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Two problems

1. Fix an elliptic curve E/Q. How do the groups E(Fp) vary as p
runs over primes of good reduction?

2. Let d be a positive integer. What are the possible torsion
subgroups E(F )[tors] if E is an elliptic curve defined over a
number field F of degree d?

We will find it convenient later to restrict to curves with complex
multiplication (CM), but we keep the discussion general for as long
as possible.
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PART I: STATISTICS FOR REDUCTIONS MOD p

Fix an elliptic curve E/Q. We know that for each prime p of good
reduction,

#E(Fp) = p + 1− ap,

where |ap| ≤ 2
√

p. Moreover,

E(Fp) ∼= Z/dpZ⊕ Z/epZ,

for uniquely determined positive integers dp and ep where dp | ep.
The integers dp and ep are the invariant factors of the group.

We would like to understand how the dp and ep behave as p
varies over primes of good reduction.
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A prototypical result

Question: How often is dp = 1?

Theorem (Serre, 1977)
Assume GRH. Let E/Q be a fixed elliptic
curve with an irrational 2-torsion point.
Then E(Fp) is cyclic for a well–defined
positive proportion of primes p.

If E has CM, the GRH assumption can be omitted (Murty, 1979
and Cojocaru, 2003).
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How many primes divide #E(Fp)?

In 1935, Erdős proved that almost all primes p ≤ x are such that
p − 1 has about log log p prime factors; this was a shifted-prime
analogue of a theorem proved by Hardy and Ramanujan (1917).

The Hardy–Ramanujan theorem was famously sharpened to a
normal law by Erdős and Kac.

The analogue for shifted primes was worked out by Halberstam:

Theorem (Halberstam, 1967)
Fix a real number u. As x →∞,

1
π(x)

#{p ≤ x : ω(p−1)−log2 p ≤ u
√

log2 x} → 1√
2π

∫ u

−∞
e−t2/2 dt .
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The normal behavior of the number of prime
factors

In her 2003 PhD thesis, Yu-Ru Liu proved the
analogue of Erdős–Kac with the numbers #E(Fp) = p + 1− ap
replacing p − 1.

Her result is unconditional if E has complex multiplication and
conditional on GRH otherwise.
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Titchmarsh’s divisor problem

The Titchmarsh divisor problem asks one to estimate∑
p≤x

τ(p − 1).

Under GRH, Titchmarsh (1931) showed that as x →∞,∑
p≤x

τ(p − 1) ∼ ζ(2)ζ(3)

ζ(6)
x .

The assumption of GRH was eventually removed by Linnik (1963).
Today, the result can be thought of as a fairly simple corollary of
the Brun–Titchmarsh and Bombieri–Vinogradov results.
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Titchmarsh’s divisor problem

What would an analogue for elliptic curves look like?

Akbary and Ghioca (2012): Observed that
d | p − 1⇐⇒ p splits completely in Q(ζd ). Since Q(E [d ]) is
analogous to Q(ζd ), an analogue of τ(p − 1) would be∑

d : p splits completely in Q(E [d ])

1

︸ ︷︷ ︸
in fact, this is τ(dp)

.

Theorem
Fix an elliptic curve E/Q. As x →∞, we have∑

p≤x τ(dp) ∼ cEπ(x). Here GRH is assumed unless E has CM.
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Of course, one could be more naive about the analogue one
considers.

What about just
∑

p≤x τ(#E(Fp))?

Theorem (P.)
Fix E/Q. If E has CM, then

∑
p≤x τ(dpep) ∼ cEx, as x →∞,

where cE is a positive constant depending on E.

If we do not assume E has CM, but do assume GRH,∑
p≤x τ(dpep) � x.
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The Akbary–Ghioca result has been extended by Felix and Murty
(2013) to estimate other sums of the form∑

p≤x

f (dp).

They assume one can write f (n) =
∑

d |n g(d) where
∑

d≤x |g(d)|
is appropriately bounded.

Example
Assume E/Q is an elliptic curve with CM. Fix 0 < α < 1. As
x →∞, ∑

p≤x

dαp ∼ cE ,α · π(x),

where cE ,α > 0.
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The last example suggests studying the mean value of dp, and
also of ep.

Information about these mean values should encode how near to
cyclic E(Fp) is, on average.

Theorem (Freiberg–Kurlberg, 2014)
Fix E/Q. Then as x →∞,

∑
p≤x ep ∼ cE

x2

log x , for some cE > 0.
GRH is assumed if E does not have CM.
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Theorem (Freiberg–Kurlberg, 2014)
Fix E/Q. As x →∞,

∑
p≤x ep ∼ cE

x2

log x , for some cE > 0. GRH is
assumed if E does not have CM.

Since also
∑

p≤x p � x2

log x , we see that ep is of average order
const · p.

Since dpep = p + 1− ap ∼ p, this suggests that dp is usually
bounded.

Theorem (Duke, 2003)
Let ψ(p) be any function that tends to∞. Then dp < ψ(p) for
almost all primes p. GRH is assumed if E does not have CM.
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Duke’s result tells us about the normal order of dp. What about the
average order?

Question
What is the asymptotic behavior of

∑
p≤x dp?

This question was proposed by Kowalski (2001), who conjectured
that ∑

p≤x

dp ∼ cEπ(x) if E does not have CM

∼ cEx if E has CM.

If E does not have CM, there has been very little progress towards
the upper bound; e.g., even on GRH, x1+o(1) is unknown (to me).
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Suppose E/Q is a fixed elliptic curve with CM. Then

x
log log x

log x
�
∑
p≤x

dp � x
√

log x (Kowalski, 2001)

∑
p≤x

dp � x log log x (Kim, 2014).

Kowalski’s argument was fleshed out by Felix and Murty (2013),
who noted a small improvement:∑

p≤x dp

x log log x/ log x
→∞.

Theorem (Freiberg and P., 2014)
For large x, we have

∑
p≤x dp � x.
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Sketch of the proof
Recall our claim that for CM curves,∑

p≤x

dp � x .

For simplicity, the CM curve is

E : y2 = x3 − x ,

which has CM by the ring of Gaussian integers Z[i].

For the primes p ≡ 3 (mod 4),

#E(Fp) = p + 1.

These are the supersingular primes. For these dp ≤ 2, and so
these can be ignored.
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Suppose instead that p ≡ 1 (mod 4). These are our ordinary
primes. Then p factors in Z[i] as

p = ππ̄,

where π ≡ 1 (mod (1 + i)3). (In other words, π is primary.)

Then
#E(Fp) = p + 1− (π + π̄) = N(π − 1),

and dp is the largest rational integer dividing π − 1.
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Using the identity dp =
∑

d |dp
φ(d), and remembering that

d2
p | dpep = #E(Fp) ≤ (

√
x + 1)2, we have∑

p≤x
p≡1 (mod 4)

dp =
∑
p≤x

p≡1 (mod 4)

∑
d |dp

φ(d)

=
∑

d≤
√

x+1

φ(d)
∑
p≤x

p≡1 (mod 4)
d |dp

1

=
1
2

∑
d≤
√

x+1

φ(d)
∑

N(π)≤x
N(π) prime,≡1 (mod 4)
π≡1 (mod [d ,(1+i)3])

1.
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OK, so ∑
p≤x

p≡1 (mod 4)

dp =
1
2

∑
d≤
√

x+1

φ(d)
∑

N(π)≤x
N(π) prime,≡1 (mod 4)
π≡1 (mod [d ,(1+i)3])

1.

Let’s look at the upper bound.
If we use Brun–Titchmarsh for Z[i], the inner sum is

� x
Φ(d) log 4x

d2

,

where Φ is the Euler function for Z[i].

Using this above and summing, we are led to Kim’s bound

� x log log x .
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To avoid losing a log log factor, we need to treat the d close to
√

x
more efficiently.

The part of the sum corresponding to d ≤ x1/3 is OK, by the
above argument, since then log 4x

d2 � log x . So suppose d > x1/3.

We now have to estimate∑
x1/3<d≤

√
x+1

φ(d)
∑

N(π)≤x
N(π) prime,≡1 (mod 4)
π≡1 (mod [d ,(1+i)3])

1.

In the inner sum, write π = ωd + 1. If N(π) ≤ x , then
N(ω) ≤ 4x/d2. If N(ωd + 1) is prime, clearly Im(ω) 6= 0.
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We invert the order of summation and after some simplifications,
we are left with the problem of bounding∑

N(ω)≤4x
Im(ω)6=0

∑
x1/3<d≤

√
4x

N(ω)

N(ωd+1) prime

φ(d).

Replace φ(d) with
√

4x/N(ω).
The problem comes down to counting d ∈ (x1/3,

√
4x/N(ω)] for

which the quadratic polynomial

N(ωd + 1) = N(ω)d2 + Tr(ω)d + 1

is prime.
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The upper bound sieve gives that this is

� S

√
x/N(ω)

log x
,

where S is a certain singular series depending on the particular
quadratic polynomial.

(We can assume
√

4x/N(ω) > x1/3. This is why we get a
denominator proportional to log x .)

If S were 1, we could sum with no problems. To complete the
proof, one shows S averages to� 1 in a suitable sense. Here
mean value theorems for nonnegative multiplicative functions are
used.
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What about the lower bound?

Remember, we need to bound from below

1
2

∑
d≤
√

x+1

φ(d)
∑

N(π)≤x
N(π) prime,≡1 (mod 4)
π≡1 (mod [d ,(1+i)3])

1.

One’s first inclination is to truncate the sum on d use
Bombieri–Vinogradov; but the weights φ(d) complicate matters.

One can carry this out with a severe truncation, going only up to
(log x)A, and use B–V to get� x log log x/ log x (Felix and Murty),
with an arbitrarily large implied constant.
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Rather than try to bound

1
2

∑
d≤
√

x+1

φ(d)
∑

N(π)≤x
N(π) prime,≡1 (mod 4)
π≡1 (mod [d ,(1+i)3])

1

from below using an average result, we use a result about most
individual progressions.

Specifically, using work of Weiss — who proved a generalization
of Linnik’s theorem for algebraic number fields — we show that if
d is not divisible by a certain exceptional modulus, then we get a
lower bound on the inner sum of the correct order for d up to
some small power of x . This is enough.
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PART II: TORSION OF ELLIPTIC CURVES OVER

NUMBER FIELDS

According to the Mordell–Weil theorem, if E is an elliptic curve
over a number field F , then

E(F ) ∼= Zr ⊕ E(F )[tors],

where E(F )[tors] is a finite abelian group.

Question
Let E be an elliptic curve over a number field F . What can we say
about E(F )[tors]?
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From Mazur to Merel

Theorem (Mazur’s torsion theorem, 1977)
For an elliptic curve E/Q, there are only finitely many possibilities
for E(Q)[tors]: It is either Z/nZ for some n = 1,2, . . . ,10,12, or it
is Z/2Z× Z/2nZ for n = 1,2,3, or 4.

If E is an elliptic curve over a quadratic number field, then
E(F )[tors] is isomorphic to one of 26 possible groups. This follows
from work of Kamienny, Kenku, and Momose, completed in 1992.
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From Mazur to Merel

We do not have a provably complete list of all possible groups of
the form E(F )[tors], for elliptic curves E over cubic number fields.

But we do know that only finitely many groups appear. The
following uniform boundedness theorem is due to Merel.

Theorem (Merel, 1994)
For all positive integers d, there is a bound
B(d) such that for any elliptic curve E over
any degree d number field F ,

#E(F )[tors] ≤ B(d).
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How bounded is uniform boundedness?
One can in bound B(d) explicitly. Since E(F )[tors] is a finite
abelian group of rank two, its order is bounded by the square of its
exponent.

Oesterlé showed that every prime dividing the exponent is at most
(1 + 3d/2)2. And Parent showed that every prime power `α

dividing the exponent is

≤


65(3d − 1)(2d)6 if ` > 3,
65(5d − 1)(2d)6 if ` = 3,
129(3d − 1)(3d)6 if ` = 2.

Conjecture
B(d) is bounded by a polynomial in d.
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Conjecture
B(d) is bounded by a polynomial in d.
This is quite a ways from the known results! However, for certain
classes of curves, this conjecture is a theorem.

Theorem
(Hindry–Silverman, 1998)
If E is an elliptic curve over a
number field F of degree
d ≥ 2, and the j-invariant of E
is an algebraic integer, then

#E(F )[tors] ≤ 1977408d log d .
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Now you CM, now you don’t (or vice versa)

A subclass of elliptic curves with integral j-invariant is the class of
elliptic curves with complex multiplication. For CM curves, it is
conjectured that one can do better.

Conjecture (Clark, Cook, Stankiewicz)
If E is a CM elliptic curve over a number field F of degree d ≥ 3,
then

#E(F )[tors] ≤ Cd log log d

for an absolute constant C.
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Number theory or lumber theory?

Theorem (Breuer, 2010)
Let E/F be a CM elliptic curve over a number field F . There exists
a constant c(E ,F ) > 0, integers 3 ≤ d1 < d2 < . . . < dn < . . . and
number fields Fn ⊃ F with [Fn : F ] = dn such that for all positive
integers n,

#E(Fn)[tors] ≥ c(E ,F )dn log log dn

Thus, the conjecture — if true — is best possible, up to the value
of the implied constant.
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When F does not contain the CM field, the conjecture follows from
work of Silverberg and Prasad–Yogananda.

Theorem (Clark, P.)
The conjecture holds if E has CM by the maximal order of an
imaginary quadratic field.

We are optimistic that we will soon have a proof of the full
conjecture.

[Added after this talk was given: We now have a proof of the full
conjecture!]
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Some fragments of the proof

I can say a few words about the proof, with special attention paid
to the analytic number theory bits. Let’s say E is an elliptic curve
over a degree d number field F with CM by the maximal order OK
of the imaginary quadratic field K .

From the results already mentioned, we can assume F ⊃ K .
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Key fact: If we view E(F )[tors] as an OK module and let a be its
annihilator, then

#E(F )[tors] = N(a);

moreover, the ray class field K (a) sits inside F .

Using this ray class field containment and the formula for the
degree of a ray class field, one gets

Φ(a) ≤ 6d
hK

,

where Φ is the analogue of Euler’s phi-function for ideals of OK .

Question
Given an upper bound on Φ(a), how large can N(a) be?
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We have:
Φ(a) ≤ 6d

hK
,

Question
Given an upper bound on Φ(a), how large can N(a) be?

For the classical Euler function, the answer is well-known. We
have φ(a)� a/ log log a, for a ≥ 3. Inverting, a� φ(a) log logφ(a)
for large a.

For any fixed quadratic field K , there is no difficulty generalizing
this argument. We have Φ(a)�K N(a)/ log log N(a) for each
integral ideal a of norm ≥ 3.
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This is encouraging. If we had

Φ(a)�K N(a)/ log log N(a)

without the K -dependence, then we could invert our upper bound
and get that

N(a)� d
hK

log log
d
hK
.

The left-hand side is #E(F )[tors] and the right-hand side is
O(d log log d).

Unfortunately, the above estimate doesn’t hold uniformly in K !
All is not lost, however. To get O(d log log d) at the end, we only
need

Φ(a)� N(a)

hK log log N(a)
.
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We only need

Φ(a)� N(a)

hK log log N(a)
.

By an elementary argument, this reduces to showing the following.

Proposition
Let K be an imaginary quadratic field with discriminant ∆. Let
χ(·) = (∆|·) be the associated quadratic character. Then∏

p≤z

(
1− χ(p)

p

)
≥ C

hK
,

for some positive absolute constant C, and all z ≥ 2.
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Proposition
Let K be an imaginary quadratic field with discriminant ∆. Let
χ(·) = (∆|·) be the associated quadratic character. Then∏

p≤z

(
1− χ(p)

p

)
≥ C

hK
,

for some positive absolute constant C, and all z ≥ 2.

When working on the paper, we came up with two proofs of the
proposition. The first is extremely short and elementary, and gives

≥ C′

log |∆|
.

Since hK ≈ |∆|1/2 (by Siegel), we win by a lot with this proof.
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However, this argument does not lead to an effective constant,
since we do not know effectively that

hK � log |∆|.

(Goldfeld–Gross–Zagier gets tantalizingly close, but doesn’t quite
reach this.)

Our second proof gets exactly the claimed estimate, without any
“extra winnings”. But the constant is effective!
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The second proof uses the class number formula for hK , which
involves a factor of L(1, χ). Replacing L(1, χ) with its Euler
product, proving the previous proposiiton amounts to showing that∏

p>z

(
1− χ(p)

p

)
≤ C′′

√
|∆|,

for some absolute constant C′′ and all z ≥ 2.

The primes up to exp(
√
|∆|) make a contribution of�

√
|∆|, by

Mertens’ theorem.

Once p > exp(
√
|∆|), we use that

∑
χ(p) displays enough

cancelation to make this part of the product� 1. Here we need
that any Siegel zero, if it exists, is at least c/

√
|∆| away from 1.

(This is slightly more than what follows immediately from the class
number formula, and is due to Goldfeld–Schinzel.)
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Max to min

I want to close by mentioning a theorem with Abbey Bourdon and
Pete L. Clark describing when we see the minimal number of
possibilities for torsion.

Say that a group is realizable in degree d if it appears as
E(F )[tors] for some CM elliptic curve over some degree d number
field F .
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There are six possible groups realizable in degree d = 1 (i.e., over
F = Q): Z/nZ for n = 1,2,3,4,6 and Z/2Z× Z/2Z.

This list was obtained by Olson shortly before Mazur’s theorem.

Each of these six Olson groups is realizable in every degree d .
(In fact, if a group is realizable in degree d , one can show it is
realizable in every degree that is a multiple of d .)

So the “least that can happen” in degree d is if the Olson groups
are the only possible torsion subgroups of CM curves.

Theorem (Bourdon, Clark, P.)
This “minimal behavior” occurs for a well-defined, positive
proportion of all degrees d.
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A classification of Olson degrees

Proposition
If d does not have this “minimal behavior” – i.e., there is a number
field F of degree d and a CM elliptic curve E/F with E(F )[tors] not
an Olson group – then either d is even or d is a multiple of

`− 1
2

hQ(
√
−`) (*)

for some prime ` ≡ 3 (mod 4) with ` > 3. The converse holds as
well.
The proposition follows from general facts about “sets of
multiples”, using that the sum on ` of the reciprocals of the
numbers in (*) converges.
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Of course, one sometimes gets more than the Olson groups. But
usually not ‘much’ more.

Theorem (Bourdon, Clark, P.)
Let ε > 0. Then there is a constant Tε such that for all d outside of
a certain set of upper density at most ε, every possible torsion
subroup one sees has size at most Tε.

How is this proved? Very roughly speaking (and lying slightly), one
shows that if E has a large torsion subgroup, then probably d is
divisible by a large shifted prime `− 1. (This follows from the ray
class field containment that came up a few slides before.)

Now we use a beautiful 1980 result of Erdős and Wagstaff: Very
few positive integers have a large divisor of the form `− 1.
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THANK YOU!
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