
(Primes and) Squares modulo p

Paul Pollack

MAA Invited Paper Session
on Accessible Problems in
Modern Number Theory

January 13, 2018

1 of 15



Question
Consider the infinite arithmetic progression

2, 5, 8, 11, 14, . . . .

Does it contain any squares?

Answer
No. If n = �, then also n ≡ � (mod m) for any choice of modulus
m. We take m = 3. Every square modulo 3 is

02 ≡ 0, 12 ≡ 1, or 22 ≡ 1.

But the numbers in our list are congruent to 2 modulo 3.
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For the rest of this talk, p denotes an odd prime.

As on the last slide, we will be mostly concerned with the set of
reduced squares modulo p, by which we mean the squares mod p in
[0, p − 1]. E.g., when p = 5, the reduced squares are

0, 1, 4.
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Many cheerful facts

Let p be an odd prime.

• There are p−1
2 nonzero reduced squares modulo p.

• The Legendre symbol
( ·
p

)
is multiplicative.

• For each integer a, one can characterize those primes p for which a
is congruent to a square modulo p (via Quadratic Reciprocity).

Now this is not the end. It is not even the
beginning of the end. But it is, perhaps,
the end of the beginning.
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Primes make everything more interesting

Take p = 13. Then the reduced squares modulo p are

0, 1, 3, 4, 9, 10, 12

while the reduced nonsquares are

2, 5, 6, 7, 8, 11.
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Primes make everything more interesting

Take p = 13. Then the reduced squares modulo p are

0, 1, 3, 4, 9, 10, 12

while the reduced nonsquares are

2, 5, 6, 7, 8, 11.

Question
Assume p ≥ 7. Is there always a prime reduced square modulo p? a
prime reduced nonsquare?

Answer
YES for nonsquares: Start with any n in the list of reduced
nonsquares. Then n ≥ 2, so n factors as a (nonempty) product of
primes. Not every prime factor can be a square, else n would be a
square.
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Answer
YES for squares: To start with, suppose p ≡ 1 (mod 4). If p ≡ 1
(mod 8), then 2 is in the list of squares. Otherwise, since p > 5, we
know that p − 1 is not a power of 2. So there is an odd prime q
dividing p − 1. Then

p ≡ 1 (mod q),

so p is on the list of squares modulo q. Since p ≡ 1 (mod 4), QR
puts q on the list of squares modulo p.

Now suppose p ≡ 3 (mod 4). A similar argument works with q a
prime dividing p+1

4 . (Exercise!) �
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Many directions one could try to push this. For example, one could
ask.

Question
What is the size of the smallest prime nonsquare modulo p?

Answer
For each ε > 0, the smallest prime nonsquare is

< p
1

4
√
e
+ε

for all large enough p (Burgess, 1963).
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Many directions one could try to push this. For example, one could
ask.

Question
What is the size of the smallest prime square modulo p?

Answer
For each ε > 0, the smallest prime square is

< p
1
4
+ε

for all large enough p (Linnik and A. I. Vinogradov, 1966).

Surely, the truth is that pε works as an upper bound in both
problems. But the Burgess and Linnik–Vinogradov results have seen
no substantial improvement in more than 50 years.
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Question
How many primes appear in the list of reduced squares modulo p?
How many primes appear in the list of reduced nonsquares?

All the primes up to p − 1 appear in one of the two lists.
Conjecturally, each list should contain about half, so ≈ 1

2p/ log p.

What we can prove (unconditionally) are lower bounds of a small
power of p.

Theorem (P., 2017)

Fix ε > 0. There is an η = η(ε) > 0 such that, for all large primes p,

there are more than pη primes not exceeding p
1

4
√
e
+ε

that are
nonsquares modulo p.
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Theorem (Benli and P., 2017)

Fix ε > 0. There is an η = η(ε) > 0 such that,
for all large primes p, there are more than pη

primes not exceeding p
1
2
+ε that are squares

modulo p.

In work in progress, Benli expects to replace the exponent 1
2 in the

theorem with 1
4 , matching the exponent in the theorem of

Linnik–Vinogradov.
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In a different direction, one could look for primes in a prescribed
residue class, a la Dirichlet.

Theorem (Gica, 2006)

If p ≥ 41, both the residue classes 1 mod 4
and 3 mod 4 contain a prime in the list of
reduced squares mod p.

Theorem (P., 2017)

If p ≥ 13, both the residue classes 1 mod 4 and 3 mod 4 contain a
prime in the list of reduced nonsquares mod p.

It does not appear easy to replace the modulus 4 here with other
integers!
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The proofs often involve results from the classical theory of binary
quadratic forms.

To give the flavor, let’s prove the following special case of Gica’s
theorem.

Theorem
If p ≡ 5 (mod 8) and p > 37, then there is a prime 1 modulo 4 on
the list of reduced squares modulo p.
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Theorem
If p ≡ 5 (mod 8) and p > 37, then there is a prime 1 modulo 4 on
the list of reduced squares modulo p.

Theorem (Gauss, 1801)

If n is odd, then n is a sum of three squares unless n ≡ 7 (mod 8).

Theorem (Grosswald, Calloway, Calloway, 1959)

If n is odd, then n is a sum of three positive squares unless n ≡ 7
(mod 8) or n = {1, 5, 13, 25, 37, 85}.

So we can write p = x2 + y2 + z2 with x , y , z > 0.
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Write p = x2 + y2 + z2. Then x2 + y2 = p − z2 < p.

We also have x 6= y : otherwise p = 2x2 + z2, and one gets a
contradiction reducing modulo 8.

A sum of unequal squares of positive integers always has a prime
factor 1 modulo 4. (Exercise!) So we can choose a prime q ≡ 1
(mod 4) with q | x2 + y2. Since x2 + y2 < p, we have

q < p.

Also, (
q

p

)
=

(
p

q

)
=

(
x2 + y2 + z2

q

)
=

(
z2

q

)
= 1.
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Thank you!
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