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Question
Consider the infinite arithmetic progression

2, 5, 8, 11, 14, . . . .

Does it contain any squares?

Answer
No. If n = �, then also n ≡ � (mod m) for any choice of modulus
m. We take m = 3. Every square modulo 3 is

≡ 02 ≡ 0, 12 ≡ 1, or 22 ≡ 1.

But the numbers in our list are congruent to 2 modulo 3.
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For the rest of this talk, p denotes an odd prime.

As on the last slide, we will be mostly concerned with the set of
reduced squares modulo p, by which we mean the squares mod p in
[0, p − 1]. E.g., when p = 5, the reduced squares are

0, 1, 4.
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Question
How many squares modulo p are there?

Too easy: Infinitely many! But what about reduced squares?

Theorem
The number of reduced squares modulo p is 1 + p−1

2 = p+1
2 .

Proof.
Over any field in which 2 6= 0, the map x 7→ x2 is 2-to-1 on nonzero
elements. The integers modulo p form a field with p − 1 nonzero
elements, so there are p−1

2 nonzero squares there. �

∴ Precisely half of the numbers in [1, p − 1] are squares modulo p.

OK... New question: which half?
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Following Legendre, for each integer a and odd prime p, define

(
a

p

)
=


0 if a ≡ 0 (mod p),

1 if a ≡ nonzero square mod p,

−1 if a ≡ nonsquare mod p.

Using that the subgroup of squares has index 2 in the unit group of

the integers mod p, one can show that

(
ab

p

)
=

(
a

p

)(
b

p

)
.

Proposition (Euler)(
2

p

)
= 1⇐⇒ p ≡ ±1 (mod 8). Also,(

−1

p

)
= 1⇐⇒ p ≡ 1 (mod 4).
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Law of quadratic reciprocity (Gauss)

If p, q are distinct odd primes, then(
p

q

)(
q

p

)
= (−1)

p−1
2
· q−1

2 .

In other words, for distinct odd primes p and q,

p ≡ � (mod q)⇐⇒ q ≡ � mod p,

except when p ≡ q ≡ 3 (mod 4), in which case

p ≡ � (mod q)⇐⇒ q 6≡ � mod p.

6 of 29



Using the results of Gauss and Euler, for any given integer a, one can
completely characterize those primes p for which a shows up in the
list of squares modulo p. As an example,

10 is a square mod p ⇐⇒
p = 5 or p ≡ 1, 3, 9, 13, 27, 31, 37, 39 (mod 40).

Now this is not the end. It is not even
the beginning of the end. But it is,
perhaps, the end of the beginning.
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Primes make everything more interesting

Take p = 13. Then the reduced squares modulo p are

0, 1, 3, 4, 9, 10, 12

while the reduced nonsquares are

2, 5, 6, 7, 8, 11.
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Primes make everything more interesting

Take p = 13. Then the reduced squares modulo p are

0, 1, 3, 4, 9, 10, 12

while the reduced nonsquares are

2, 5, 6, 7, 8, 11.

Question
Assume p ≥ 7. Is there always a prime reduced square modulo p? a
prime reduced nonsquare?

Answer
YES for nonsquares: Start with any n in the list of reduced
nonsquares. Then n ≥ 2, so n factors as a (nonempty) product of
primes. Not every prime factor can be a square, else n would be a
square.
8 of 29



Answer
YES for squares: To start with, suppose p ≡ 1 (mod 4). If p ≡ 1
(mod 8), then 2 is in the list of squares. Otherwise, since p > 5, we
know that p − 1 is not a power of 2. So there is an odd prime q
dividing p − 1. Then

p ≡ 1 (mod q),

so p is on the list of squares modulo q. Since p ≡ 1 (mod 4), QR
puts q on the list of squares modulo p.

Now suppose p ≡ 3 (mod 4). A similar argument works with q a
prime dividing p+1

4 . (Exercise!) �
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Many directions one could try to push this. For example, one could
ask.

Question
What is the size of the smallest prime nonsquare modulo p?

Answer
For each ε > 0, the smallest prime nonsquare is

< p
1

4
√
e
+ε

for all large enough p (Burgess, 1963).
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Many directions one could try to push this. For example, one could
ask.

Question
What is the size of the smallest prime square modulo p?

Answer
For each ε > 0, the smallest prime square is

< p
1
4
+ε

for all large enough p (Linnik and A. I. Vinogradov, 1966).

Surely, the truth is that pε works as an upper bound in both
problems. But the Burgess and Linnik–Vinogradov results have seen
no substantial improvement in more than 50 years.
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Question
How many primes appear in the list of reduced squares modulo p?
How many primes appear in the list of reduced nonsquares?

All the primes up to p − 1 appear in one of the two lists.
Conjecturally, each list should contain about half, so ≈ 1

2p/ log p.

What we can prove (unconditionally) are lower bounds of a small
power of p.

Theorem (P., 2017)

Fix ε > 0. There is an η = η(ε) > 0 such that, for all large primes p,

there are more than pη primes not exceeding p
1

4
√
e
+ε

that are
nonsquares modulo p.
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Theorem (Benli and P., 2017)

Fix ε > 0. There is an η = η(ε) > 0 such that,
for all large primes p, there are more than pη

primes not exceeding p
1
2
+ε that are squares

modulo p.

Quite recently, Benli has managed to replace the exponent 1
2 in the

theorem with 1
4 , matching the exponent in the theorem of

Linnik–Vinogradov.
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In a different direction, one could look for primes in a prescribed
residue class, a la Dirichlet.

Theorem (Gica, 2006)

If p ≥ 41, both the residue classes 1 mod 4
and 3 mod 4 contain a prime in the list of
reduced squares mod p.

Theorem (P., 2017)

If p ≥ 13, both the residue classes 1 mod 4 and 3 mod 4 contain a
prime in the list of reduced nonsquares mod p.

It does not appear easy to replace the modulus 4 here with other
integers!
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Part II: (More) Proofs
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Earlier, I mentioned the theorem of Burgess that for large enough
primes p, there is a prime nonsquare mod p smaller than about
p1/4

√
e .

I want to present for you a proof of a somewhat weaker result. The
beautiful argument — which in my opinion deserves to be better
known — is due to La̋szlő Re̋dei.

Theorem (Re̋dei, 1950)

For all large enough primes p, the smallest
prime nonsquare mod p is

< p1/2.

It’s enough to produce any nonsquare < p1/2.
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Lemma (Dirichlet, 1849)

The “probability” that two positive integers are relatively prime is(∑∞
n=1

1
n2

)−1
, and so (Euler) = 6

π2 .

Here’s a heuristic argument for the theorem.

Let’s call the probability in question P.

Let Pd be the probability that two positive integers have gcd d , so
that P1 = P. It is easy to express Pd in terms of P. Indeed, for x and
y to have gcd d , it is necessary and sufficient that d | x , that d | y ,
and that x/d , y/d are relatively prime.

All of this happens with probability

1

d
· 1

d
· P =

P

d2
.

16 of 29



All of this happens with probability

1

d
· 1

d
· P =

p

d2
.

So

Pd =
P

d2
.

But every pair of positive integers has some gcd, and so

1 =
∞∑
d=1

Pd = P
∞∑
d=1

1

d2
.

Solving for P gives the stated result.

17 of 29



A precise version of the lemma is as follows.

Lemma
As x →∞, the number of ordered pairs of integers (a, b) with
1 ≤ a, b ≤ x and gcd(a, b) = 1 is

∼ 6

π2
x2.

Great, but ... what does this have to do with squares mod p?

Let’s suppose for a contradiction that all integers 1 ≤ a ≤ √p are
squares mod p. Then so is every fraction

a

b
, where 1 ≤ a, b ≤ √p,

where the fractions are viewed as elements of Fp.
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So if all a ≤ √p are squares mod p, so are all

a

b
, where 1 ≤ a, b ≤ √p.

Claim: The reduced fractions in the above list represent distinct
elements of Fp.

Indeed, suppose a/b = c/d , where 1 ≤ a, b, c , d ≤ √p and
gcd(a, b) = gcd(c , d) = 1. Then

0 = ad − bc in Fp.

But |ad − bc| < p, so ad − bc = 0, so a/b = c/d in Q. By
uniqueness of lowest-terms representations in Q, we have a = c and
b = d .
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But how many reduced fractions do we have?

This is precisely the number of pairs 1 ≤ a, b ≤ √p with
gcd(a, b) = 1, which is

∼ 6

π2
(
√
p)2 ∼ 6

π2
p.

So if all a ≤ √p are squares, then the number of squares is at least
∼ 6

π2 p. But 6
π2 > 0.6, so there would be > 0.6p squares mod p. But

the number of nonzero squares mod p is < 1
2p. So we get a

contradiction for large p.

Working a bit harder, one sees p = 23 is the last exception.
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Nonsquares in progressions mod 4

Theorem (P.)

If p ≥ 5, then there is a prime q < p with q ≡ 3 (mod 4) in the list
of reduced nonsquares modulo p.

Example (p = 41)

3, 6, 7, 11, 12, 13, 14, 15, 17, 19, 22, 24, 26, 27, 28, 29, 30, 34, 35, 38

Theorem (P.)

If p ≥ 13, then there is a prime q < p with q ≡ 1 (mod 4) in the list
of reduced nonsquares modulo p.

Example (p = 41)

3, 6, 7, 11, 12, 13, 14, 15, 17, 19, 22, 24, 26, 27, 28, 29, 30, 34, 35, 38
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Let’s talk first about finding nonsquares congruent to 1 modulo 4.

Theorem (P.)

If p ≥ 13, then there is a prime q < p with q ≡ 1 (mod 4) in the list
of reduced nonsquares modulo p.

Right now I don’t have an elegant argument for this that works in
general — the proof uses analytic arguments that work for
p ≥ 3 · 1011, and then a computer checks the rest.

In some sense this theorem is the easier of the two, since it was
already known from work of Friedlander that the conclusion held for
all p larger than a certain effectively computable constant. The work
is getting the constant down to 3 · 1011.
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Theorem (P.)

If p ≥ 13, then there is a prime q < p with q ≡ 1 (mod 4) in the list
of nonsquares modulo p.

It would be interesting to know if there’s a proof that doesn’t rely on
extensive computer calculation.

There are proofs for certain special classes of primes p. For example,
suppose p ≡ 5 (mod 8). In this case, a theorem of
Ramanujan–Dickson guarantees one can write p = x2 + y2 + 2z2 in
integers x , y , z .

Exercise: Show that (a) there is a prime q ≡ 5 (mod 8) dividing
x2 + y2, (b) any such prime satisfies q < p and

(q
p

)
= −1.

23 of 29



Theorem (P.)

If p ≥ 5, then there is a prime q < p with q ≡ 3 (mod 4) in the list
of nonsquares modulo p.

The case of the theorem when p ≡ 3 (mod 4) case is fairly easy.

Proof.
We first treat the case when p ≡ 3 (mod 4). Then p ≥ 7, so
p − 4 ≥ 3 and p − 4 ≡ 3 (mod 4). Take a prime

q | p − 4 with q ≡ 3 (mod 4).

Since p ≡ 4 ≡ 22 (mod q), we know p is on the list of squares modulo
q. Since p, q ≡ 3 (mod 4), q is not on the list of squares mod p. �
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Theorem (P.)

If p ≥ 5, then there is a prime q < p with q ≡ 3 (mod 4) in the list
of nonsquares modulo p.

Now suppose that p ≡ 1 (mod 4). The classical theory of binary
quadratic forms (as developed by Gauss) implies the existence of
integers A,B,C with gcd(A,B,C ) = 1 such that the two-variable
quadratic polynomial

F (x , y) := Ax2 + Bxy + Cy2

has the following properties:

1. B2 − 4AC = −4p,

2. |B| ≤ A ≤ C ,

3. if n = F (x , y) for some x , y ∈ Z and gcd(n, 4p) = 1, then n ≡ 3
(mod 4) and

(
n
p

)
= −1.
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F (x , y) = Ax2 + Bxy + Cy2 has the following properties:

1. B2 − 4AC = −4p,

2. |B| ≤ A ≤ C ,

3. if n = F (x , y) for some x , y ∈ Z and gcd(n, 4p) = 1, then n ≡ 3
(mod 4) and

(
n
p

)
= −1.

From this we see that

(i) B is even,

(ii) at least one of A,C is odd [since gcd(A,B,C ) = 1]

(iii) A > 1 [otherwise 1 = F (1, 0) violates 3.],

(iv) 1 < A,C ≤ p+1
2 ,

By (iv), A and C are coprime to p. By (ii), at least one of these is
odd, so coprime to 4p.
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F (x , y) = Ax2 + Bxy + Cy2 has the following properties:

(i) B is even,

(ii) at least one of A,C is odd [since gcd(A,B,C ) = 1]

(iii) A > 1 [otherwise 1 = F (1, 0) violates 3.],

(iv) 1 < A,C ≤ p+1
2 ,

By (iv), A and C are coprime to p. By (ii), at least one of these is
odd, and hence coprime to 4p. Both A,C are represented by F :

A = F (1, 0), while C = F (0, 1).

Now using (3.), we can choose n ∈ {A,C} with(
n

p

)
= −1 and n ≡ 3 (mod 4).
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Recall: F (x , y) = Ax2 + Bxy + Cy2, where B2 − 4AC = −4p and
1 < A,C ≤ p+1

2 . Also, n ∈ {A,C} satisfies n ≡ 3 (mod 4).

Take a prime q | n with q ≡ 3 (mod 4). Clearly,

q ≤ n ≤ p + 1

2
.

Finally,
−4p = B2 − 4AC ≡ B2 (mod q),

so that

1 =

(
−4p

q

)
=

(
−1

q

)(
4

q

)(
p

q

)
= (−1)(1)

(
q

p

)
,

so that
(q
p

)
= −1, as desired. �
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Thank you!
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