A SIMPLE PROOF OF A THEOREM OF HAJDU-JARDEN-NARKIEWICZ

PAUL POLLACK

Abstract

Let K be an algebraic number field, and let G be a finitely generated subgroup of K^{\times}. We give a short proof that for every positive integer n, there is an element of \mathcal{O}_{K} not expressible as a sum of n elements of G.

1. Introduction

Let K be an algebraic number field. The following theorem was proved by Jarden and Narkiewicz [6] when $G=U\left(\mathcal{O}_{K}\right)$ and by Hajdu [5] in general.

Theorem 1.1. Let K be a number field. Let G be a finitely generated subgroup of K^{\times}. For each positive integer t, there is an $\alpha \in \mathcal{O}_{K}$ not expressible as a sum of t elements of G.

The proofs in [5] and [6] depend crucially on the modern theory of S-unit equations. It is the purpose of this note to outline an entirely different, very short, and seemingly more elementary proof of Theorem 1.1.

We let $\lambda(n)$ denote Carmichael's function, defined as the exponent of the group $U(\mathbb{Z} / n \mathbb{Z})$. The following lemma - which seems possibly of some independent interest - is the key ingredient in our proof of Theorem 1.1.

Lemma 1.2. Let \mathcal{P} be a set of primes of positive upper (relative) density. For each $\kappa>0$, there are infinitely many squarefree natural numbers n which are divisible only by primes in \mathcal{P} and which satisfy $\lambda(n)<n^{\kappa}$.

If we do not restrict the prime factors of n, then $\lambda(n)$ is occasionally as small as $(\log n)^{O(\log \log \log n)}$, as shown by Erdős-Pomerance-Schmutz [4]. That estimate has been applied in a context similar to the present one by several authors (beginning in work of Ádám, Hajdu, and Luca [1]), but only when $K=\mathbb{Q}$. The upper bound of Lemma 1.2 on the values of $\lambda(n)$ is weaker than that of [4], but the ability to restrict the support of n facilitates applications to arbitrary number fields.

Without further ado, we show how to deduce Theorem 1.1 from Lemma 1.2.

[^0]Proof of Theorem 1.1. Suppose that $\eta_{1}, \ldots, \eta_{m}$ generate G. Let \mathcal{P} be the set of rational primes that split completely in K and are not below any prime ideal appearing in the factorizations of the η_{i}. Then \mathcal{P} has positive upper density; in fact, by Landau's prime ideal theorem [7] applied to the Galois closure L (say) of K / \mathbb{Q}, the density of \mathcal{P} is $\frac{1}{[L: \mathbb{Q}]}$. So by Lemma 1.2, there are infinitely many squarefree n composed of primes from \mathcal{P} that satisfy $\lambda(n)<n^{1 / m t}$. Since n is a squarefree product of split completely primes, $\mathcal{O}_{K} / n \mathcal{O}_{K} \cong(\mathbb{Z} / n \mathbb{Z})^{[K: \mathbb{Q}]}$, and so the group $U\left(\mathcal{O}_{K} / n \mathcal{O}_{K}\right)$ has exponent $\lambda(n)$. By the choice of \mathcal{P}, it is sensible to reduce the η_{i} modulo n, and (with the obvious notation)

$$
\# G \bmod n \mathcal{O}_{K} \leq \lambda(n)^{m}<n^{1 / t}
$$

Hence, any sum of t elements of G falls into one of $<\left(n^{1 / t}\right)^{t}=n$ residue classes $\bmod n \mathcal{O}_{K}$. But $\# \mathcal{O}_{K} / n \mathcal{O}_{K}=n^{[K: \mathbb{Q}]} \geq n$. So the set of elements of \mathcal{O}_{K} that cannot be written as a sum of t elements of G includes an entire residue class modulo $n \mathcal{O}_{K}$, and in particular is nonempty!

2. Proof of Lemma 1.2

The proof of Lemma 1.2 rests on the following simple consequence of Brun's sieve first noticed by Erdős [3].

Lemma 2.1. Let $\delta>0$. There is an $\epsilon>0$ such that, for all $X>X_{0}(\delta, \epsilon)$,

$$
\#\left\{\text { primes } p \leq X: p-1 \text { has a prime factor }>X^{1-\epsilon}\right\}<\delta \frac{X}{\log X}
$$

Proof (sketch). In fact, if $\epsilon>0$ is fixed, Erdős's arguments show that for all $X>X_{0}(\epsilon)$,
$\#\left\{\right.$ primes $p \leq X: p-1$ has a prime factor $\left.>X^{1-\epsilon}\right\} \leq C \epsilon \frac{X}{\log X}$,
where C is an absolute constant. (See p. 213 of [3]. A reference with notation more similar to that used here is [2]; see the second display on p. 192.) So we may choose any $\epsilon<\delta / C$.

Proof of Lemma 1.2. By assumption, there is a constant $\delta>0$ and a sequence of X tending to infinity with $\#\{p \in \mathcal{P}: p \leq X\}>\delta \frac{X}{\log X}$. If ϵ is fixed sufficiently small in terms of δ, then for all large enough X in our sequence,

$$
\#\left\{p \in \mathcal{P}: p \leq X, \text { all prime factors } \ell \text { of } p-1 \text { are } \leq X^{1-\epsilon}\right\}>\frac{\delta}{2} \frac{X}{\log X}
$$

For these X, we set

$$
n=\prod_{\substack{\left.p \in \mathcal{P} \cap\left[\frac{\delta}{8} X, X\right] \\ \ell \right\rvert\, p-1 \Rightarrow \ell \leq X^{1-\epsilon}}} p
$$

Assuming X is large, the total number of primes up to $\frac{\delta}{8} X$ is smaller than $\frac{\delta}{4} X / \log X$, by the prime number theorem. Hence, the number of prime factors of n is at least $\frac{\delta}{4} \frac{X}{\log X}$, and

$$
n \geq\left(\frac{\delta}{8} X\right)^{\frac{\delta}{4} \frac{X}{\log X}}>\exp \left(\frac{\delta}{8} X\right)
$$

once X is large enough. We now turn attention to $\lambda(n)$. Since $\lambda(n)=$ $\operatorname{lcm}_{p \mid n}[p-1]$, each prime power divisor of $\lambda(n)$ is smaller than X. Moreover, if ℓ divides $\lambda(n)$, then $\ell \leq X^{1-\epsilon}$. Thus, there are (very crudely) no more than $X^{1-\epsilon}$ such primes ℓ. It follows that

$$
\lambda(n)<X^{X^{1-\epsilon}}=\exp \left(X^{1-\epsilon} \log X\right)
$$

Comparing this upper bound for $\lambda(n)$ with the displayed lower bound for n, it is clear that $\lambda(n)<n^{\kappa}$ once X is sufficiently large. (In fact, $\lambda(n)<$ $\exp \left((\log n)^{1-\frac{1}{2} \epsilon}\right)$.)

Acknowledgements. The author's research was partly supported by the National Science Foundation (NSF grant no. DMS-1402268).

References

[1] Zs. Ádám, L. Hajdu, and F. Luca, Representing integers as linear combinations of S-units, Acta Arith. 138 (2009), 101-107.
[2] J.-M. De Koninck and F. Luca, Analytic number theory, Graduate Studies in Mathematics, vol. 134, American Mathematical Society, Providence, RI, 2012.
[3] P. Erdős, On the normal number of prime factors of $p-1$ and some related problems concerning Euler's ϕ-function, Quart. J. Math. 6 (1935), 205-213.
[4] P. Erdős, C. Pomerance, and E. Schmutz, Carmichael's lambda function, Acta Arith. 58 (1991), 363-385.
[5] L. Hajdu, Arithmetic progressions in linear combinations of S-units, Period. Math. Hungar. 54 (2007), 175-181.
[6] M. Jarden and W. Narkiewicz, On sums of units, Monatsh. Math. 150 (2007), 327332.
[7] E. Landau, Neuer Beweis des Primzahlsatzes und Beweis des Primidealsatzes, Math. Ann. 56 (1903), 645-670.

University of Georgia, Department of Mathematics, Boyd Graduate Studies Research Center, Athens, Georgia 30602

E-mail address: pollack@uga.edu

[^0]: 2010 Mathematics Subject Classification. Primary 11R27; Secondary 11N56.
 Key words and phrases. S-unit, sum of units, Carmichael's function.

