(Primes and) Squares modulo p

Paul Pollack

Tufts Algebra, Geometry, and Number Theory Seminar

May 3, 2018

Question

Consider the infinite arithmetic progression

$$
2,5,8,11,14, \ldots
$$

Does it contain any squares?

Question

Consider the infinite arithmetic progression

$$
2,5,8,11,14, \ldots
$$

Does it contain any squares?
Answer
No. If $n=\square$, then also $n \equiv \square(\bmod m)$ for any choice of modulus m. We take $m=3$. Every square modulo 3 is

$$
\equiv 0^{2} \equiv 0, \quad 1^{2} \equiv 1, \quad \text { or } \quad 2^{2} \equiv 1
$$

But the numbers in our list are congruent to 2 modulo 3.

For the rest of this talk, p denotes an odd prime.

As on the last slide, we will be mostly concerned with the set of reduced squares modulo p, by which we mean the squares $\bmod p$ in $[0, p-1]$. E.g., when $p=5$, the reduced squares are

$$
0,1,4 .
$$

Question

How many squares modulo p are there?
Too easy: Infinitely many! But what about reduced squares?

Theorem

The number of reduced squares modulo p is $1+\frac{p-1}{2}=\frac{p+1}{2}$.
Proof.
Over any field in which $2 \neq 0$, the map $x \mapsto x^{2}$ is 2-to- 1 on nonzero elements. The integers modulo p form a field with $p-1$ nonzero elements, so there are $\frac{p-1}{2}$ nonzero squares there.
\therefore Precisely half of the numbers in $[1, p-1]$ are squares modulo p.
OK... New question: which half?

Following Legendre, for each integer a and odd prime p, define

$$
\left(\frac{a}{p}\right)=\left\{\begin{aligned}
0 & \text { if } a \equiv 0 \quad(\bmod p) \\
1 & \\
\text { if } a & \equiv \text { nonzero square } \bmod p \\
-1 & \\
\text { if } a & \equiv \text { nonsquare } \bmod p
\end{aligned}\right.
$$

Using that the subgroup of squares has index 2 in the unit group of the integers mod p, one can show that $\left(\frac{a b}{p}\right)=\left(\frac{a}{p}\right)\left(\frac{b}{p}\right)$.

Proposition (Euler)

$$
\begin{aligned}
& \left(\frac{2}{p}\right)=1 \Longleftrightarrow p \equiv \pm 1(\bmod 8) . \text { Also, } \\
& \left(\frac{-1}{p}\right)=1 \Longleftrightarrow p \equiv 1(\bmod 4) .
\end{aligned}
$$

Law of quadratic reciprocity (Gauss)
If p, q are distinct odd primes, then

$$
\left(\frac{p}{q}\right)\left(\frac{q}{p}\right)=(-1)^{\frac{p-1}{2} \cdot \frac{q-1}{2}}
$$

In other words, for distinct odd primes p and q,

$$
p \equiv \square \quad(\bmod q) \Longleftrightarrow q \equiv \square \quad \bmod p,
$$

except when $p \equiv q \equiv 3(\bmod 4)$, in which case

$$
p \equiv \square \quad(\bmod q) \Longleftrightarrow q \not \equiv \square \quad \bmod p .
$$

Using the results of Gauss and Euler, for any given integer a, one can completely characterize those primes p for which a shows up in the list of squares modulo p. As an example,

10 is a square $\bmod p \Longleftrightarrow$

$$
p=5 \text { or } p \equiv 1,3,9,13,27,31,37,39 \quad(\bmod 40) .
$$

Using the results of Gauss and Euler, for any given integer a, one can completely characterize those primes p for which a shows up in the list of squares modulo p. As an example,

10 is a square $\bmod p \Longleftrightarrow$

$$
p=5 \text { or } p \equiv 1,3,9,13,27,31,37,39 \quad(\bmod 40)
$$

Now this is not the end. It is not even the beginning of the end. But it is, perhaps, the end of the beginning.

Primes make everything more interesting

Take $p=13$. Then the reduced squares modulo p are

$$
0,1,3,4,9,10,12
$$

while the reduced nonsquares are

$$
2,5,6,7,8,11 .
$$

Primes make everything more interesting

Take $p=13$. Then the reduced squares modulo p are

$$
0,1,3,4,9,10,12
$$

while the reduced nonsquares are

$$
2,5,6,7,8,11
$$

Question

Assume $p \geq 7$. Is there always a prime reduced square modulo p ? a prime reduced nonsquare?

Answer
YES for nonsquares: Start with any n in the list of reduced nonsquares. Then $n \geq 2$, so n factors as a (nonempty) product of primes. Not every prime factor can be a square, else n would be a square.

Answer

YES for squares: To start with, suppose $p \equiv 1(\bmod 4)$. If $p \equiv 1$ $(\bmod 8)$, then 2 is in the list of squares. Otherwise, since $p>5$, we know that $p-1$ is not a power of 2 . So there is an odd prime q dividing $p-1$. Then

$$
p \equiv 1 \quad(\bmod q)
$$

so p is on the list of squares modulo q. Since $p \equiv 1(\bmod 4), \mathrm{QR}$ puts q on the list of squares modulo p.

Now suppose $p \equiv 3(\bmod 4)$. A similar argument works with q a prime dividing $\frac{p+1}{4}$. (Exercise!)

Many directions one could try to push this. For example, one could ask.

Question

What is the size of the smallest prime nonsquare modulo p ?
Answer
For each $\epsilon>0$, the smallest prime nonsquare is

$$
<p^{\frac{1}{4 \sqrt{e}}+\epsilon}
$$

for all large enough p (Burgess, 1963).

Many directions one could try to push this. For example, one could ask.

Question

What is the size of the smallest prime square modulo p ?

Answer

For each $\epsilon>0$, the smallest prime square is

$$
<p^{\frac{1}{4}+\epsilon}
$$

for all large enough p (Linnik and A. I. Vinogradov, 1966).

Surely, the truth is that p^{ϵ} works as an upper bound in both problems. But the Burgess and Linnik-Vinogradov results have seen no substantial improvement in more than 50 years.

Question

How many primes appear in the list of reduced squares modulo p ? How many primes appear in the list of reduced nonsquares?

All the primes up to $p-1$ appear in one of the two lists. Conjecturally, each list should contain about half, so $\approx \frac{1}{2} p / \log p$.

What we can prove (unconditionally) are lower bounds of a small power of p.

Theorem (P., 2017)
Fix $\epsilon>0$. There is an $\eta=\eta(\epsilon)>0$ such that, for all large primes p, there are more than p^{η} primes not exceeding $p^{\frac{1}{4 \sqrt{e}}+\epsilon}$ that are nonsquares modulo p.

Theorem (Benli and P., 2017)

Fix $\epsilon>0$. There is an $\eta=\eta(\epsilon)>0$ such that, for all large primes p, there are more than p^{η} primes not exceeding $p^{\frac{1}{2}+\epsilon}$ that are squares modulo p.

Theorem (Benli and P., 2017)

Fix $\epsilon>0$. There is an $\eta=\eta(\epsilon)>0$ such that, for all large primes p, there are more than p^{η} primes not exceeding $p^{\frac{1}{2}+\epsilon}$ that are squares modulo p.

Quite recently, Benli has managed to replace the exponent $\frac{1}{2}$ in the theorem with $\frac{1}{4}$, matching the exponent in the theorem of Linnik-Vinogradov.

In a different direction, one could look for primes in a prescribed residue class, a la Dirichlet.

Theorem (Gica, 2006) If $p \geq 41$, both the residue classes $1 \bmod 4$ and 3 mod 4 contain a prime in the list of reduced squares mod p.

Theorem (P., 2017)
If $p \geq 13$, both the residue classes $1 \bmod 4$ and $3 \bmod 4$ contain a prime in the list of reduced nonsquares mod p.

It does not appear easy to replace the modulus 4 here with other integers!

Part II: (More) Proofs

Earlier, I mentioned the theorem of Burgess that for large enough primes p, there is a prime nonsquare $\bmod p$ smaller than about $p^{1 / 4 \sqrt{e}}$.

I want to present for you a proof of a somewhat weaker result. The beautiful argument - which in my opinion deserves to be better known - is due to La̋szlő Re̋dei.

Theorem (Rëdei, 1950)
For all large enough primes p, the smallest prime nonsquare $\bmod p$ is

$$
<p^{1 / 2}
$$

Earlier, I mentioned the theorem of Burgess that for large enough primes p, there is a prime nonsquare $\bmod p$ smaller than about $p^{1 / 4 \sqrt{e}}$.

I want to present for you a proof of a somewhat weaker result. The beautiful argument - which in my opinion deserves to be better known - is due to La̋szlő Re̋dei.

Theorem (Re̋dei, 1950)
For all large enough primes p, the smallest prime nonsquare $\bmod p$ is

$$
<p^{1 / 2}
$$

It's enough to produce any nonsquare $<p^{1 / 2}$.

Lemma (Dirichlet, 1849)

The "probability" that two positive integers are relatively prime is $\left(\sum_{n=1}^{\infty} \frac{1}{n^{2}}\right)^{-1}$, and so (Euler) $=\frac{6}{\pi^{2}}$.

Here's a heuristic argument for the theorem.
Let's call the probability in question P.
Let P_{d} be the probability that two positive integers have gcd d, so that $P_{1}=P$. It is easy to express P_{d} in terms of P. Indeed, for x and y to have gcd d, it is necessary and sufficient that $d \mid x$, that $d \mid y$, and that $x / d, y / d$ are relatively prime.

All of this happens with probability

$$
\frac{1}{d} \cdot \frac{1}{d} \cdot P=\frac{P}{d^{2}} .
$$

All of this happens with probability

$$
\frac{1}{d} \cdot \frac{1}{d} \cdot P=\frac{p}{d^{2}} .
$$

So

$$
P_{d}=\frac{P}{d^{2}}
$$

But every pair of positive integers has some gcd, and so

$$
1=\sum_{d=1}^{\infty} P_{d}=P \sum_{d=1}^{\infty} \frac{1}{d^{2}} .
$$

Solving for P gives the stated result.

A precise version of the lemma is as follows.

Lemma

As $x \rightarrow \infty$, the number of ordered pairs of integers (a, b) with $1 \leq a, b \leq x$ and $\operatorname{gcd}(a, b)=1$ is

$$
\sim \frac{6}{\pi^{2}} x^{2}
$$

A precise version of the lemma is as follows.

Lemma

As $x \rightarrow \infty$, the number of ordered pairs of integers (a, b) with $1 \leq a, b \leq x$ and $\operatorname{gcd}(a, b)=1$ is

$$
\sim \frac{6}{\pi^{2}} x^{2} .
$$

Great, but ... what does this have to do with squares $\bmod p$?

Let's suppose for a contradiction that all integers $1 \leq a \leq \sqrt{p}$ are squares $\bmod p$. Then so is every fraction

$$
\frac{a}{b}, \quad \text { where } \quad 1 \leq a, b \leq \sqrt{p}
$$

where the fractions are viewed as elements of \mathbb{F}_{p}.

So if all $a \leq \sqrt{p}$ are squares $\bmod p$, so are all

$$
\frac{a}{b}, \quad \text { where } \quad 1 \leq a, b \leq \sqrt{p}
$$

Claim: The reduced fractions in the above list represent distinct elements of \mathbb{F}_{p}.

Indeed, suppose $a / b=c / d$, where $1 \leq a, b, c, d \leq \sqrt{p}$ and $\operatorname{gcd}(a, b)=\operatorname{gcd}(c, d)=1$. Then

$$
0=a d-b c \quad \text { in } \mathbb{F}_{p}
$$

But $|a d-b c|<p$, so $a d-b c=0$, so $a / b=c / d$ in \mathbb{Q}. By uniqueness of lowest-terms representations in \mathbb{Q}, we have $a=c$ and $b=d$.

But how many reduced fractions do we have?

This is precisely the number of pairs $1 \leq a, b \leq \sqrt{p}$ with $\operatorname{gcd}(a, b)=1$, which is

$$
\sim \frac{6}{\pi^{2}}(\sqrt{p})^{2} \sim \frac{6}{\pi^{2}} p
$$

So if all $a \leq \sqrt{p}$ are squares, then the number of squares is at least $\sim \frac{6}{\pi^{2}} p$. But $\frac{6}{\pi^{2}}>0.6$, so there would be $>0.6 p$ squares mod p. But the number of nonzero squares $\bmod p$ is $<\frac{1}{2} p$. So we get a contradiction for large p.

Working a bit harder, one sees $p=23$ is the last exception.

Nonsquares in progressions mod 4

Theorem (P.)
If $p \geq 5$, then there is a prime $q<p$ with $q \equiv 3(\bmod 4)$ in the list of reduced nonsquares modulo p.

Example $(p=41)$
$3,6,7,11,12,13,14,15,17,19,22,24,26,27,28,29,30,34,35,38$
Theorem (P.)
If $p \geq 13$, then there is a prime $q<p$ with $q \equiv 1(\bmod 4)$ in the list of reduced nonsquares modulo p.

Example $(p=41)$
$3,6,7,11,12,13,14,15,17,19,22,24,26,27,28,29,30,34,35,38$

Let's talk first about finding nonsquares congruent to 1 modulo 4.
Theorem (P.)
If $p \geq 13$, then there is a prime $q<p$ with $q \equiv 1(\bmod 4)$ in the list of reduced nonsquares modulo p.

Right now I don't have an elegant argument for this that works in general - the proof uses analytic arguments that work for $p \geq 3 \cdot 10^{11}$, and then a computer checks the rest.

In some sense this theorem is the easier of the two, since it was already known from work of Friedlander that the conclusion held for all p larger than a certain effectively computable constant. The work is getting the constant down to $3 \cdot 10^{11}$.

Theorem (P.)
If $p \geq 13$, then there is a prime $q<p$ with $q \equiv 1(\bmod 4)$ in the list of nonsquares modulo p.

It would be interesting to know if there's a proof that doesn't rely on extensive computer calculation.

There are proofs for certain special classes of primes p. For example, suppose $p \equiv 5(\bmod 8)$. In this case, a theorem of Ramanujan-Dickson guarantees one can write $p=x^{2}+y^{2}+2 z^{2}$ in integers x, y, z.

Exercise: Show that (a) there is a prime $q \equiv 5(\bmod 8)$ dividing $x^{2}+y^{2}$, (b) any such prime satisfies $q<p$ and $\left(\frac{q}{p}\right)=-1$.

Theorem (P.)

If $p \geq 5$, then there is a prime $q<p$ with $q \equiv 3(\bmod 4)$ in the list of nonsquares modulo p.
The case of the theorem when $p \equiv 3(\bmod 4)$ case is fairly easy.
Proof.
We first treat the case when $p \equiv 3(\bmod 4)$. Then $p \geq 7$, so $p-4 \geq 3$ and $p-4 \equiv 3(\bmod 4)$. Take a prime

$$
q \mid p-4 \quad \text { with } \quad q \equiv 3 \quad(\bmod 4) .
$$

Since $p \equiv 4 \equiv 2^{2}(\bmod q)$, we know p is on the list of squares modulo q. Since $p, q \equiv 3(\bmod 4), q$ is not on the list of squares $\bmod p$.

Theorem (P.)

If $p \geq 5$, then there is a prime $q<p$ with $q \equiv 3(\bmod 4)$ in the list of nonsquares modulo p.
Now suppose that $p \equiv 1(\bmod 4)$. The classical theory of binary quadratic forms (as developed by Gauss) implies the existence of integers A, B, C with $\operatorname{gcd}(A, B, C)=1$ such that the two-variable quadratic polynomial

$$
F(x, y):=A x^{2}+B x y+C y^{2}
$$

has the following properties:

1. $B^{2}-4 A C=-4 p$,
2. $|B| \leq A \leq C$,
3. if $n=F(x, y)$ for some $x, y \in \mathbb{Z}$ and $\operatorname{gcd}(n, 4 p)=1$, then $n \equiv 3$ $(\bmod 4)$ and $\left(\frac{n}{p}\right)=-1$.
$F(x, y)=A x^{2}+B x y+C y^{2}$ has the following properties:
4. $B^{2}-4 A C=-4 p$,
5. $|B| \leq A \leq C$,
6. if $n=F(x, y)$ for some $x, y \in \mathbb{Z}$ and $\operatorname{gcd}(n, 4 p)=1$, then $n \equiv 3$ $(\bmod 4)$ and $\left(\frac{n}{p}\right)=-1$.

From this we see that
(i) B is even,
(ii) at least one of A, C is odd $[$ since $\operatorname{gcd}(A, B, C)=1]$
(iii) $A>1$ [otherwise $1=F(1,0)$ violates 3.],
(iv) $1<A, C \leq \frac{p+1}{2}$,

By (iv), A and C are coprime to p. By (ii), at least one of these is odd, so coprime to $4 p$.
$F(x, y)=A x^{2}+B x y+C y^{2}$ has the following properties:
(i) B is even,
(ii) at least one of A, C is odd $[$ since $\operatorname{gcd}(A, B, C)=1]$
(iii) $A>1$ [otherwise $1=F(1,0)$ violates 3.],
(iv) $1<A, C \leq \frac{p+1}{2}$,

By (iv), A and C are coprime to p. By (ii), at least one of these is odd, and hence coprime to $4 p$. Both A, C are represented by F :

$$
A=F(1,0), \quad \text { while } \quad C=F(0,1)
$$

Now using (3.), we can choose $n \in\{A, C\}$ with

$$
\left(\frac{n}{p}\right)=-1 \quad \text { and } \quad n \equiv 3 \quad(\bmod 4)
$$

Recall: $F(x, y)=A x^{2}+B x y+C y^{2}$, where $B^{2}-4 A C=-4 p$ and $1<A, C \leq \frac{p+1}{2}$. Also, $n \in\{A, C\}$ satisfies $n \equiv 3(\bmod 4)$.

Take a prime $q \mid n$ with $q \equiv 3(\bmod 4)$. Clearly,

$$
q \leq n \leq \frac{p+1}{2}
$$

Finally,

$$
-4 p=B^{2}-4 A C \equiv B^{2} \quad(\bmod q)
$$

so that

$$
1=\left(\frac{-4 p}{q}\right)=\left(\frac{-1}{q}\right)\left(\frac{4}{q}\right)\left(\frac{p}{q}\right)=(-1)(1)\left(\frac{q}{p}\right)
$$

so that $\left(\frac{q}{p}\right)=-1$, as desired.

