
A SIMPLE PROOF OF A THEOREM OF
HAJDU–JARDEN–NARKIEWICZ
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Abstract. Let K be an algebraic number field, and let G be a finitely
generated subgroup of K×. We give a short proof that for every positive
integer n, there is an element of OK not expressible as a sum of n
elements of G.

1. Introduction

Let K be an algebraic number field. The following theorem was proved

by Jarden and Narkiewicz [6] when G = U(OK) and by Hajdu [5] in general.

Theorem 1.1. Let K be a number field. Let G be a finitely generated sub-

group of K×. For each positive integer t, there is an α ∈ OK not expressible

as a sum of t elements of G.

The proofs in [5] and [6] depend crucially on the modern theory of S-unit

equations. It is the purpose of this note to outline an entirely different, very

short, and seemingly more elementary proof of Theorem 1.1.

We let λ(n) denote Carmichael’s function, defined as the exponent of

the group U(Z/nZ). The following lemma — which seems possibly of some

independent interest — is the key ingredient in our proof of Theorem 1.1.

Lemma 1.2. Let P be a set of primes of positive upper (relative) density.

For each κ > 0, there are infinitely many squarefree natural numbers n

which are divisible only by primes in P and which satisfy λ(n) < nκ.

If we do not restrict the prime factors of n, then λ(n) is occasionally

as small as (log n)O(log log logn), as shown by Erdős–Pomerance–Schmutz [4].

That estimate has been applied in a context similar to the present one by

several authors (beginning in work of Ádám, Hajdu, and Luca [1]), but

only when K = Q. The upper bound of Lemma 1.2 on the values of λ(n) is

weaker than that of [4], but the ability to restrict the support of n facilitates

applications to arbitrary number fields.

Without further ado, we show how to deduce Theorem 1.1 from Lemma

1.2.
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Proof of Theorem 1.1. Suppose that η1, . . . , ηm generate G. Let P be the set

of rational primes that split completely in K and are not below any prime

ideal appearing in the factorizations of the ηi. Then P has positive upper

density; in fact, by Landau’s prime ideal theorem [7] applied to the Galois

closure L (say) of K/Q, the density of P is 1
[L:Q]

. So by Lemma 1.2, there

are infinitely many squarefree n composed of primes from P that satisfy

λ(n) < n1/mt. Since n is a squarefree product of split completely primes,

OK/nOK ∼= (Z/nZ)[K:Q], and so the group U(OK/nOK) has exponent λ(n).

By the choice of P , it is sensible to reduce the ηi modulo n, and (with the

obvious notation)

#G mod nOK ≤ λ(n)m < n1/t.

Hence, any sum of t elements of G falls into one of < (n1/t)t = n residue

classes mod nOK . But #OK/nOK = n[K:Q] ≥ n. So the set of elements of

OK that cannot be written as a sum of t elements of G includes an entire

residue class modulo nOK , and in particular is nonempty! �

2. Proof of Lemma 1.2

The proof of Lemma 1.2 rests on the following simple consequence of

Brun’s sieve first noticed by Erdős [3].

Lemma 2.1. Let δ > 0. There is an ε > 0 such that, for all X > X0(δ, ε),

#{primes p ≤ X : p− 1 has a prime factor > X1−ε} < δ
X

logX
.

Proof (sketch). In fact, if ε > 0 is fixed, Erdős’s arguments show that for all

X > X0(ε),

#{primes p ≤ X : p− 1 has a prime factor > X1−ε} ≤ Cε
X

logX
,

where C is an absolute constant. (See p. 213 of [3]. A reference with notation

more similar to that used here is [2]; see the second display on p. 192.) So

we may choose any ε < δ/C. �

Proof of Lemma 1.2. By assumption, there is a constant δ > 0 and a se-

quence of X tending to infinity with #{p ∈ P : p ≤ X} > δ X
logX

. If ε is

fixed sufficiently small in terms of δ, then for all large enough X in our

sequence,

#{p ∈ P : p ≤ X, all prime factors ` of p− 1 are ≤ X1−ε} > δ

2

X

logX
.
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For these X, we set

n =
∏

p∈P∩[ δ
8
X,X]

`|p−1⇒`≤X1−ε

p.

Assuming X is large, the total number of primes up to δ
8
X is smaller than

δ
4
X/ logX, by the prime number theorem. Hence, the number of prime

factors of n is at least δ
4

X
logX

, and

n ≥
(
δ

8
X

) δ
4

X
logX

> exp

(
δ

8
X

)
,

once X is large enough. We now turn attention to λ(n). Since λ(n) =

lcmp|n[p−1], each prime power divisor of λ(n) is smaller than X. Moreover,

if ` divides λ(n), then ` ≤ X1−ε. Thus, there are (very crudely) no more

than X1−ε such primes `. It follows that

λ(n) < XX1−ε
= exp(X1−ε logX).

Comparing this upper bound for λ(n) with the displayed lower bound for

n, it is clear that λ(n) < nκ once X is sufficiently large. (In fact, λ(n) <

exp((log n)1−
1
2
ε).) �
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