
Remarks on a paper of Ballot and Luca
concerning prime divisors of af(n) − 1

Paul Pollack

Abstract. Let a be an integer with |a| > 1. Let f(T ) ∈ Q[T ] be a nonconstant, integer-
valued polynomial with positive leading term, and suppose that there are infinitely many
primes p for which f does not possess a root modulo p. Under these hypotheses, Ballot
and Luca showed that almost all primes p do not divide any number of the form af(n)−1.
More precisely, assuming the Generalized Riemann Hypothesis (GRH), their argument

gives that the number of primes p ≤ x which do divide numbers of the form af(n) − 1 is
at most (as x→∞)

π(x)

(log log x)rf+o(1)
,

where rf is the density of primes p for which the congruence f(n) ≡ 0 (mod p) is insoluble.
Under GRH, we improve this upper bound to � x(log x)−1−rf , which we believe is the
correct order of magnitude.
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1. Introduction

Fix an integer a with |a| > 1. From Fermat’s little theorem, we know that the set of
primes which divide an − 1 for some n is precisely the set of primes not dividing a. Luca
and Ballot [1] investigated what happens if we replace the exponent n here by a different
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polynomial expression in n: Fix a nonconstant, integer-valued polynomial f(T ) ∈ Q[T ]
with positive leading coefficient. Define

(1) P := {q : q prime, f(n) ≡ 0 (mod q) has no solution}.
By the Chebotarev density theorem (see, e.g., [16]), the set P has a Dirichlet density;
call this rf . The following is the main result of [1]; we write GRH for the Generalized
Riemann Hypothesis, which for us is the assertion that the nontrivial zeros of all Dedekind
zeta functions lie on the line <(s) = 1

2 .

Theorem A. Assume that f is irreducible of degree > 1. Then the number of primes
p ≤ x which divide some number of the form af(n) − 1, where n ∈ N, is at most

π(x)/(log log log x)rf+o(1),

as x→∞. Assuming GRH, the upper bound can be improved to π(x)/(log log x)rf+o(1).

A careful reading of the proof of Theorem A reveals that the stated estimates hold for
all f , and that irreducibility is used only to guarantee that rf > 0; see [1, Lemma 3]. (Of
course, the estimates are trivial if rf = 0.) By the density theorems in [16], one has rf > 0
exactly when P is infinite. So as long as infinitely many primes do not divide values
of f(n), almost all primes (all but o(π(x)) of those in [2, x], as x → ∞) do not divide

any expression of the form af(n) − 1. Moreover, replacing the use of inclusion-exclusion
in the argument of [1] with a more powerful sieve, one quickly obtains an unconditional
proof of the upper bound claimed under GRH. In fact, one gets an upper bound that is
�a π(x)/(log log x)rf ; notice that we have removed the o(1) in the exponent. See the
remark at the end of §2.

By a different method, we shall improve the conditional upper bound substantially:

Theorem 1. Assume GRH. Let a be an integer with |a| > 1. Suppose that the set P
defined in (1) is infinite, with Dirichlet density rf > 0. For x ≥ 2, the number of p ≤ x

dividing some af(n) − 1 is �a,f x/(log x)1+rf .

Remark. For later use, it will be helpful to observe that by the Chebotarev density
theorem, f splits into linear factors modulo p for a set of primes p of positive density.
Thus, rf < 1 always.

Theorem 1 leaves open the question of what happens when P is finite. This turns out
to be much simpler; indeed, we can establish an asymptotic formula.

Theorem 2. If P is finite, then the set of primes dividing some af(n) − 1 possesses a
positive relative density. In other words, the number of such p ≤ x is ∼ ca,fπ(x), as
x→∞, for some constant ca,f > 0.

We prove Theorem 2 in §4. There we also give a formula for ca,f when a > 0, using
explicit results of Wiertelak [19] (cf. Pappalardi [13], Moree [10]) concerning how often a
given integer d divides the order of a mod p.

It seems difficult to prove a corresponding asymptotic formula in the case when P is
infinite. On the basis of our work in §4, we propose such a formula in §5 (again, assuming
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a > 0). One consequence of this formula is that the primes p dividing some af(n) − 1
should have counting function asymptotic to a constant multiple of x/(log x)1+rf . In §6,
we conclude the paper with a discussion of the difficulties associated with proving a lower
bound of the expected order of magnitude.

Notation. The unitalicized letter e denotes the base of the natural logarithm. We write
ζm for the primitive mth root of unity e2πi/m. The letters p and q are reserved for primes.
We use Erdős’s notation `a(m) for the order of a modulo m; if a is understood, we often
omit the subscript. We write ω(n) :=

∑
p|n 1 for the number of distinct prime factors of n.

The notation d ‖ n means that d is a unitary divisor of n, i.e., d | n and gcd(d, n/d) = 1.
We employ the Landau–Bachmann O and o symbols, as well as Vinogradov’s � notation,
with subscripts indicating any dependence of implied constants. We use Li for the usual
logarithmic integral, so that Li(x) :=

∫ x
2 dt/ log t.

2. Sieving the numbers `(p)

Fix an integer a with |a| > 1. In this section, we prove an upper bound on the proportion
of the time that `(p) has a prime factor belonging to a prescribed set Q. It seems that this
result may be of some independent interest.

Theorem 3. Assume GRH. Let x ≥ 2, and let Q be a set of primes contained in [2, x].
The number of primes p ≤ x for which `(p) is not divisible by any q ∈ Q is

(2) �a π(x)
∏
q∈Q

(1− 1/q),

uniformly in Q and x.

Remarks.

(i) As we will see in Theorem C below, apart from Oa(1) exceptional primes q, the
probability that q divides `(p) is q/(q2 − 1). So from a psychological standpoint,
it would appear more natural if the factors on the right-hand side of (2) were
1 − q/(q2 − 1). However, replacing each term 1 − 1/q with the more cumbersome
factor 1 − q/(q2 − 1) would not change the magnitude of the right-hand side, and
so would not affect the result. We have chosen to allow typography to trump
psychology.

(ii) From Theorem 3, it is simple to deduce a (GRH-conditional) theorem of Murata
and Pomerance [12, Theorem 4]: For x ≥ 2, the number of odd primes p ≤ x
for which `2(p) is prime is � x/(log x)2. (Briefly, take Q to be the set of primes

≤ x1/3, say, and recall that there are o(x/(log x)2) primes p ≤ x with `2(p) ≤ x1/3.)
Our proof is similar in spirit to theirs.

Our argument rests on Lagarias and Odlyzko’s explicit Chebotarev density theorem (on
GRH) [8], as formulated by Serre [15, §2.4]:
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Theorem B. Assume GRH. Let K be a finite Galois extension of Q with Galois group
G, and let C be a conjugacy class of G. The number of unramified primes p ≤ x whose
Frobenius conjugacy class (p,K/Q) = C is given by

#C

#G
Li(x) +O

(
#C

#G
x1/2(log |∆K |+ [K : Q] log x)

)
,

for all x ≥ 2. Here ∆K denotes the discriminant of K and the O-constant is absolute.

We also need an estimate extracted from Hooley’s GRH-conditional proof of Artin’s
primitive root conjecture [5].

Lemma 4. Assume GRH. Let x ≥ 2. There are �a x/(log x)2 primes p ≤ x which have

the following property: For some prime q ∈ (log x, x1/2(log x)−2],

q | p− 1 and a
p−1
q ≡ 1 (mod p).

Remark. Hooley’s aim is to prove Artin’s conjecture, and so he assumes from the start that
a is not a perfect square. But Lemma 4 is valid without that restriction. It is enough that

the number of p ≤ x which split completely in K := Q(ζq, a
1/q) is Li(x)

[K:Q] +Oa(x
1/2 log (qx))

and that [K : Q]�a qφ(q). This much holds without assuming that a is not a square (cf.
the argument for Theorem 3 below).

Finally, we need a known estimate on the distribution of smooth numbers. Recall that
a natural number n is said to be y-smooth if every prime divisor p of n satisfies p ≤ y. We
let Ψ(x, y) denote the number of y-smooth natural numbers n ≤ x.

Lemma 5. Fix a real number A ≥ 1. Then Ψ(x, (log x)A) = x1−
1
A
+o(1), as x→∞.

For a proof of Lemma 5, see, e.g., [3, p. 291].

Proof of Theorem 3. There is no loss in assuming that Q ⊂ [2, x1/2(log x)−2], since∏
x1/2(log x)−2<q≤x(1 − 1/q) � 1. Let p ≤ x be a prime for which `(p) is coprime to the

members of Q. The right-hand side of (2) is always � x/(log x)2, and so we can assume
that p is not in the exceptional set considered in Lemma 4. Thus, if q ∈ Q is a divisor
of p − 1 with q > log x, then a(p−1)/q 6≡ 1 (mod p). Let M be the largest divisor of p − 1
supported on primes belonging to Q. Since `(p) is coprime to the members of Q, we

must have a(p−1)/M ≡ 1 (mod p). It follows that M is supported entirely on primes not
exceeding log x.

We may assume that M does not exceed exp(
√

log x). Indeed, the total number of
integers in [1, x] divisible by some (log x)-smooth integer M > exp(

√
log x) is at most

(3)
∑

exp(
√
log x)<M≤x

p|M⇒p≤log x

⌊ x
M

⌋
≤ x

∫ x

exp(
√
log x)

dΨ(t, log x)

t
.

When t ≥ exp(
√

log x), we have log x ≤ (log t)2, and so Ψ(t, log x) � t2/3, say, by taking
A = 2 in Lemma 5. Hence, the right-hand side of (3) is � x/ exp(13

√
log x). This is

negligible in comparison with the upper bound in the theorem statement.
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We now fix a (log x)-smooth integer M ≤ exp(
√

log x) and use Selberg’s Λ2-sieve to
count the number of corresponding p ≤ x. Let

A := {p− 1 : p ≤ x,M | p− 1, a
p−1
M ≡ 1 (mod p)} and Q′ := {q ∈ Q : q - aM}.

Then the number of p ≤ x corresponding to M is bounded above by

S(A ,Q′) := #{A ∈ A : gcd(A,
∏
q∈Q′

q) = 1}.

We turn next to the preliminary estimates needed to apply the sieve.
Let p ≤ x be a prime not dividing 2a. From a well-known theorem of Kummer–Dedekind,

p−1 ∈ A precisely when p splits completely in K1 := Q(ζM , a
1/M ). From [18, Proposition

4.1], we have [K1 : Q] �a Mφ(M). Since the discriminant of Q(ζM ) divides Mφ(M) and

the discriminant of Q(a1/M ) divides (aM)M , we obtain from the relation

∆K1 | ∆
[K1:Q(a1/M )]

Q(a1/M )
∆

[K1:Q(ζM )]
Q(ζM )

(cf. [14, p. 218, Proof of 7Q]) that

log |∆K1 | ≤Mφ(M) log (|a|M) +Mφ(M) logM

�a Mφ(M) log (eM).

So setting X := Li(x)
[K1:Q] , Theorem B yields

#A := X +Oa(x
1/2 log (Mx)) = X +Oa(x

1/2 log x).

Next, let d be a squarefree natural number supported on primes belonging to Q′. Set
Ad := {A ∈ A : d | A}. If p ≤ x is a prime not dividing 2a, then p − 1 ∈ Ad precisely

when p splits completely in K2 := Q(ζdM , a
1/M ). View K2 as the compositum of K1 and

L := Q(ζd). The discriminant of L divides dφ(d), while the discriminant of K1 is supported
on primes dividing aM . Hence, gcd(∆L,∆K1) = 1. We deduce that

[K2 : Q] = [L : Q][K1 : Q] = φ(d)[K1 : Q]

and
∆K2 = ∆

[L:Q]
K1

∆
[K1:Q]
L ,

so that

log |∆K2 | �a φ(d) log |∆K1 |+Mφ(M) log |∆L|
�a φ(d)Mφ(M) log (eM) + (Mφ(M))(φ(d) log d)

�Mφ(dM) log (edM).

Applying Theorem B again, we find that

#Ad =
Li(x)

φ(d)[K1 : Q]
+Oa

(
x1/2 log x+ x1/2 log(edM)

)
=

X

φ(d)
+Oa(x

1/2 log x),
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assuming d ≤ x (say).
Selberg’s upper bound sieve, in the form of [4, p. 133, Theorem 4.1], now yields that for

z := x1/5,

(4) S(A ,Q′)�a X
∏

q∈Q′∩[2,z]

(
1− 1

φ(q)

)
+ x1/2 log x

∑
d≤z2

p|d⇒p∈Q′

d squarefree

3ω(d).

Using the universal upper bound ω(d) � log d/ log log (3d) and recalling the restriction

d ≤ z2, we see that 3ω(d) � x1/25, say. So the second term on the right-hand side of (4) is
� x0.95. Also,

X
∏

q∈Q′∩[2,z]

(
1− 1

φ(q)

)
�a

Li(x)

Mφ(M)

∏
q∈Q′

(
1− 1

q

)

=
Li(x)

φ(M)2

∏
q|M

(
1− 1

q

) ∏
q∈Q′

(
1− 1

q

)

�a
π(x)

φ(M)2

∏
q∈Q

(
1− 1

q

)
.

Hence, the number of p ≤ x corresponding to M is

�a
π(x)

φ(M)2

∏
q∈Q

(
1− 1

q

)
+ x0.95.

Now sum over all (log x)-smooth values of M ≤ exp(
√

log x). Since the infinite series∑
M≥1

1
φ(M)2

converges, and since we are summing over only xo(1) values of M , we obtain

the estimate of the theorem. �

Remark. The idea of [1] is to sieve directly the sequence A := {`(p)}p≤x, where the
requisite information on the number of terms of A divisible by a given d can be read off
from a theorem of Pappalardi [13, Theorem 1.3]. That approach, in conjunction with the
same form of Selberg’s sieve employed above, gives an unconditional proof of Theorem 3
under the severe restriction that Q ⊂ [2, log x].

3. The case when P is infinite: Proof of Theorem 1

Assume that a and f(T ) satisfy the hypotheses of Theorem 1. If p | af(n) − 1 for some
n, then `(p) | f(n), and so `(p) cannot be divisible by any of the primes from the set P
defined in (1). Applying Theorem B to the splitting field of f , we find that (on GRH) the

counting function of P behaves like rf · Li(x) up to an error of Of (x1/2 log x). By partial
summation,

(5)
∑

q∈P∩[2,x]

1

q
= rf log log x+Of (1).
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(One could also prove this last estimate unconditionally, using, e.g., [15, Théorème 2].)
Theorem 1 now follows from Theorem 3 with Q taken as P ∩ [2, x].

4. The case when P is finite: Proof of Theorem 2

We start by quoting a weakened form of a result of Wiertelak [19, Theorem 2] (see also
Pappalardi [13, Theorem 1], whose notation is more similar to ours).

Theorem C. Fix an integer a with a > 1. Write a = bh, with b not a perfect power, and
put b = a1a

2
2, where a1 is squarefree. Let d be a fixed natural number. For x ≥ 3, the

number of primes p ≤ x for which d divides `a(p) is νa,d
d(h, d∞)

∏
q|d

q2

q2 − 1

Li(x) +Oa,d

(
Li(x)

(log x)1.9

)
.

Here (h, d∞) is the largest divisor of h supported on the primes dividing d, and

νa,d :=



1 if [2, a1] - d,
1/2 if [2, a1] | d, a1 ≡ 1 (mod 4),

1/2 if [2, a1] | d, a1 6≡ 1 (mod 4), 4(2, a1) | dh,
5/4 if [2, a1] | d, a1 6≡ 1 (mod 4), 2(2, a1) ‖ dh,
17/16 if [2, a1] | d, a1 6≡ 1 (mod 4), 2(2, a1) - dh.

Remark. It follows from Theorem C that for fixed positive integers a and d with a > 1,
the primes p for which d divides `a(p) possess a relative density. This holds also if a < −1.
To see this, first note that except in the case when 2 ‖ d, one has that d | `a(p) precisely
when d | `−a(p). If 2 ‖ d, then it is easy to show that

#{p ≤ x : p - 2a, d | `a(p)} = #{p ≤ x : p - 2a,
d

2
| `−a(p)}

+ #{p ≤ x : p - 2a, 2d | `−a(p)} −#{p ≤ x : p - 2a, d | `−a(p)};

see, e.g., [19, p. 181]. Theorem C applies to estimate all three right-hand terms and so
gives the relative density in this case also. Alternatively, one can consult [10, Theorem 2],
which gives expressions for the density valid regardless of the sign of a.

Proof of the existence of the density in Theorem 2. Let Q denote the set of primes
q for which not all of the congruences f(n) ≡ 0 (mod qe), with e = 0, 1, 2, . . . , are solvable.
By Hensel’s lemma, Q \P is finite, and so our assumption that P is finite gives that Q
is also finite.

For each q ∈ Q, there is a least positive integer eq (say) for which the congruence

f(n) ≡ 0 (mod qeq) is insoluble. A prime p divides af(n) − 1 for some n precisely when
no prime power of the form qeq , with q ∈ Q, divides `(p). That the set of such primes
p possesses a relative density now follows immediately from inclusion-exclusion and the
remark following Theorem C. �
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It remains to show that the density whose existence was just proved is > 0. We will give
an explicit expression for this density from which positivity follows by a straightforward
check. Complete details are given only in the case when a > 0; the case when a < 0
presents additional difficulties which we remark on at the end.

So suppose now that a > 1. We may assume that a is not a perfect power, since if
a = bh, then af(n)− 1 = bh·f(n)− 1, and we could replace a by b and f by hf . Thus, in the
notation of Theorem C, we have h = 1 and a = b.

Let Q denote the set introduced in the existence proof, and let Q :=
∏
q∈Q qeq . Inclusion-

exclusion shows that our relative density is given by

(6) ca,f :=
∑
d‖Q

(−1)ω(d)
νa,d
d

∏
q|d

q2

q2 − 1
,

in the notation of Theorem C. If [2, a1] - Q, then each νa,d = 1, and the sum admits the
product expansion ∏

q|Q

(
1− q2

qeq(q2 − 1)

)
.

Suppose now that [2, a1] | Q. Write Q = Q1Q2, where Q1 is supported on the primes
dividing 2a1. For unitary divisors d of Q, we see that [2, a1] | d if and only if Q1 | d. This
suggests splitting the sum in (6) into two pieces,

∑
1 and

∑
2, with

∑
1 corresponding to

those d not divisible by Q1 and
∑

2 corresponding to the remaining d. From
∑

1, we get a
contribution of∑

d‖Q

(−1)ω(d)

d

∏
q|d

q2

q2 − 1
−
∑
d‖Q
Q1|d

(−1)ω(d)

d

∏
q|d

q2

q2 − 1

=
∏
q|Q

(
1− q2

qeq(q2 − 1)

)
− (−1)ω(Q1)

∏
q|Q1

q2

qeq(q2 − 1)

∏
q|Q2

(
1− q2

qeq(q2 − 1)

) .

It remains to treat
∑

2, corresponding to unitary divisors d of Q for which Q1 | d. The key
observation is that νa,d is constant for such d. In fact, putting

(7) ν :=


1/2 if a1 ≡ 1 (mod 4),

1/2 if a1 6≡ 1 (mod 4), 4(2, a1) | Q1,

5/4 if a1 6≡ 1 (mod 4), 2(2, a1) ‖ Q1,

17/16 if a1 6≡ 1 (mod 4), 2(2, a1) - Q1,

we have νa,d = ν for all these d. Reasoning as above, we obtain a contribution from
∑

2 of

ν · (−1)ω(Q1)

∏
q|Q1

q2

qeq(q2 − 1)

∏
q|Q2

(
1− q2

qeq(q2 − 1)

) .
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Collecting the contributions from
∑

1 and
∑

2, we find that ca,f is equal to∏
q|Q

(
1− q2

qeq(q2 − 1)

)

+ (−1)ω(Q1)(ν − 1)

∏
q|Q1

q2

qeq(q2 − 1)

∏
q|Q2

(
1− q2

qeq(q2 − 1)

) .

Factoring out the first product appearing here, we complete the proof of the following
proposition:

Proposition 6. Assume a > 1 and not a perfect power. Then the constant ca,f in Theorem
2 is given by

(8)

1 + (ν − 1)(−1)ω(Q1)
∏
q|Q1

q

qeq+1 − q − qeq−1

∏
q|Q

(
1− q2

qeq(q2 − 1)

)
.

Here we take κ = 1 if [2, a1] - Q.

Recalling the way the value of ν was selected, it is now straightforward to check directly
that ca,f > 0 in the cases when a > 1.

Suppose now that a < −1. If 2 is not a unitary divisor of Q, then the situation is fairly
simple: For q ∈ Q, the number `a(p) is divisible by qeq precisely when the same is true for
`−a(p). So replacing a with −a, we may derive an expression for ca,f analogous to that in
Proposition 6 by essentially an identical argument. (We cannot assume now that h = 1,
since −a may be a perfect power, but the extra factor (h, d∞), being multiplicative in d,
does not cause any real difficulties.) Suppose now that 2 ‖ Q, so that 2 ∈ Q and e2 = 1.
Then we observe that

#{p ≤ x : p - 2a, `a(p) not divisible by any qeq} =

#{p ≤ x : p - 2a, `a2(p) not divisible by any qeq}
−#{p ≤ x : p - 2a, `−a(p) not divisible by any qeq}.

Since both a2 and −a are positive, we can now compute ca,f by using the previous argument
to estimate both right-hand side terms. We omit the details, mentioning only that (by a
straightforward but laborious check) the density ca,f so obtained is positive in every case.

5. An exercise in heuristic reasoning

In this section, we propose an asymptotic formula for the number of p ≤ x which divide
some af(n)− 1, where a and f are as in Theorem 1. For simplicity, we restrict ourselves to
the case when a > 0, and we assume that a is not a perfect power.

We adopt some notation from the previous section. Namely, we let Q be the set of
primes q for which f does not have a zero modulo every power of q. For each q ∈ Q,
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we let eq be the minimal positive integer for which the congruence f(n) ≡ 0 (mod qeq) is
insoluble. Since Q \P is finite, we have that eq = 1 for all but finitely many q ∈ Q. Let

Q1 :=
∏

q|[2,a1]
q∈Q

qeq .

If [2, a1] - Q1, then put ν = 1; otherwise, define ν by (7).
Let χ denote the characteristic function of those natural numbers n divisible by no

prime power qeq , with q ∈ Q. Then χ is multiplicative. Moreover, p divides some af(n)− 1
precisely when χ(`(p)) = 1. One can approximate the condition that χ(`(p)) = 1 by the
condition that `(p) be divisible by no qeq , with q up to some fixed large parameter z. For
fixed z, there is no difficulty in computing the relative density of primes satisfying this
latter condition; indeed, the proof of Proposition 6 shows that this proportion is given by
(8), where now Q :=

∏
q∈Q∩[2,z] q

eq . We now (unjustifiably) replace z with x to obtain the

naive guess that

(9)
1

π(x)
#{p ≤ x : χ(`(p)) = 1} ≈1 + (ν − 1)(−1)ω(Q1)

∏
q|Q1

q

qeq+1 − q − qeq−1

 ∏
q∈Q∩[2,x]

(
1− q2

qeq(q2 − 1)

)
.

Let us compare this prediction with what the same naive heuristic suggests for the total
number of n ≤ x with χ(n) = 1. Since qeq | n with probability q−eq , our naive guess here
is that

(10)
1

x
#{n ≤ x : χ(n) = 1} ≈

∏
q∈Q∩[2,x]

(
1− 1

qeq

)
.

Dividing (9) by (10), we might conjecture that

(11)

1
π(x)#{p ≤ x : χ(`(p)) = 1}

1
x#{n ≤ x : χ(n) = 1}

→ Ca,f (as x→∞),

where

(12) Ca,f =

1 + (ν − 1)(−1)ω(Q1)
∏
q|Q1

q

qeq+1 − q − qeq−1

∏
q∈Q

(
1− 1

(q2 − 1)(qeq − 1)

)
.

As with ca,f in the last section, the definition of ν permits one to check in a straightforward
way that Ca,f > 0.

To obtain our conjectured asymptotic formula, it remains to estimate the size of the
denominator in (11), i.e., the number of n ≤ x for which χ(n) = 1. This can be obtained
from a theorem of Wirsing [21, Satz 1]. We state his result in a weaker form that suffices
for our application.
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Theorem D. Let f be a multiplicative function satisfying 0 ≤ f(n) ≤ 1 for all n. Assume
that for some positive constant τ , one has

∑
p≤x f(p) ∼ τx/ log x, as x→∞. Then

1

x

∑
n≤x

f(n) ∼ 1

log x

e−γτ

Γ(τ)

∏
p≤x

(
1 +

f(p)

p
+
f(p2)

p2
+ . . .

)
(as x→∞).

Here γ is the Euler–Mascheroni constant and Γ(z) is the classical Gamma function.

We take f = χ in Theorem D. By the Chebotarev density theorem (in the form of [15,
Théorème 2], say), the hypothesis on

∑
p≤x f(p) is satisfied with τ = 1− rf . (Recall from

the introduction that 1− rf > 0.) Moreover, a short computation shows that∏
p≤x

(
1 +

f(p)

p
+
f(p2)

p2
+ . . .

)
=
∏
p≤x

(
1− 1

p

)−1 ∏
q∈Q∩[2,x]

(
1− 1

qeq

)
.

Invoking Mertens’s theorem, we deduce that (as x→∞)

1

x
#{n ≤ x : χ(n) = 1} ∼ erfγ

Γ(1− rf )

∏
q∈Q∩[2,x]

(
1− 1

qeq

)
.

Comparing this with (11), and recalling that π(x) ∼ x/ log x, we arrive at our conjecture:

Conjecture 7. With the above notation and hypotheses, the number of primes p ≤ x which
divide af(n) − 1 for some n is

(13) ∼ Ca,f
erfγ

Γ(1− rf )

x

log x

∏
q∈Q∩[2,x]

(
1− 1

qeq

)
(as x→∞),

where Ca,f is given by (12).

Remark. Lest the reader be misled, we should note that our heuristic does not depend
on interpreting the symbol “≈” appearing in (9) and (10) as asymptotic equality. In fact,
we expect that both naive predictions (9) and (10) are off by a constant factor; the hope
is that this anomalous factor disappears upon dividing (9) by (10). More colloquially, we
are hoping that two wrongs make a right!

In defense of this reasoning, we point out that an exactly analogous procedure leads to a
number of widely accepted conjectures, including the quantitative form of the twin prime
conjecture, the Murata–Pomerance conjecture on the number of p ≤ x for which `2(p) is
prime [12], and Motohashi’s conjecture [11, Conjecture J*] on the number of p ≤ x of the
form x2 + y2 + 1, in the corrected form of Iwaniec [7].

Example. We give an example where the product appearing in (13) can be put in a more
satisfactory form. Take a = 2 and f(T ) = T 2 + 1. Then Q consists of 2 together with the
primes q ≡ 3 (mod 4); also, eq = 1 for all q ∈ Q except q = 2, where e2 = 2. We have
Q1 = 4, and so ν = 5/4. From (12), we find that

C2,T 2+1 =
7

9

∏
q≡3 (mod 4)

(
1− 1

(q2 − 1)(q − 1)

)
.
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Also, rf = 1
2 , Γ(1− rf ) = Γ(12) =

√
π, and by a theorem of Uchiyama [17],

∏
q≤x

q≡3 (mod 4)

(
1− 1

q

)
∼ e−γ/2

√
π

2

 ∏
q≡3 (mod 4)

(
1− 1

q2

)1/2
 (log x)−1/2.

Thus, Conjecture 7 predicts that the number of p ≤ x dividing some 2n
2+1 − 1 is asymp-

totically

7

12
√

2

 ∏
q≡3 (mod 4)

(
1− 1

q2

)1/2(
1− 1

(q2 − 1)(q − 1)

) x

(log x)3/2
.

An analogous simplification of the product appearing in (13) is possible whenever the
splitting field of f has an abelian Galois group; see [20, 9].

6. Concluding remarks

As noted by Ballot and Luca, classical results on primitive prime divisors imply that for
every choice of a and f , infinitely many primes p divide some af(n)− 1. But this argument
gives only a very weak lower bound on the number of such p ≤ x. Can we do better?

Conjecture 7 is probably intractable at present. Even obtaining a lower bound of the
form � x/(log x)1+rf seems difficult in general. It is more or less equivalent to asking
for lower bounds of the expected order when one sieves the sequence {`(p)}p≤x by the
set of primes P defined in (1). One may compare the situation with Hooley’s GRH-
conditional resolution of Artin’s primitive root conjecture [5], which depends on sifting
the corresponding sequence of indices {(p− 1)/`(p)}p≤x. We expect our problem to be at
least as difficult as Hooley’s. Indeed, as we saw in the proof of Theorem 1, under GRH
the numbers (p− 1)/`(p) have only very small prime factors. This means that Hooley has
only to sieve by a set of very small primes, which is quite convenient. We do not have this
luxury.

Since (under GRH) the numbers p− 1 and `(p) have the same set of large prime factors,
our problem is intimately related to the problem of sifting the set of shifted primes p−1 by
a set like our P. Here it seems very few lower bound results are known, apart from what
can be derived from the half-dimensional sieve. To take a case that is favorable for us,
consider the polynomial f(T ) = T 2 + 1: From the half-dimensional sieve (as applied in [6];

cf. [2, p. 282, Theorem 14.8]), one obtains (unconditionally) � x/(log x)3/2 primes p ≤ x

for which p−1
2 is supported on primes ≡ 1 (mod 4). For such primes, `(p) | p − 1 | n2 + 1

for some n, and so p | an2+1 − 1 (provided that p - a). Since rf = 1
2 , the lower bound

agrees with the conjectured order of magnitude. Unfortunately, this unconditional proof
appears not to generalize very far, not even to all pairs a and f with f quadratic. It would
be interesting to know the extent to which extra hypotheses, like GRH, would allow us to
extend the list of pairs a and f for which the conjecture can be proved.
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