \phi(d) M \phi(M) \log (\mathrm{e} M)+(M \phi(M))(\phi(d) \log d) \\
& \ll M \phi(d M) \log (\mathrm{e} d M) .
\end{aligned}
$$

Applying Theorem B again，we find that

$$
\begin{aligned}
\# \mathscr{A}_{d} & =\frac{\mathrm{Li}(x)}{\phi(d)\left[K_{1}: \mathbf{Q}\right]}+O_{a}\left(x^{1 / 2} \log x+x^{1 / 2} \log (\mathrm{e} d M)\right) \\
& =\frac{X}{\phi(d)}+O_{a}\left(x^{1 / 2} \log x\right)
\end{aligned}
$$

assuming $d \leq x$ (say).
Selberg's upper bound sieve, in the form of [4, p. 133, Theorem 4.1], now yields that for $z:=x^{1 / 5}$,

$$
\begin{equation*}
S\left(\mathscr{A}, \mathscr{Q}^{\prime}\right)<_{a} X \prod_{q \in \mathscr{Q}^{\prime} \cap[2, z]}\left(1-\frac{1}{\phi(q)}\right)+x^{1 / 2} \log x \sum_{\substack{d \leq z^{2} \\ p \mid d \Rightarrow p \in \mathscr{Q}^{\prime} \\ d \text { squarefree }}} 3^{\omega(d)} . \tag{4}
\end{equation*}
$$

Using the universal upper bound $\omega(d) \ll \log d / \log \log (3 d)$ and recalling the restriction $d \leq z^{2}$, we see that $3^{\omega(d)} \ll x^{1 / 25}$, say. So the second term on the right-hand side of (4) is $\ll x^{0.95}$. Also,

$$
\begin{aligned}
X \prod_{q \in \mathscr{Q}^{\prime} \cap[2, z]}\left(1-\frac{1}{\phi(q)}\right) & \ll a \frac{\operatorname{Li}(x)}{M \phi(M)} \prod_{q \in \mathscr{Q}^{\prime}}\left(1-\frac{1}{q}\right) \\
& =\frac{\operatorname{Li}(x)}{\phi(M)^{2}} \prod_{q \mid M}\left(1-\frac{1}{q}\right) \prod_{q \in \mathscr{Q}^{\prime}}\left(1-\frac{1}{q}\right) \\
& \ll a \frac{\pi(x)}{\phi(M)^{2}} \prod_{q \in \mathscr{Q}}\left(1-\frac{1}{q}\right) .
\end{aligned}
$$

Hence, the number of $p \leq x$ corresponding to M is

$$
<_{a} \frac{\pi(x)}{\phi(M)^{2}} \prod_{q \in \mathscr{Q}}\left(1-\frac{1}{q}\right)+x^{0.95} .
$$

Now sum over all $(\log x)$-smooth values of $M \leq \exp (\sqrt{\log x})$. Since the infinite series $\sum_{M \geq 1} \frac{1}{\phi(M)^{2}}$ converges, and since we are summing over only $x^{o(1)}$ values of M, we obtain the estimate of the theorem.
Remark. The idea of [1] is to sieve directly the sequence $\mathscr{A}:=\{\ell(p)\}_{p \leq x}$, where the requisite information on the number of terms of \mathscr{A} divisible by a given d can be read off from a theorem of Pappalardi [13, Theorem 1.3]. That approach, in conjunction with the same form of Selberg's sieve employed above, gives an unconditional proof of Theorem 3 under the severe restriction that $\mathscr{Q} \subset[2, \log x]$.

3. The case when \mathscr{P} is infinite: Proof of Theorem 1

Assume that a and $f(T)$ satisfy the hypotheses of Theorem 1. If $p \mid a^{f(n)}-1$ for some n, then $\ell(p) \mid f(n)$, and so $\ell(p)$ cannot be divisible by any of the primes from the set \mathscr{P} defined in (1). Applying Theorem B to the splitting field of f, we find that (on GRH) the counting function of \mathscr{P} behaves like $r_{f} \cdot \operatorname{Li}(x)$ up to an error of $O_{f}\left(x^{1 / 2} \log x\right)$. By partial summation,

$$
\begin{equation*}
\sum_{q \in \mathscr{P} \cap[2, x]} \frac{1}{q}=r_{f} \log \log x+O_{f}(1) \tag{5}
\end{equation*}
$$

(One could also prove this last estimate unconditionally, using, e.g., [15, Théorème 2].) Theorem 1 now follows from Theorem 3 with \mathscr{Q} taken as $\mathscr{P} \cap[2, x]$.

4. The case when \mathscr{P} is finite: Proof of Theorem 2

We start by quoting a weakened form of a result of Wiertelak [19, Theorem 2] (see also Pappalardi [13, Theorem 1], whose notation is more similar to ours).

Theorem C. Fix an integer a with $a>1$. Write $a=b^{h}$, with b not a perfect power, and put $b=a_{1} a_{2}^{2}$, where a_{1} is squarefree. Let d be a fixed natural number. For $x \geq 3$, the number of primes $p \leq x$ for which d divides $\ell_{a}(p)$ is

$$
\left(\frac{\nu_{a, d}}{d\left(h, d^{\infty}\right)} \prod_{q \mid d} \frac{q^{2}}{q^{2}-1}\right) \operatorname{Li}(x)+O_{a, d}\left(\frac{\operatorname{Li}(x)}{(\log x)^{1.9}}\right) .
$$

Here $\left(h, d^{\infty}\right)$ is the largest divisor of h supported on the primes dividing d, and

$$
\nu_{a, d}:=\left\{\begin{array}{lll}
1 & \text { if }\left[2, a_{1}\right] \nmid d, \\
1 / 2 & \text { if }\left[2, a_{1}\right] \mid d, a_{1} \equiv 1 & (\bmod 4), \\
1 / 2 & \text { if }\left[2, a_{1}\right] \mid d, a_{1} \not \equiv 1 & (\bmod 4), 4\left(2, a_{1}\right) \mid d h, \\
5 / 4 & \text { if }\left[2, a_{1}\right] \mid d, a_{1} \not \equiv 1 & (\bmod 4), 2\left(2, a_{1}\right) \| d h, \\
17 / 16 & \text { if }\left[2, a_{1}\right] \mid d, a_{1} \not \equiv 1 & (\bmod 4), 2\left(2, a_{1}\right) \nmid d h .
\end{array}\right.
$$

Remark. It follows from Theorem C that for fixed positive integers a and d with $a>1$, the primes p for which d divides $\ell_{a}(p)$ possess a relative density. This holds also if $a<-1$. To see this, first note that except in the case when $2 \| d$, one has that $d \mid \ell_{a}(p)$ precisely when $d \mid \ell_{-a}(p)$. If $2 \| d$, then it is easy to show that

$$
\begin{aligned}
\#\left\{p \leq x: p \nmid 2 a, d \mid \ell_{a}(p)\right\} & =\#\left\{p \leq x: p \nmid 2 a, \left.\frac{d}{2} \right\rvert\, \ell_{-a}(p)\right\} \\
+ & \#\left\{p \leq x: p \nmid 2 a, 2 d \mid \ell_{-a}(p)\right\}-\#\left\{p \leq x: p \nmid 2 a, d \mid \ell_{-a}(p)\right\} ;
\end{aligned}
$$

see, e.g., [19, p. 181]. Theorem C applies to estimate all three right-hand terms and so gives the relative density in this case also. Alternatively, one can consult [10, Theorem 2], which gives expressions for the density valid regardless of the sign of a.

Proof of the existence of the density in Theorem 2. Let \mathscr{Q} denote the set of primes q for which not all of the congruences $f(n) \equiv 0\left(\bmod q^{e}\right)$, with $e=0,1,2, \ldots$, are solvable. By Hensel's lemma, $\mathscr{Q} \backslash \mathscr{P}$ is finite, and so our assumption that \mathscr{P} is finite gives that \mathscr{Q} is also finite.

For each $q \in \mathscr{Q}$, there is a least positive integer e_{q} (say) for which the congruence $f(n) \equiv 0\left(\bmod q^{e_{q}}\right)$ is insoluble. A prime p divides $a^{f(n)}-1$ for some n precisely when no prime power of the form $q^{e_{q}}$, with $q \in \mathscr{Q}$, divides $\ell(p)$. That the set of such primes p possesses a relative density now follows immediately from inclusion-exclusion and the remark following Theorem C.

It remains to show that the density whose existence was just proved is >0. We will give an explicit expression for this density from which positivity follows by a straightforward check. Complete details are given only in the case when $a>0$; the case when $a<0$ presents additional difficulties which we remark on at the end.

So suppose now that $a>1$. We may assume that a is not a perfect power, since if $a=b^{h}$, then $a^{f(n)}-1=b^{h \cdot f(n)}-1$, and we could replace a by b and f by $h f$. Thus, in the notation of Theorem C, we have $h=1$ and $a=b$.

Let \mathscr{Q} denote the set introduced in the existence proof, and let $Q:=\prod_{q \in \mathscr{Q}} q^{e_{q}}$. Inclusionexclusion shows that our relative density is given by

$$
\begin{equation*}
c_{a, f}:=\sum_{d \| Q}(-1)^{\omega(d)} \frac{\nu_{a, d}}{d} \prod_{q \mid d} \frac{q^{2}}{q^{2}-1} \tag{6}
\end{equation*}
$$

in the notation of Theorem C. If $\left[2, a_{1}\right] \nmid Q$, then each $\nu_{a, d}=1$, and the sum admits the product expansion

$$
\prod_{q \mid Q}\left(1-\frac{q^{2}}{q^{e_{q}}\left(q^{2}-1\right)}\right)
$$

Suppose now that $\left[2, a_{1}\right] \mid Q$. Write $Q=Q_{1} Q_{2}$, where Q_{1} is supported on the primes dividing $2 a_{1}$. For unitary divisors d of Q, we see that $\left[2, a_{1}\right] \mid d$ if and only if $Q_{1} \mid d$. This suggests splitting the sum in (6) into two pieces, \sum_{1} and \sum_{2}, with \sum_{1} corresponding to those d not divisible by Q_{1} and \sum_{2} corresponding to the remaining d. From \sum_{1}, we get a contribution of

$$
\begin{aligned}
& \sum_{d \| Q} \frac{(-1)^{\omega(d)}}{d} \prod_{q \mid d} \frac{q^{2}}{q^{2}-1}-\sum_{\substack{d \| Q \\
Q_{1} \mid d}} \frac{(-1)^{\omega(d)}}{d} \prod_{q \mid d} \frac{q^{2}}{q^{2}-1} \\
& =\prod_{q \mid Q}\left(1-\frac{q^{2}}{q^{e_{q}}\left(q^{2}-1\right)}\right)-(-1)^{\omega\left(Q_{1}\right)}\left(\prod_{q \mid Q_{1}} \frac{q^{2}}{q^{e_{q}}\left(q^{2}-1\right)}\right)\left(\prod_{q \mid Q_{2}}\left(1-\frac{q^{2}}{q^{e_{q}}\left(q^{2}-1\right)}\right)\right)
\end{aligned}
$$

It remains to treat \sum_{2}, corresponding to unitary divisors d of Q for which $Q_{1} \mid d$. The key observation is that $\nu_{a, d}$ is constant for such d. In fact, putting

$$
\nu:=\left\{\begin{array}{lll}
1 / 2 & \text { if } a_{1} \equiv 1 & (\bmod 4) \tag{7}\\
1 / 2 & \text { if } a_{1} \not \equiv 1 & (\bmod 4), 4\left(2, a_{1}\right) \mid Q_{1} \\
5 / 4 & \text { if } a_{1} \not \equiv 1 & (\bmod 4), 2\left(2, a_{1}\right) \| Q_{1} \\
17 / 16 & \text { if } a_{1} \not \equiv 1 & (\bmod 4), 2\left(2, a_{1}\right) \nmid Q_{1}
\end{array}\right.
$$

we have $\nu_{a, d}=\nu$ for all these d. Reasoning as above, we obtain a contribution from \sum_{2} of

$$
\nu \cdot(-1)^{\omega\left(Q_{1}\right)}\left(\prod_{q \mid Q_{1}} \frac{q^{2}}{q^{e_{q}}\left(q^{2}-1\right)}\right)\left(\prod_{q \mid Q_{2}}\left(1-\frac{q^{2}}{q^{e_{q}}\left(q^{2}-1\right)}\right)\right)
$$

Collecting the contributions from \sum_{1} and \sum_{2}, we find that $c_{a, f}$ is equal to

$$
\begin{aligned}
& \prod_{q \mid Q}\left(1-\frac{q^{2}}{q^{e_{q}}\left(q^{2}-1\right)}\right) \\
& \quad+(-1)^{\omega\left(Q_{1}\right)}(\nu-1)\left(\prod_{q \mid Q_{1}} \frac{q^{2}}{q^{e_{q}}\left(q^{2}-1\right)}\right)\left(\prod_{q \mid Q_{2}}\left(1-\frac{q^{2}}{q^{e_{q}}\left(q^{2}-1\right)}\right)\right) .
\end{aligned}
$$

Factoring out the first product appearing here, we complete the proof of the following proposition:

Proposition 6. Assume $a>1$ and not a perfect power. Then the constant $c_{a, f}$ in Theorem 2 is given by

$$
\begin{equation*}
\left(1+(\nu-1)(-1)^{\omega\left(Q_{1}\right)} \prod_{q \mid Q_{1}} \frac{q}{q^{e_{q}+1}-q-q^{e_{q}-1}}\right) \prod_{q \mid Q}\left(1-\frac{q^{2}}{q^{e_{q}}\left(q^{2}-1\right)}\right) \tag{8}
\end{equation*}
$$

Here we take $\kappa=1$ if $\left[2, a_{1}\right] \nmid Q$.
Recalling the way the value of ν was selected, it is now straightforward to check directly that $c_{a, f}>0$ in the cases when $a>1$.

Suppose now that $a<-1$. If 2 is not a unitary divisor of Q, then the situation is fairly simple: For $q \in \mathscr{Q}$, the number $\ell_{a}(p)$ is divisible by $q^{e_{q}}$ precisely when the same is true for $\ell_{-a}(p)$. So replacing a with $-a$, we may derive an expression for $c_{a, f}$ analogous to that in Proposition 6 by essentially an identical argument. (We cannot assume now that $h=1$, since $-a$ may be a perfect power, but the extra factor $\left(h, d^{\infty}\right)$, being multiplicative in d, does not cause any real difficulties.) Suppose now that $2 \| Q$, so that $2 \in \mathscr{Q}$ and $e_{2}=1$. Then we observe that

$$
\begin{aligned}
& \#\left\{p \leq x: p \nmid 2 a, \ell_{a}(p) \text { not divisible by any } q^{e_{q}}\right\}= \\
& \qquad\left\{p \leq x: p \nmid 2 a, \ell_{a^{2}}(p) \text { not divisible by any } q^{e_{q}}\right\} \\
& -\#\left\{p \leq x: p \nmid 2 a, \ell_{-a}(p) \text { not divisible by any } q^{e_{q}}\right\} .
\end{aligned}
$$

Since both a^{2} and $-a$ are positive, we can now compute $c_{a, f}$ by using the previous argument to estimate both right-hand side terms. We omit the details, mentioning only that (by a straightforward but laborious check) the density $c_{a, f}$ so obtained is positive in every case.

5. An exercise in heuristic reasoning

In this section, we propose an asymptotic formula for the number of $p \leq x$ which divide some $a^{f(n)}-1$, where a and f are as in Theorem 1. For simplicity, we restrict ourselves to the case when $a>0$, and we assume that a is not a perfect power.

We adopt some notation from the previous section. Namely, we let \mathscr{Q} be the set of primes q for which f does not have a zero modulo every power of q. For each $q \in \mathscr{Q}$,
we let e_{q} be the minimal positive integer for which the congruence $f(n) \equiv 0\left(\bmod q^{e_{q}}\right)$ is insoluble. Since $\mathscr{Q} \backslash \mathscr{P}$ is finite, we have that $e_{q}=1$ for all but finitely many $q \in \mathscr{Q}$. Let

$$
Q_{1}:=\prod_{\substack{q\left[\left[2, a_{1}\right] \\ q \in \mathscr{2}\right.}} q^{e_{q}} .
$$

If $\left[2, a_{1}\right] \nmid Q_{1}$, then put $\nu=1$; otherwise, define ν by (7).
Let χ denote the characteristic function of those natural numbers n divisible by no prime power $q^{e_{q}}$, with $q \in \mathscr{Q}$. Then χ is multiplicative. Moreover, p divides some $a^{f(n)}-1$ precisely when $\chi(\ell(p))=1$. One can approximate the condition that $\chi(\ell(p))=1$ by the condition that $\ell(p)$ be divisible by no $q^{e_{q}}$, with q up to some fixed large parameter z. For fixed z, there is no difficulty in computing the relative density of primes satisfying this latter condition; indeed, the proof of Proposition 6 shows that this proportion is given by (8), where now $Q:=\prod_{q \in \mathscr{Q} \cap[2, z]} q^{e_{q}}$. We now (unjustifiably) replace z with x to obtain the naive guess that

$$
\begin{align*}
& \frac{1}{\pi(x)} \#\{p \leq x: \chi(\ell(p))=1\} \approx \tag{9}\\
& \quad\left(1+(\nu-1)(-1)^{\omega\left(Q_{1}\right)} \prod_{q \mid Q_{1}} \frac{q}{q^{e_{q}+1}-q-q^{e_{q}-1}}\right) \prod_{q \in \mathscr{2} \cap[2, x]}\left(1-\frac{q^{2}}{q^{e_{q}}\left(q^{2}-1\right)}\right) .
\end{align*}
$$

Let us compare this prediction with what the same naive heuristic suggests for the total number of $n \leq x$ with $\chi(n)=1$. Since $q^{e_{q}} \mid n$ with probability $q^{-e_{q}}$, our naive guess here is that

$$
\begin{equation*}
\frac{1}{x} \#\{n \leq x: \chi(n)=1\} \approx \prod_{q \in \mathscr{2} \cap[2, x]}\left(1-\frac{1}{q^{e_{q}}}\right) . \tag{10}
\end{equation*}
$$

Dividing (9) by (10), we might conjecture that

$$
\begin{equation*}
\frac{\frac{1}{\pi(x)} \#\{p \leq x: \chi(\ell(p))=1\}}{\frac{1}{x} \#\{n \leq x: \chi(n)=1\}} \rightarrow C_{a, f} \quad(\text { as } x \rightarrow \infty), \tag{11}
\end{equation*}
$$

where

$$
\begin{equation*}
C_{a, f}=\left(1+(\nu-1)(-1)^{\omega\left(Q_{1}\right)} \prod_{q \mid Q_{1}} \frac{q}{q^{e_{q}+1}-q-q^{e_{q}-1}}\right) \prod_{q \in \mathscr{Q}}\left(1-\frac{1}{\left(q^{2}-1\right)\left(q^{e_{q}}-1\right)}\right) \tag{12}
\end{equation*}
$$

As with $c_{a, f}$ in the last section, the definition of ν permits one to check in a straightforward way that $C_{a, f}>0$.

To obtain our conjectured asymptotic formula, it remains to estimate the size of the denominator in (11), i.e., the number of $n \leq x$ for which $\chi(n)=1$. This can be obtained from a theorem of Wirsing [21, Satz 1]. We state his result in a weaker form that suffices for our application.

Theorem D. Let f be a multiplicative function satisfying $0 \leq f(n) \leq 1$ for all n. Assume that for some positive constant τ, one has $\sum_{p \leq x} f(p) \sim \tau x / \log x$, as $x \rightarrow \infty$. Then

$$
\frac{1}{x} \sum_{n \leq x} f(n) \sim \frac{1}{\log x} \frac{\mathrm{e}^{-\gamma \tau}}{\Gamma(\tau)} \prod_{p \leq x}\left(1+\frac{f(p)}{p}+\frac{f\left(p^{2}\right)}{p^{2}}+\ldots\right) \quad(\text { as } x \rightarrow \infty)
$$

Here γ is the Euler-Mascheroni constant and $\Gamma(z)$ is the classical Gamma function.
We take $f=\chi$ in Theorem D. By the Chebotarev density theorem (in the form of $[15$, Théorème 2], say), the hypothesis on $\sum_{p \leq x} f(p)$ is satisfied with $\tau=1-r_{f}$. (Recall from the introduction that $1-r_{f}>0$.) Moreover, a short computation shows that

$$
\prod_{p \leq x}\left(1+\frac{f(p)}{p}+\frac{f\left(p^{2}\right)}{p^{2}}+\ldots\right)=\prod_{p \leq x}\left(1-\frac{1}{p}\right)^{-1} \prod_{q \in \mathscr{Q} \cap[2, x]}\left(1-\frac{1}{q^{e_{q}}}\right)
$$

Invoking Mertens's theorem, we deduce that (as $x \rightarrow \infty$)

$$
\frac{1}{x} \#\{n \leq x: \chi(n)=1\} \sim \frac{e^{r_{f} \gamma}}{\Gamma\left(1-r_{f}\right)} \prod_{q \in \mathscr{Q} \cap[2, x]}\left(1-\frac{1}{q^{e_{q}}}\right)
$$

Comparing this with (11), and recalling that $\pi(x) \sim x / \log x$, we arrive at our conjecture:
Conjecture 7. With the above notation and hypotheses, the number of primes $p \leq x$ which divide $a^{f(n)}-1$ for some n is

$$
\begin{equation*}
\sim C_{a, f} \frac{\mathrm{e}^{r_{f} \gamma}}{\Gamma\left(1-r_{f}\right)} \frac{x}{\log x} \prod_{q \in \mathscr{Q} \cap[2, x]}\left(1-\frac{1}{q^{e_{q}}}\right) \quad(\text { as } x \rightarrow \infty) \tag{13}
\end{equation*}
$$

where $C_{a, f}$ is given by (12).
Remark. Lest the reader be misled, we should note that our heuristic does not depend on interpreting the symbol " \approx " appearing in (9) and (10) as asymptotic equality. In fact, we expect that both naive predictions (9) and (10) are off by a constant factor; the hope is that this anomalous factor disappears upon dividing (9) by (10). More colloquially, we are hoping that two wrongs make a right!

In defense of this reasoning, we point out that an exactly analogous procedure leads to a number of widely accepted conjectures, including the quantitative form of the twin prime conjecture, the Murata-Pomerance conjecture on the number of $p \leq x$ for which $\ell_{2}(p)$ is prime [12], and Motohashi's conjecture [11, Conjecture J^{*}] on the number of $p \leq x$ of the form $x^{2}+y^{2}+1$, in the corrected form of Iwaniec [7].

Example. We give an example where the product appearing in (13) can be put in a more satisfactory form. Take $a=2$ and $f(T)=T^{2}+1$. Then \mathscr{Q} consists of 2 together with the primes $q \equiv 3(\bmod 4)$; also, $e_{q}=1$ for all $q \in \mathscr{Q}$ except $q=2$, where $e_{2}=2$. We have $Q_{1}=4$, and so $\nu=5 / 4$. From (12), we find that

$$
C_{2, T^{2}+1}=\frac{7}{9} \prod_{q \equiv 3}\left(1-\frac{1}{\left(q^{2}-1\right)(q-1)}\right)
$$

Also, $r_{f}=\frac{1}{2}, \Gamma\left(1-r_{f}\right)=\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}$, and by a theorem of Uchiyama [17],

$$
\prod_{\substack{q \leq x \\ q \equiv 3}}\left(1-\frac{1}{q}\right) \sim \mathrm{e}^{-\gamma / 2} \sqrt{\frac{\pi}{2}}\left(\prod_{q \equiv 3} \prod_{(\bmod 4)}\left(1-\frac{1}{q^{2}}\right)^{1 / 2}\right)(\log x)^{-1 / 2} .
$$

Thus, Conjecture 7 predicts that the number of $p \leq x$ dividing some $2^{n^{2}+1}-1$ is asymptotically

$$
\frac{7}{12 \sqrt{2}}\left(\prod_{q \equiv 3}\left(1-\frac{1}{q^{2}}\right)^{1 / 2}\left(1-\frac{1}{\left(q^{2}-1\right)(q-1)}\right)\right) \frac{x}{(\log x)^{3 / 2}}
$$

An analogous simplification of the product appearing in (13) is possible whenever the splitting field of f has an abelian Galois group; see [20, 9].

6. Concluding remarks

As noted by Ballot and Luca, classical results on primitive prime divisors imply that for every choice of a and f, infinitely many primes p divide some $a^{f(n)}-1$. But this argument gives only a very weak lower bound on the number of such $p \leq x$. Can we do better?

Conjecture 7 is probably intractable at present. Even obtaining a lower bound of the form $\gg x /(\log x)^{1+r_{f}}$ seems difficult in general. It is more or less equivalent to asking for lower bounds of the expected order when one sieves the sequence $\{\ell(p)\}_{p \leq x}$ by the set of primes \mathscr{P} defined in (1). One may compare the situation with Hooley's GRHconditional resolution of Artin's primitive root conjecture [5], which depends on sifting the corresponding sequence of indices $\{(p-1) / \ell(p)\}_{p \leq x}$. We expect our problem to be at least as difficult as Hooley's. Indeed, as we saw in the proof of Theorem 1, under GRH the numbers $(p-1) / \ell(p)$ have only very small prime factors. This means that Hooley has only to sieve by a set of very small primes, which is quite convenient. We do not have this luxury.

Since (under GRH) the numbers $p-1$ and $\ell(p)$ have the same set of large prime factors, our problem is intimately related to the problem of sifting the set of shifted primes $p-1$ by a set like our \mathscr{P}. Here it seems very few lower bound results are known, apart from what can be derived from the half-dimensional sieve. To take a case that is favorable for us, consider the polynomial $f(T)=T^{2}+1$: From the half-dimensional sieve (as applied in [6]; cf. [2, p. 282, Theorem 14.8]), one obtains (unconditionally) $\gg x /(\log x)^{3 / 2}$ primes $p \leq x$ for which $\frac{p-1}{2}$ is supported on primes $\equiv 1(\bmod 4)$. For such primes, $\ell(p)|p-1| n^{2}+1$ for some n, and so $p \mid a^{n^{2}+1}-1$ (provided that $\left.p \nmid a\right)$. Since $r_{f}=\frac{1}{2}$, the lower bound agrees with the conjectured order of magnitude. Unfortunately, this unconditional proof appears not to generalize very far, not even to all pairs a and f with f quadratic. It would be interesting to know the extent to which extra hypotheses, like GRH, would allow us to extend the list of pairs a and f for which the conjecture can be proved.

Acknowledgements

The author thanks Greg Martin for useful conversations. He also thanks the referee for a careful reading of the manuscript and for numerous helpful suggestions which made this a stronger and more readable paper.

References

[1] Ballot, C.; Luca, F. Prime factors of $a^{f(n)}-1$ with an irreducible polynomial $f(x)$, New York J. Math. 12 (2006) 39-45. MR 2217162 (2007b:11140), Zbl 1197.11127.
[2] Friedlander, J.; Iwaniec, H. Opera de cribro, American Mathematical Society Colloquium Publications, vol. 57, American Mathematical Society, Providence, RI, 2010. MR 2647984 (2011d:11227), Zbl pre05757681.
[3] Granville, A. Smooth numbers: computational number theory and beyond, Algorithmic number theory: lattices, number fields, curves and cryptography, Math. Sci. Res. Inst. Publ., vol. 44, Cambridge Univ. Press, Cambridge, 2008, pp. 267-323. MR 2467549 (2010g:11214), Zbl pre05532105.
[4] Halberstam, H.; Richert, H.-E. Sieve methods, London Mathematical Society Monographs, no. 4, Academic Press, London-New York, 1974. MR 0424730 (54 \#12689), Zbl 0298.10026.
[5] Hooley, C. On Artin's conjecture, J. Reine Angew. Math. 225 (1967) 209-220. MR 0207630 (34 \#7445), Zbl 0221.10048.
[6] Huxley, M. N.; Iwaniec, H. Bombieri's theorem in short intervals, Mathematika 22 (1975) 188-194. MR 0389790 (52 \#10620), Zbl 0317.10048.
[7] Iwaniec, H. Primes of the type $\phi(x, y)+A$ where ϕ is a quadratic form, Acta Arith. 21 (1972) 203-234. MR 0304331 (46 \#3466), Zbl 0215.35603.
[8] Lagarias, J. C.; Odlyzko, A. M. Effective versions of the Chebotarev density theorem, Algebraic number fields: L-functions and Galois properties (Proc. Sympos., Univ. Durham, Durham, 1975), Academic Press, London, 1977, pp. 409-464. MR 0447191 (56 \#5506), Zbl 0362.12011.
[9] Languasco, A.; Zaccagnini, A. On the constant in the Mertens product for arithmetic progressions. I. Identities, Funct. Approx. Comment. Math. 42 (2010) 17-27. MR 2640766 (2011b:11127), Zbl 1206.11112.
[10] Moree, P. On primes p for which d divides $\operatorname{ord}_{p}(g)$, Funct. Approx. Comment. Math. 33 (2005) 85-95. MR 2274151 (2007j:11131), Zbl pre05135205.
[11] Мотонashi, Y. On the distribution of prime numbers which are of the form $x^{2}+y^{2}+1$, Acta Arith. 16 (1969/1970) 351-363. MR 0288086 (44 \#5284), Zbl 0205.06801.
[12] Murata, L.; Pomerance, C. On the largest prime factor of a Mersenne number, Number theory, CRM Proc. Lecture Notes, vol. 36, Amer. Math. Soc., Providence, RI, 2004, pp. 209-218. MR 2076597 (2005i:11137), Zbl 1077.11003.
[13] Pappalardi, F., Square free values of the order function, New York J. Math. 9 (2003) 331-344. MR 2028173 (2004i:11116), Zbl 1066.11044.
[14] Ribenboim, P. Algebraic numbers, Pure and Applied Mathematics, no. 27, Wiley-Interscience, New York-London-Sydney, 1972. MR 0340212 (49 \#4968), Zbl 0247.12002.
[15] Serre, J.-P. Quelques applications du théorème de densité de Chebotarev, Inst. Hautes Études Sci. Publ. Math. 54 (1981) 323-401. MR 0644559 (83k:12011), Zbl 0496.12011.
[16] Stevenhagen, P.; Lenstra, H. W., Jr. Chebotarëv and his density theorem, Math. Intelligencer 18 (1996), no. 2, 26-37. MR 1395088 (97e:11144), Zbl 0885.11005.
[17] Uchiyama, S. On some products involving primes, Proc. Amer. Math. Soc. 28 (1971) 629-630. MR 0277494 (43 \#3227), Zbl 0212.07901.
[18] Wagstaff, S. S., Jr. Pseudoprimes and a generalization of Artin's conjecture, Acta Arith. 41 (1982) 141-150. MR 0674829 (83m:10004), Zbl 0496.10001.
[19] Wiertelak, K. On the density of some sets of primes. IV, Acta Arith. 43 (1984) 177-190. MR 0736730 (86e:11081), Zbl 0531.10049.
[20] Williams, K. S. Mertens' theorem for arithmetic progressions, J. Number Theory 6 (1974) 353-359. MR 0364137 (51 \#392), Zbl 0286.10022.
[21] Wirsing, E. Das asymptotische Verhalten von Summen über multiplikative Funktionen, Math. Ann. 143 (1961) 75-102. MR 0131389 (24 \#A1241), Zbl 0104.04201.

University of British Columbia, Department of Mathematics, Room 121, 1984 Mathematics Road, Vancouver, BC Canada V6T $1 Z 2$

Simon Fraser University, Department of Mathematics, Burnaby, BC Canada V5A 1S6
pollack@math.ubc.ca

[^0]: 2000 Mathematics Subject Classification. Primary: 11N37, Secondary: 11B83.
 Key words and phrases. Prime factors, Chebotarev density theorem, orders modulo p.

