Prime numbers and prime polynomials

Paul Pollack Dartmouth College

May 1, 2008

Analogies everywhere!

- Analogies in elementary number theory (continued fractions, quadratic reciprocity, Fermat's last theorem)
- Analogies in algebraic number theory (the theory of global function fields vs. the theory of algebraic number fields)
- Analogies in analytic number theory, especially prime number theory

A partial dictionary between Z and $F_q[T]$

 $\mathsf{Primes} \longleftrightarrow \mathsf{Irreducibles}$

 $\{\pm 1\} \longleftrightarrow \mathbf{F}_q[T]^{\times} = \mathbf{F}_q^{\times}$

Positive integers \longleftrightarrow Monic polynomials

Usual absolute value $\longleftrightarrow |f| = q^{\deg f}$

Observe

 $\# \mathbf{Z}/n\mathbf{Z} = |n|$ and $\# \mathbf{F}_q[T]/(p(T)) = |p(T)|.$

Prime number theorem (Hadamard, de la Vallée Poussin). If $\pi(x)$ denotes the number of primes $p \le x$, then

$$\pi(x) \sim \frac{x}{\log x} \quad \text{as } x \to \infty.$$

Prime number theorem for polynomials. Let $\pi(q; d)$ denote the number of monic, degree d irreducibles over the finite field \mathbf{F}_q . Then as $q^d \to \infty$, we have

$$\pi(q;d) \sim rac{q^d}{d}.$$

Notice that if $X = q^d$, then $q^d/d = X/\log_q X$.

Gauss's take on the prime number theorem: Empirical observations suggest that the primes near x have a density of about $1/\log x$. So we should have

$$\pi(x) \approx \frac{1}{\log 2} + \frac{1}{\log 3} + \dots + \frac{1}{\log x}.$$

Theorem (von Koch). *If the Riemann Hypothesis is true, then*

$$\pi(x) = \sum_{2 \le n \le x} \frac{1}{\log n} + O(x^{1/2} \log x).$$

In the polynomial setting, Gauss's proof shows that

$$\left|\pi(q;d)-rac{q^d}{d}
ight|\leq 2rac{q^{d/2}}{d}.$$

But perhaps irregularities surface if we introduce a finer count?

Let p be a prime. To each nonnegative integer in base p, we associate a polynomial in $\mathbf{F}_p[T]$, $a_0 + a_1p + \cdots + a_kp^k \longleftrightarrow a_0 + a_1T + \cdots + a_kT^k$. Say that f is encoded by the integer ||f||. Define $\pi_p(X)$ as the number of $n \leq x$ which encode irreducible polynomials over \mathbf{F}_p .

We might hope that

$$\pi_p(X) \approx \sum_{||f|| \leq x} \frac{1}{\deg f}.$$

Theorem. If $X \ge p$, then

$$\pi_p(X) = \sum_{||f|| \le x} \frac{1}{\deg f} + O\left(dp^{d/2+1}\right),$$

where $p^d \leq X < p^{d+1}$.

Notice $dp^{d/2+1} \asymp_p X^{1/2} \log X$, so this is a von Koch analogue.

Proof idea: To each global function field K (finite extension of $\mathbf{F}_q(T)$) one associates a zeta function,

$$\zeta_K(s) = \sum_{\mathfrak{a} \ge 0} \frac{1}{\operatorname{Nm}(\mathfrak{a})^s}.$$

A deep theorem of Weil asserts that these zeta functions all satisfy the analogue of the Riemann Hypothesis.

Define *L*-functions which are sensitive to the behavior of the initial coefficients of a polynomial in $\mathbf{F}_q[T]$. The analytic properties of this *L*-function can then be linked to the analytic properties of $\zeta_K(s)$ for an appropriate *K* and the Riemann Hypothesis brought into play.

Twin primes

Twin prime conjecture. There are infinitely many prime pairs p, p + 2.

Hypothesis H (Schinzel). Let $f_1(T), \ldots, f_r(T)$ be nonconstant polynomials with integer coefficients and positive leading coefficients, all irreducible over **Z**. Suppose that there is no prime p for which

p divides $f_1(n) \cdots f_r(n)$ for all n. Then for infinitely many positive integers n, the specializations $f_1(n), \ldots, f_r(n)$ are simultaneously prime.

Examples: Twin prime conjecture, or the infinitude of primes of the form $n^2 + 1$.

Theorem (Hall). Suppose q > 3. Then there are infinitely many monic irreducibles P(T) over \mathbf{F}_q for which P(T) + 1 is also irreducible.

Theorem (P.). Suppose q > 3. Then there are infinitely many monic irreducibles P(T) over \mathbf{F}_q for which P(T) + 1 is also irreducible. **Theorem** (Capelli's Theorem). Let F be any field. The binomial $T^m - a$ is reducible over F if and only if either of the following holds:

- there is a prime l dividing m for which a is an lth power in F,
- 4 divides m and $a = -4b^4$ for some b in F.

Observe: We have

$$x^{4} + 4y^{4} = (x^{2} + 2y^{2})^{2} - (2xy)^{2}.$$

Example: The cubes in $F_7 = Z/7Z$ are -1, 0, 1. So by Capelli's theorem,

$$T^{3^{k}} - 2$$

is irreducible over \mathbf{F}_7 for $k = 0, 1, 2, 3, \ldots$

Similarly, $T^{3^k} - 3$ is always irreducible. Hence:

$$T^{3^k} - 2, \quad T^{3^k} - 3$$

is a pair of prime polynomials over \mathbf{F}_7 differing by 1 for every k. A finite field analogue of Hypothesis H. Suppose f_1, \ldots, f_r are irreducible polynomials in $\mathbf{F}_q[T]$ and that there is no irreducible P in $\mathbf{F}_q[T]$ for which

P(T) always divides $f_1(h(T)) \cdots f_r(h(T))$. Then $f_1(h(T)), \ldots, f_r(h(T))$ are simultaneously irreducible for infinitely many monic polynomials $h(T) \in \mathbf{F}_q[T]$.

Example: "Twin prime" pairs: take $f_1(T) := T$ and $f_2(T) := T + 1$.

Observation: The local condition is always satisfied if

$$q > \sum_{i=1}^{r} \deg f_i.$$

Theorem (P.). Suppose f_1, \ldots, f_r are irreducible polynomials in $\mathbf{F}_q[T]$. Let $D = \sum_{i=1}^r \deg f_i$. If

 $q > \max\{3, 2^{2r-2}D^2\},\$

then there are infinitely many monic polynomials h(T) for which all of $f_1(h(T)), \ldots, f_r(h(T))$ are simultaneously irreducible.

Example: Primes one more than a square

Let \mathbf{F}_q be a finite field without a square root of -1; i.e., with $q \equiv 3 \pmod{4}$. We prove there are infinitely many irreducibles of the form $h(T)^2 + 1$, where h(T) is monic.

Fix a square root i of -1 from the extension $\mathbf{F}_{q^2}.$ We have

$$h(T)^2 + 1$$
 irreducible over $\mathbf{F}_q \iff$
 $h(T) - i$ irreducible over \mathbf{F}_{q^2} .

Try for h(T) a binomial – say $h(T) = T^{l^k} - \beta$, with l a fixed prime.

By Capelli, it suffices to find $\beta \in \mathbf{F}_q$ so that $\beta + i$ is a non-*l*th power.

Choose any prime l dividing $q^2 - 1$, and let let χ be an lth power-residue character on \mathbf{F}_{q^2} . If there is no such β , then

$$\sum_{\beta \in \mathbf{F}_q} \chi(\beta + i) = q.$$

But Weil's Riemann Hypothesis gives a bound for this incomplete character sum of \sqrt{q} – a contradiction.

Quantitative problems and results

Twin prime conjecture (quantitative version). The number of prime pairs p, p + 2 with $p \le x$ is asymptotically

$$2C_2 \frac{x}{\log^2 x}$$
 as $x \to \infty$,

where $C_2 = \prod_{p>2} (1 - 1/(p - 1)^2)$.

Can generalize to the full Hypothesis H situation (Hardy-Littlewood/Bateman-Horn). A quantitative finite field Hypothesis H. Let $f_1(T), \ldots, f_r(T)$ be nonassociated polynomials over \mathbf{F}_q satisfying the conditions of Hypothesis H. Then

$$\#\{h(T) : h \text{ monic, } \deg h = n, \\ \text{and } f_1(h(T)), \dots, f_r(h(T)) \text{ are all prime}\} \sim \\ \frac{\mathfrak{S}(f_1, \dots, f_r) q^n}{\prod_{i=1}^r \deg f_i n^r} \quad \text{as } q^n \to \infty.$$

Here the local factor $\mathfrak{S}(f_1,\ldots,f_r)$ is defined by

$$\mathfrak{S}(f_1, \dots, f_r) := \prod_{\substack{n=1 \ P \text{ monic prime of } \mathbf{F}_q[T]}} \frac{\prod_{\substack{1 - \omega(P)/q^n \\ (1 - 1/q^n)^r}}}{\prod_{\substack{n=1 \ P \text{ monic prime of } \mathbf{F}_q[T]}} \frac{1 - \omega(P)/q^n}{(1 - 1/q^n)^r},$$

where

$$\omega(P) := \\ \#\{h \mod P : f_1(h) \cdots f_r(h) \equiv 0 \pmod{P}\}.$$

Theorem. Let n be a positive integer. Let $f_1(T), \ldots, f_r(T)$ be pairwise nonassociated irreducible polynomials over \mathbf{F}_q with the degree of the product $f_1 \cdots f_r$ bounded by B.

The number of univariate monic polynomials hof degree n for which all of $f_1(h(T)), \ldots, f_r(h(T))$ are irreducible over \mathbf{F}_q is

$$q^{n}/n^{r} + O((nB)n!^{B}q^{n-1/2})$$

provided gcd(q, 2n) = 1.

Example: The number of monic polynomials h(T) of degree 3 over \mathbf{F}_q for which $h(T)^2 + 1$ is irreducible is asymptotically $q^3/3$ as $q \to \infty$ with $q \equiv 3 \pmod{4}$ and (q, 3) = 1.

Some ideas of the proof

The inspiration:

Conjecture (Chowla, 1966). Fix a positive integer n. Then for all large primes p, there is always an irreducible polynomial in $\mathbf{F}_p[T]$ of the form $T^n + T + a$ with $a \in \mathbf{F}_p$.

In fact, for fixed n the number of such a is asymptotic to p/n as $p \to \infty$.

Proved by Ree and Cohen (independently) in 1971.

Idea of their proof:

Kummer: For most a, the polynomial $T^n + T - a$ factors over \mathbf{F}_q the same way as the prime u - a of $\mathbf{F}_q(u)$ factors over the field obtained by adjoining a root of $T^n + T - u$ over $\mathbf{F}_q(u)$.

Chebotarev: The splitting type of primes from $F_q(u)$, on average, is governed by the Galois group of the splitting field of $T^n + T - u$ over $F_q(u)$. (Chebotarev.)

Birch and Swinnerton-Dyer: This splitting field is, if q is prime to n(n-1), a geometric Galois extension with Galois group the full symmetric group on n letters.

The proportion of *n*-cycles in S_n is 1 in *n*, and this implies that about 1 in *n* polynomials of the form T^n+T-a , with $a \in \mathbf{F}_q$, are irreducible.

Prime gaps

Recall that the average gap between primes near N is about $\log N$.

Conjecture (Primes are Poisson distributed). Fix $\lambda > 0$. Suppose h and N tend to infinity in such a way that $h \sim \lambda \log N$. Then

 $\frac{1}{N} \# \{ n \le N : \pi(n+h) - \pi(n) = k \} \to e^{-\lambda} \frac{\lambda^k}{k!}$ for every fixed integer $k = 0, 1, 2, \dots$

Gallagher has shown that this follows from a uniform version of the prime k-tuples conjecture.

Polynomial prime gaps

For a prime p and an integer a, let \overline{a} denote the residue class of a in $\mathbf{Z}/p\mathbf{Z} = \mathbf{F}_p$.

For each prime p and each integer $h \ge 0$, define

$$I(p;h) := \{\overline{a_0} + \overline{a_1}T + \dots + \overline{a_j}T^j : \\ 0 \le a_0, \dots, a_j$$

Let $P_k(p; h, n)$ be the number of polynomials A(T) of degree n over \mathbf{F}_p for which the translated "interval" A + I(p; h) contains exactly k primes.

Conjecture. Fix $\lambda > 0$. Suppose h and n tend to infinity in such a way that $h \sim \lambda n$. Then

$$rac{1}{p^n}P_k(p;h,n)
ightarrow e^{-\lambda}rac{\lambda^k}{k!} \quad (as \ n
ightarrow\infty)$$

for each fixed k = 0, 1, 2, 3, ..., uniformly in the prime p.

Theorem. Fix $\lambda > 0$. Suppose h and n tend too infinity in such a way that $h \sim \lambda n$. Then for each fixed integer $k \ge 0$,

$$\frac{1}{p^n} P_k(p;h,n) \to e^{-\lambda} \frac{\lambda^k}{k!},$$

if both n and p tend to infinity, with p tending to infinity faster than any power of n^{n^2} .