
SQUARE VALUES OF EULER’S FUNCTION

PAUL POLLACK AND CARL POMERANCE

Abstract. We show that almost all squares are missing from the range of Euler’s ϕ-
function.

1. Introduction

Let ϕ denote Euler’s function, let N denote the set of positive integers, and let V = ϕ(N),
the set of values of ϕ. Further, let V (x) = #{n ≤ x : n ∈ V }. The distribution of V has
been of interest since the 1930s when Erdős showed that V (x) = x/(log x)1+o(1) as x → ∞.
We still do not have an asymptotic for V (x), but after work of Ford [8], we do know the
order of magnitude.

For a function f : N→ N, let

Vf = {n : f(n) ∈ V }, V f = {n : ϕ(n) ∈ f(N)},
and let Vf (x), V f (x) be the respective counting functions for Vf ,V f . The situation when
f is a linear polynomial is fairly well-understood. If f(n) = kn, where k is a fixed natural
number, then Vf (x) ∼ V (kx) and V f (x) ∼ x as x→∞; on the other hand, if f(n) = kn+ j
with 0 < j < k, then Vf (x) = o(V (kx)) and V f (x) = o(x). (The Vf -results do not appear to
be in the literature, but follow from the method of Ford.) More refined results concerning the
cases when 0 < j < k can be found in [16, 7, 9]. The case when f = σ, the sum-of-divisors
function, was considered in [10], where some old questions of Erdős were settled (see also
[11, 12]). This paper is concerned with the function f(n) = n2, which we denote with the
symbol �, so that

V�(x) = #{n ≤ x : n2 ∈ V }, V �(x) = #{n ≤ x : ϕ(n) = m2 for some integer m}.
It was shown in [2], perhaps counter-intuitively, that V �(x) ≥ x0.7 for all large x, with the
conjectured exponent on x allowed to be any number below 1. In that paper it was also
shown that V�(x) ≥ x0.234 for all sufficiently large x. This lower bound was considerably
improved in [3], where it was shown that V�(x)� x/(log x)4 (compare with the case r = 2
of [13, Theorem 1.2]).

The paper [2] shows that V �(x) ≤ x/ exp((1 + o(1))(log x log log log x)1/2) as x→∞, but
does not address an upper bound for V�(x). It is not immediately clear that V�(x) = o(x).
In fact, a short computer run shows that V�(108) = 26,094,797 so that more than half of
the even numbers to 108 have their squares in the range of ϕ. In this paper we prove the
following results.

Theorem 1. For all sufficiently large numbers x, we have V�(x) ≤ x/(log x)0.0063.

Theorem 2. We have V�(x)� x/(log x log log x)2.

In addition, we discuss some heuristics for the estimation of V�(x) and we discuss the anal-
ogous problems for the sum-of-divisors function.

For the analogous problem with Carmichael’s λ-function, one of us (CP) has a heuristic
argument that asymptotically all even numbers n have n2 a λ-value. However, not only have
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we failed to prove this, we have not been able to find a proof of a lower bound similar to
that of Theorem 2.

Notation. We use the Landau/Bachmann O and o-notation, as well as the associated Vino-
gradov � and � notations, with their standard meanings. We write A � B to mean that
A � B and B � A. Any dependence of implied constants is noted explicitly, often with a
subscript.

The letters p, and `, with or without subscripts, always denote primes. We use P (n) for
the largest prime factor of the natural number n, with the convention that P (1) = 1. The
notation pe ‖ n means that pe | n but that pe+1 - n; in this case, we say that pe exactly divides
n. As usual, Ω(n) denotes the number of prime factors of n counted with multiplicity; thus,
Ω(n) =

∑
pk‖n k. We write logk for the k-fold iterate of the natural logarithm.

2. Preparation

2.1. Anatomy and sieving. A classical theorem of Hardy and Ramanujan asserts that a
typical natural number n has about log2 n prime factors, regardless of whether or not the
primes are counted with multiplicity. Our first lemma, which may be deduced from the
results in Chapter 0 of [15], bounds from above the number of n for which Ω(n) is atypically
large.

Lemma 3. Let x ≥ 3, and let ε > 0. For 1 ≤ α ≤ 2 − ε, the number of n ≤ x with

Ω(n) ≥ α log2 x is Oε(x(log x)−Q(α)), where we set Q(λ) =
∫ λ

1
log t dt = λ log(λ)− λ+ 1.

We now quote two upper bound sieve results, in slightly crude forms that are convenient for
our later applications. Both of these follow from the general upper bound O-result appearing
as [14, Theorem 2.2].

Lemma 4. Suppose that A1, . . . , Ah are positive integers and B1, . . . , Bh are integers such
that

E :=
h∏
i=1

Ai
∏

1≤i<j≤h

(AiBj − AjBi) 6= 0.

Then for x ≥ 3,

#{n ≤ x : Ain+Bi prime for all 1 ≤ i ≤ h} � x

(log x)h
(log2 |3E|)h,

where the implied constant may depend on h.

Lemma 5. Let A, B, and C be integers with A > 0 and D = B2−4AC not a square. Write
D = df 2, where d is a fundamental discriminant. Then for x ≥ 3,

#{p ≤ x : Ap2 +Bp+ C prime} � x

(log x)2
(log2 |3ACD|)3

∏
`≤x

(
1−

(
d
`

)
`

)
, (1)

where
(
d
·

)
is the Kronecker symbol.

2.2. Sieving quadratics and short Euler products. To control the size of the product
on ` appearing in (1), we appeal to the methods and results of a recent preprint of Chandee,
David, Koukoulopoulos, and Smith [5].

Lemma 6. Let ε > 0. Let χ be a nonprincipal real character mod q. For all real y ≥ 1, we
have ∏

`≤y

(
1− χ(`)

`

)
�ε q

ε.
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Proof. The proof parallels that of [5, Lemma 3.2]. By Mertens’ theorem,∏
`≤min{y,exp(qε)}

(
1− χ(`)

`

)
� qε,

so we may assume that y > exp(qε) and it suffices to show that∏
exp(qε)<`≤y

(
1− χ(`)

`

)
�ε 1.

By the classical Siegel–Walfisz estimates (see [6, eq. (3), p. 132]),∑
n≤x

Λ(n)χ(n)�ε x/ log x for all x ≥ exp(qε). (2)

Recalling that log (1− t) = −
∑

k≥1 t
k/k (for |t| < 1), we find that

log
∏

exp(qε)<`≤y

(
1− χ(`)

`

)
= −

∑
n>1, `|n⇒exp(qε)<`≤y

Λ(n)χ(n)

n log n

= −
∑

exp(qε)<n≤y

Λ(n)χ(n)

n log n
+O(1)�ε 1.

where the final estimate is obtained from (2) by partial summation. �

The next lemma is an equivalent form of [5, Lemma 3.3], which the authors of that paper
attribute in essence to Elliott.

Lemma 7. Fix δ ∈ (0, 1], and let Q ≥ 3. We can choose a set Eδ(Q) of real, primitive
characters, all of conductor bounded by Q, with

#Eδ(Q)�δ Q
δ

and so that the following holds: If χ is a primitive real character of conductor q ≤ Q and
χ 6∈ Eδ(Q), then ∏

y<`≤z

(
1− χ(`)

`

)
�δ 1 uniformly for z ≥ y ≥ logQ.

For each nonsquare integer d, let χd be the primitive real character of conductor |D| given

by the Kronecker symbol
(
D
·

)
, where D is the discriminant of Q(

√
d). It is convenient for us

to isolate the following consequence of Lemma 7.

Lemma 8. Let D be the set of squarefree d 6= 1 for which there exists a real number y with∏
`≤y

(
1− χd(`)

`

)
≥ (log2 |3d|)2. (3)

For fixed δ ∈ (0, 1] and all x ≥ 1, we have that

#{d ∈ D : |d| ≤ x} �δ x
δ.

Proof. We can assume that x is large. It suffices to prove the stated estimate for #{d ∈ D :
xδ < |d| ≤ x}. Let {yi}∞i=0 be the sequence of real numbers defined by yi = 4ixδ, and choose
j so that yj < |d| ≤ yj+1. Then the conductor of χd is bounded by 4yj+1, and 4yj+1 < 16|d|.
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We claim that if χd 6∈ Eδ(4yj+1), then the inequality (3) never holds. Indeed, Lemma 7 (with
Q := 4yj+1) shows that for every y,∏

`≤y

(
1− χd(`)

`

)
�δ

∏
`≤min{log (4yj+1),y}

(
1− χd(`)

`

)
� log2 |d|,

using Mertens’ theorem in the final step. Since |d| ≥ xδ and x is large, this upper bound
is incompatible with (3), proving our claim. Since distinct squarefree d give rise to distinct
primitive real characters χd, the upper bound for #Eδ(Q) from Lemma 7 yields

#{d ∈ D : xδ < |d| ≤ x} ≤
∑
j≥0
yj≤x

#Eδ(4yj+1)�δ

∑
0≤j≤ log (x1−δ)

log 4

4(j+2)δxδ
2 �δ x

δ.

This completes the proof of the lemma. �

3. Proof of the upper bound (Theorem 1)

Setup. We assume throughout the argument that x is large. Let n ≤ x be such that
n2 = ϕ(m) for some integer m. By de Bruijn [4, eq. (1.6)], we can assume that

(i) P (n) ≥ x1/ log2 x

since the number of n ≤ x for which (i) fails is O(x/ log x). We can also assume that

(ii) n is not divisible by any d ∈ D with |d| > log x, where D is the set considered in
Lemma 8.

Indeed, since #{d ∈ D : |d| ≤ t} � t1/2 for all t ≥ 1, the count of exceptional n ≤ x is
O(x/(log x)1/2) (by partial summation). At the cost of an additional exceptional set of the
same order, we can further assume that

(iii) n is not divisible by any square exceeding log x.

Introducing another exceptional set of size O(x/(log x)1/2), we can assume that

(iv) there is no prime p2 dividing m with p > log x.

Indeed, suppose that p2 | m. Setting rp =
∏

`e‖p−1 `
de/2e, we see that p · rp | n. Note that

rp ≥
√
p− 1� √p. Hence, the number of n with p2 | m for some p > log x does not exceed∑

p>log x

x

p · rp
� x

∑
p>log x

1

p3/2
� x/(log x)1/2.

Let α be a parameter with 1 < α < 2, which will be chosen later so as to optimize the
argument. We assume that

(v) Ω(n) ≤ α log2 x,

noting that Lemma 3 guarantees that the number of exceptions n ≤ x is

�α x/(log x)1−α+α logα. (4)

Let p = P (n), so that p2 | n2 = ϕ(m). By (i) and (iv), we have that p2 - m, and so there
are only two ways to explain how p2 | ϕ(m):

I. there are two different primes q1, q2 | m with qi ≡ 1 (mod p) for i = 1, 2,
II. there is a prime q | m with q ≡ 1 (mod p2).
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Case I. We will assume that the primes q1, q2 are not 1 (mod p2); otherwise p3 | n2, so
p2 | n, a violation of (i) and (iii). For such a prime q we may write it as 1 + apb2, where ap
is squarefree. This shows that n may be written in the form

n = ua1a2a3b1b2p, with a1a2a3p squarefree, 1 + a1a3pb
2
1 prime, 1 + a2a3pb

2
2 prime.

For each fixed choice of u, a1, a2, a3, b1, b2 we count primes p ≤ x/ua1a2a3b1b2 with the two
primality conditions above holding. Using the upper bound sieve in the form of Lemma 4,
and recalling that x/ua1a2a3b1b2 ≥ p > x1/ log2 x, we find that the number of these p is

� x

ua1a2a3b1b2(log x)3
(log2 x)6. (5)

(Explicitly, we apply Lemma 4 with A1 = 1 and B1 = 0, A2 = a1a3b
2
1 and B2 = 1, and

A3 = a2a3b
2
2 and B3 = 1; note that since q1 6= q2, we have E 6= 0, and |E| < xO(1).) Now we

sum our upper bound (5) over the possibilities for u, a1, a2, a3, b1, b2, keeping in mind that
their product is bounded by x and Ω(ua1a2a3b1b2) ≤ α log2 x. Here it is helpful to introduce
an auxiliary parameter z (Rankin’s trick); for 0 < z < 1,

∑
Ω(ua1a2a3b1b2)≤α log2 x

1

ua1a2a3b1b2

≤ z−α log2 x
∑ zΩ(u)zΩ(a1)zΩ(a2)zΩ(a3)zΩ(b1)zΩ(b2)

ua1a2a3b1b2

.

Keeping only the restriction that P (ua1a2a3b1b2) ≤ x, we find that

∑ zΩ(u)zΩ(a1)zΩ(a2)zΩ(a3)zΩ(b1)zΩ(b2)

ua1a2a3b1b2

≤

(∏
`≤x

(1− z/`)−1

)6

� (log x)6z.

(The last estimate uses Mertens’ theorem.) Comparing the previous two displays, we find
that

∑
1

ua1a2a3b1b2
� (log x)6z−α log z. To optimize, we take z = α/6 to get an upper bound

of O((log x)α−α log(α/6)) for our reciprocal sum. Referring back to (5), we see that the total
count of n in Case I is

� x

(log x)3−α+α log(α/6)
(log2 x)6. (6)

Case II. Write q − 1 = a(bp)2 where a is squarefree, so that n = uabp for some integer u.
We first consider the sub-case where P (ua) ≤ exp((log x)β), where 0 < β < 1 is to be chosen
later. For given values of u, a, b, the number of choices for p ≤ x/uab satisfying the primality
condition is

� x

uab(log x)2
(log2 x)5

∏
`≤x/uab

(
1− χ−a(`)

`

)
. (7)

(Here we have applied Lemma 5 with A = ab2, B = 0, and C = 1, so that D = −4ab2

and d is the discriminant of Q(
√
−a).) If −a 6∈ D , then the product appearing in (7) is

O((log2 x)2). If −a ∈ D , our assumption (ii) implies that a ≤ log x. In that case, Lemma 6
shows that the product in (7) is Oε((log x)ε/2), for any ε > 0. So whether or not −a ∈ D ,
the number of choices for p is

�ε
x

uab(log x)2−ε . (8)
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(We have absorbed the power of log2 x into the exponent of log x.) We now sum over u, a, b
by the method used in Case I, keeping in mind that P (ua) ≤ exp((log x)β). For 0 < z < 1,∑ 1

uab
≤ z−α log2 x

∑ zΩ(u)zΩ(a)zΩ(b)

uab

≤ z−α log2 x
∏
`1≤x

(1− z/`1)−1

 ∏
`2≤exp((log x)β)

(1− z/`2)−1

2

� (log x)−α log z+(1+2β)z.

The optimal choice is z = α/(1+2β), which gives
∑

1
uab
� (log x)α−α log(α/(1+2β)). So by (8),

the total contribution in this sub-case is

�ε
x

(log x)2−α+α log(α/(1+2β))−ε . (9)

We divide the remaining sub-case when P (ua) > exp((log x)β) into further sub-cases as
follows. For each positive integer i, let βi = β + i/ log2 x, and let Ii be the interval

Ii = (exp((log x)βi−1), exp((log x)βi)].

For each i we consider the sub-case where p2 := P (ua) ∈ Ii. Clearly, the number of possible
sub-cases is at most 1 + log2 x.

We know that p2 | ua | n, while (iii) implies that p2
2 - n. Hence, p2 ‖ n. Consequently,

p2 - bp and so p2
2 - q − 1. Since p2 > log x, (iv) gives that p2

2 - m. In conjunction with the
relations p2

2 ‖ n2 = ϕ(m) and p2
2 - q − 1, this shows that there is a prime q2 6= q dividing m

with q2 ≡ 1 (mod p2). If p2 | u, then either p2
2 ‖ q2− 1 or p2 ‖ q2− 1 and there is some other

prime q3 | m with p2 ‖ q3 − 1. If p2 | a, then p2 ‖ q2 − 1. We shall sum up these possibilities
as pk2 ‖ q − 1, k = 0 or 1, and pj2 ‖ q2 − 1, j = 1 or 2 and k + j ≤ 2, ignoring the possible
existence of a prime q3.

Set q1 = q, p1 = p, b1 = b. We can select natural numbers a1, a2, a3, b2 with a1a2a3p1p2

squarefree and

q1 − 1 = a1a3b
2
1p

2
1p
k
2, q2 − 1 = a2a3b

2
2p
j
2.

Then n has a decomposition of the form

n = u1a1a2a3b1b2p1p2.

Here, in our old notation, a = a1a3p
k
2 and u = u1a2b2p

1−k
2 . Thus, P (u1a1a2a3b2) < p2. Fixing

u1, a1, a2, a3, b1, b2, p2 and using the primality of q1, we deduce from Lemma 5 (applied with
A = a1a3b

2
1p
k
2, B = 0, and C = 1) that the number of possible p1 ≤ x/u1a1a2a3b1b2p2 is

� x

u1a1a2a3b1b2p2(log x)2
(log2 x)5

∏
`≤x/u1a1a2a3b1b2p2

(
1− χ−a1a3p2(`)

`

)
�ε

x

u1a1a2a3b1b2p2(log x)2−ε . (10)

(To estimate the product we use an analysis similar to that in (7).) We now fix u1, a1, a2,
a3, b1, b2 and sum on p2 ∈ Ii. First assume that j = 1. Since p2 and a2a3b

2
2p2 + 1 are both

prime, the sieve in the form of Lemma 4 shows that for each t ≥ 3, the number of possible
p2 ≤ t is O(t(log2 x)2/(log t)2). Now partial summation implies that if we sum (10) over
p2 ∈ Ii, the result is

�ε
x

u1a1a2a3b1b2(log x)2+βi−1−2ε
. (11)
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(Indeed, this upper bound holds for the larger sum over all p2 ≥ exp((log x)βi−1).) Now
assume j = 2. We proceed in the same way, though now we use Lemma 5 and a similar
analysis as in (7), getting an estimate of

�ε
x

u1a1a2a3b1b2(log x)2+βi−1−3ε
. (12)

Finally, we replace the estimate (11) with the larger bound (12) and sum over u1, a1, a2,
a3, b1, b2, keeping in mind that P (u1a1a2a3b2) ≤ exp((log x)βi). For 0 < z < 1,∑ 1

u1a1a2a3b1b2

≤ z−α log2 x
∑ zΩ(u1)zΩ(a1)zΩ(a2)zΩ(a3)zΩ(b1)zΩ(b2)

u1a1a2a3b1b2

≤ z−α log2 x

 ∏
`1≤exp((log x)βi )

(1− z/`1)−1

5 ∏
`2≤x

(1− z/`2)−1

� (log x)−α log z+(1+5βi)z.

We select z = α/(1 + 5βi) and find that
∑

1
u1a1a2a3b1b2

� (log x)α−α log(α/(1+5βi)). Referring

back to (12), we deduce that the contribution of the ith sub-case is

�ε
x

(log x)2+βi−1−α+α log(α/(1+5βi))−3ε
. (13)

To continue our analysis, we make the additional assumption that our parameters α and β
satisfy

0 < β ≤ α− 1

5
≤ 1. (14)

As βi− βi−1 = 1/ log2 x, it is straightforward to check that the upper bound in (13) remains
valid with the occurrence of βi replaced by βi−1. Having made this replacement, we now view
the exponent of log x in (13) as a function of βi−1, thinking of α and ε as fixed. The minimum
value of this function on the closed interval [β, 1] occurs when βi−1 = α − 1

5
, resulting in a

contribution of
�ε x/(log x)

9
5

+α log( 1
5

)−3ε.

Since there are O(log2 x) sub-cases, the contribution from all values of i is

�ε
x

(log x)
9
5

+α log( 1
5

)−4ε
. (15)

Optimization. We now choose α, β to minimize the size of the total exceptional set obtained
by adding the estimates (4), (6), (9), (15). (The other exceptional sets appearing in the
argument are of total size O(x/(log x)1/2), which is tiny on the scale we are interested in, so
we ignore these.) The optimal choice of α is obtained by setting the exponent Q(α) from
(4) equal to the exponent 9

5
+ α log(1

5
) from (15), which yields α = 1.114478 . . . . This leads

to the exponent Q(α) = 0.006316 . . . . Choosing β = 0.7, say, the remaining error terms
(6) and (9) are smaller than x/(log x)Q(α). (Note that (14) is satisfied for these choices of α
and β, and that the various choices of the parameter z in the proof all satisfy 0 < z < 1 as
required.) Thus, our count is smaller than x/(log x)0.0063 for all sufficiently large values of x,
which completes the proof of Theorem 1.

Remark. Our argument can be modified to show that for each fixed integer w ≤ (log x)1/4,
the number of integers wn2 in [1, x2] which are ϕ values is uniformly O(xw−1/2/(log x)0.0063).
For example, in Case I, let d = gcd(ϕ(q1q2), w), and write d = d1d2, where each di | ϕ(qi).
Then

q1 − 1

d1

q2 − 1

d2

| n2.
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Each factor q−1
d

on the left can be written as apb2. Proceeding as before, we deduce that n has
a factorization n = ua1a2a3b1b2p, where now the primality conditions are that 1 + d1a1a3pb

2
1

and 1+d2a2a3pb
2
2 are prime, and where d1d2 | w. One then needs to sum also on the number

of possibilities for d1, d2, but this is (log x)o(1) given the small size of w. Other changes are
similarly routine.

Using this we claim that the number of squarefull integers in [1, x2] which belong to V
is O(x/(log x)0.0063). Indeed, all but O(x/(log x)1/24) squarefull numbers in [1, x2] are of the
form m3n2 with m ≤ (log x)1/12. For each such m, the above argument shows that the
number of n with m3n2 ∈ V ∩ [1, x2] is O(x ·m−3/2/(log x)0.0063), uniformly in m. Now we
sum on m to get the claim.

4. A lower bound and a heuristic

4.1. Proof of Theorem 2.

Proof. Let y = (log x)2. For each prime p ∈ [y, 2y], let Qp denote the set of primes q ≤ x
with q ≡ 1 (mod p2) and let Q′p denote the set of those q ∈ Qp such that (q − 1)/p2 has no
prime factors in [y, 2y]. From the Brun–Titchmarsh inequality, it follows that

#(Qp \ Q′p)�
∑

r∈[y,2y]

x

p2r log x
� x

p2 log y log x
.

Thus, from the Siegel–Walfisz theorem, we have uniformly for p ∈ [y, 2y] that

#Q′p ∼ #Qp ∼
x

p2 log x
, x→∞

so that
#Q′p �

x

y2 log x
. (16)

For an integer a < x/y2 free of prime factors from [y, 2y], let N (a) denote the set of primes
q ≤ x with q ≡ 1 (mod a) and (q − 1)/a = p2 for some prime p ∈ [y, 2y]. Thus, q ∈ Q′p. If

we have two different primes q1, q2 in N (a) with qi − 1 = ap2
i for i = 1, 2, then

ϕ(q1q2) = (q1 − 1)(q2 − 1) = (ap1p2)2, ap1p2 < amax{p2
1, p

2
2} < x.

Since a has no prime factors in [y, 2y], an integer n = ap1p2 constructed in this way de-
termines the value of a and so determines the pair of distinct primes q1, q2 ∈ N (a). Our
strategy then is to count the number of such pairs of distinct primes for all possible values
of a.

Let N(a) = #N (a) if N (a) has been defined, with N(a) = 0 otherwise. From (16),∑
a<x/y2

N(a) =
∑

p∈[y,2y]

#Q′p �
y

log y
· x

y2 log x
=

x

y log y log x
.

It follows from Cauchy’s inequality that

∑
a<x/y2

N(a)2 ≥ y2

x

 ∑
a<x/y2

N(a)

2

� y2

x
· x2

y2(log y log x)2
� x

(log x log log x)2
.

The last two displays and the choice of y as (log x)2 imply that∑
a<x/y2

(
N(a)2 −N(a)

)
� x

(log x log log x)2
.

This sum represents the number of pairs of distinct primes in any of the sets N (a), and as
we have seen, it gives a lower bound for V�(x). This completes the proof of the theorem. �
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Remark. The above argument can be improved by a factor of log log x by including the
contributions from dyadic intervals [2j−1y, 2jy) for 2j ≤ yε for a fixed small value of ε > 0.
In the jth interval we have � x/(log x log(2jy))2 solutions, and so summing on j gets us
� x/((log x)2 log log x) numbers. To make this work one needs that the parameter a has no
prime factors from the interval [y, y1+ε), which is easy to arrange if ε is small enough.

It is interesting to compare the proof of Theorem 2 with the proof in [3]. The idea there
is similar, but instead of taking y = (log x)2, they take y = x1/6 and appeal to the prime
number theorem in [1] instead of the Siegel–Walfisz theorem. In addition, instead of using
the Cauchy inequality, they use Jensen’s inequality to much the same effect.

4.2. A heuristic. The above proof gives a lower estimate for the number of squares of the
form ϕ(q1q2), where q1, q2 are distinct primes. One might ask what the “true” answer is,
and more generally for the distribution of squares of the form ϕ(m) where m is the product
of k distinct odd primes, say m = q1 · · · qk. Such a square n2 has a natural factorization as
(q1 − 1) · · · (qk − 1). If qi − 1 is written as aib

2
i with ai squarefree, it follows that a1 · · · ak is

a square. For the case k = 2, as we have seen in the proof above, this forces a1 = a2. In
the case k = 3 we have three numbers A1, A2, A3 with ai = A1A2A3/Ai, for i = 1, 2, 3. The
situation gets more complicated for 4 or more primes.

Suppose that a number n ≤ x is divisible by 4, n/4 is squarefree, and Ω(n/4) ≥ α log2 x,
where we fix a real number α > 1. The number of ordered factorizations of n as A1A2A3b1b2b3

with at least 2 of A1, A2, A3 even is at least 6Ω(n/4) ≥ (log x)α log 6. The “chance” that each of
1 + b2

iA1A2A3/Ai is prime for i = 1, 2, 3 “should be” about (log x)−3. So, if α log 6 > 3, i.e.,
α > 3/ log 6, there should be at least one such factorization. Thus, most numbers n ≤ x with
n/4 squarefree and Ω(n/4) > α log2 x with α a fixed real larger than 3/ log 6 should have n2 ∈
V . It should then follow that V�(x) � x/(log x)Q(α). Since Q(3/ log 6) = 0.18864255 . . . ,
we thus should have V�(x) ≥ x/(log x)0.189 for all sufficiently large values of x. Note that
repeating this argument with products of 2 or 4 primes gives a worse result.

5. Square values of the sum-of-divisors function

Both Theorems 1 and 2 remain true with σ replacing ϕ. When porting over the proofs,
the main idea is to replace every occurrence of ϕ(q) = q − 1 with σ(q) = q + 1. This works
without much fuss for Theorem 2, and we leave the details to the reader. For Theorem 1, we
meet additional difficulties owing to the more complicated behavior of σ on prime powers.
In this section, we sketch a way around these roadblocks.

5.1. Outline. Assume that n ≤ x is such that n2 = σ(m). We can assume all of our previous
conditions (i)–(v) on n and m, with the exception of (iv), which we replace with

(iv′) m has no prime power divisor qe > exp((log x)1/2) with e ≥ 2.

We leave the justification of (iv′) to the end of this section, where it is shown (Lemma
9) that this assumption introduces an exceptional set of size O(x/(log x)1/4). For the rest
of the argument, we fix the values of α and β to the constants we found above. Thus,
α = 1.114478 . . . and β = 0.7.

With p = P (n), we have p2 | n2 = σ(m). It cannot be the case that p | σ(qe) for a
prime power qe ‖ m having e ≥ 2, for then 2qe > qe + qe−1 + · · · + 1 = σ(qe) ≥ p, forcing
qe > p

2
> 1

2
x1/2 log2 x and contradicting (iv′). This leaves only two possibilities:

I′. there are two different primes q1, q2 ‖ m with qi ≡ −1 (mod p) for i = 1, 2,
II′. there is a prime q ‖ m with q ≡ −1 (mod p2).

Case I′. This is handled exactly as Case I above, replacing q− 1 with q+ 1 throughout the
argument. We find that the total count of n in Case I′ satisfies our earlier upper bound (6).
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Case II′. We start by writing q + 1 = a(bp)2, so that n = uabp for some integer u. Our
first sub-case, when P (ua) ≤ exp((log x)β), is handled exactly as was the first sub-case of
Case II. Note that in the analogue of the sieve bound (7), the character χa appears in place
of χ−a. (We do not have to worry that a is a square, as that would imply q = a(bp)2 − 1
factors.) This sub-case makes a total contribution of size (9).

In the remaining sub-cases, P (ua) > exp((log x)β). We again partition these according to
the interval Ii to which p2 := P (ua) belongs. Reasoning as in our treatment of Case II, we
find that p2 ‖ n; moreover, if we choose k so that pk2 ‖ q + 1, then k = 0 or 1 according to
whether or not p2 | a. Hence,

p2 |
n2

q + 1
= σ(m/q).

Thus, there is a prime power qe2 ‖ m/q for which p2 divides σ(qe2). Note that qe2 >
1
2
p2 >

1
2

exp((log x)β), so that if e ≥ 2, we obtain a contradiction with (iv′). So e = 1 and p2 | q2 +1.

We choose j so that pj2 ‖ q2 + 1. Then j = 1 or j = 2, and k + j ≤ 2. We now set q1 = q,
p1 = p, b1 = b, and continue to mimick our earlier arguments. We find that the contribution
from all of the possible sub-cases of this sort satisfies (15).

Combining our estimates as before, we obtain the σ-analogue of Theorem 1 with the same
exponent 0.0063.

5.2. Proof that we can assume (iv′).

Lemma 9. The count of n ≤ x with n2 = σ(m) for some m failing (iv′) is O(x/(log x)1/4).

Proof. We continue to assume that x is large. For the duration of the argument, we let y =
exp((log x)1/2). Suppose that qe ‖ m. Then σ(qe) | σ(m) = n2, and so rqe :=

∏
`f‖σ(qe) `

df/2e

is a divisor of n. Thus,

1

x
#{n ≤ x : n2 = σ(m) for an m where (iv′) fails} ≤

∑(1)
+
∑(2)

+
∑(3)

, (17)

where∑(1)
:=
∑
qe>y
e≥3

1

rqe
,

∑(2)
:=

∑
q>
√
y

rq2>q log q

1

rq2
, and

∑(3)
:=

∑
q>
√
y

rq2≤q log q

1

rq2
.

Since rqe ≥ (σ(qe))1/2 > qe/2, we have
∑(1) ≤

∑
qe>y, e≥3 q

−e/2 ≤
∑

cubefull c>y c
−1/2 � y−1/6,

using in the final step that the count of cubefull numbers up to height t is O(t1/3). By

partial summation and the prime number theorem,
∑(2) ≤

∑
q>
√
y(q log q)−1 � (log y)−1. It

remains to estimate
∑(3).

Let us show that Q := {q : rq2 ≤ q log q} is a sparse set of primes. We begin with a simple
observation: If q2 + q + 1 has an exact prime divisor `0 > (log q)2, then

rq2 = `0

∏
`f‖q2+q+1
6̀=`0

`df/2e ≥ `0

√
q2 + q + 1

`0

> q
√
`0 > q log q,

and thus q 6∈ Q. So if we suppose that q ∈ Q ∩ (t/2, t] for a large real number t, then
q ∈ Q1 ∪Q2, where

Q1 := {q ∈ (t/2, t] : q2 + q + 1 has no prime divisors in ((log t)2, t1/10]},
Q2 := {q ∈ (t/2, t] : `2 | q2 + q + 1 for some ` ∈ ((log t)2, t1/10]}.
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Let %(r) be the number of roots modulo r of the polynomial X2 +X + 1. For primes ` > 3,
we have %(`) = 2 when ` ≡ 1 (mod 3) and %(`) = 0 otherwise. By the upper bound sieve
(for instance, in the form of [14, Theorem 4.2, p. 134]),

#Q1 �
t

log t

∏
(log t)2<`≤t1/10

(
1− %(`)

`

)
� t

(log t)2
log2 t�

t

(log t)3/2
.

(To estimate the product, we used a version of Mertens’s theorem for primes congruent to
1 modulo 3.) We estimate #Q2 crudely. Observing that %(`2) ≤ 2 for all primes ` > 3 (for
instance, by Hensel’s lemma), we obtain immediately that

#Q2 ≤
∑

(log t)2<`≤t1/10

(
2t

`2
+ 2

)
� t

(log t)2
.

Hence, #Q ∩ (t/2, t] ≤ #Q1 + #Q2 � t/(log t)3/2. Summing dyadically, we find that
#Q∩ [1, t]� t/(log t)3/2 for all t ≥ 3.

We now return to the problem of estimating
∑(3). Using the lower bound rq2 > q, we

find that
∑(3) ≤

∑
q>
√
y, q∈Q q

−1 � (log y)−1/2, by partial summation. Lemma 9 now follows

from (17) and our estimates for
∑(1),

∑(2), and
∑(3). �
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