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Analogies everywhere!

• Analogies in elementary number theory (con-

tinued fractions, quadratic reciprocity, Fer-

mat’s last theorem)

• Analogies in algebraic number theory (the

theory of global function fields vs. the the-

ory of algebraic number fields)

• Analogies in analytic number theory, espe-

cially prime number theory
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A partial dictionary between Z and Fq[T ]

Primes ←→ Irreducibles

{±1} ←→ Fq[T ]× = F×q

Positive integers ←→ Monic polynomials

Usual absolute value ←→ |f | = qdeg f

Observe

#Z/nZ = |n| and #Fq[T ]/(p(T )) = |p(T )|.
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Prime number theorem (Hadamard, de la

Vallée Poussin). If π(x) denotes the number of

primes p ≤ x, then

π(x) ∼
x

logx
as x→∞.

Prime number theorem for polynomials. Let

π(q; d) denote the number of monic, degree d

irreducibles over the finite field Fq. Then as

qd →∞, we have

π(q; d) ∼
qd

d
.

Notice that if X = qd, then qd/d = X/ logqX.

3



Gauss’s take on the prime number theorem:

Empirical observations suggest that the primes

near x have a density of about 1/ logx. So we

should have

π(x) ≈
1

log 2
+

1

log 3
+ · · ·+

1

logx
.

Theorem (von Koch). If the Riemann Hypoth-

esis is true, then

π(x) =
∑

2≤n≤x

1

logn
+O(x1/2 logx).
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In the polynomial setting, Gauss’s proof shows

that
∣∣∣∣∣π(q; d)−

qd

d

∣∣∣∣∣ ≤ 2
qd/2

d
.

But perhaps irregularities surface if we intro-

duce a finer count?

Let p be a prime. To each nonnegative integer

in base p, we associate a polynomial in Fp[T ],

a0 + a1p+ · · ·+ akp
k ←→ a0 + a1T + · · ·+ akT

k.

Say that f is encoded by the integer ‖f‖.
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Define πp(X) as the number of n ≤ x which

encode irreducible polynomials over Fp.

We might hope that

πp(X) ≈
∑

||f ||≤x

1

deg f
.

Theorem. If X ≥ p, then

πp(X) =
∑

||f ||≤x

1

deg f
+O

(
dpd/2+1

)
,

where pd ≤ X < pd+1.

Notice dpd/2+1 �p X1/2 logX, so this is a von

Koch analogue.

6



Proof idea: To each global function field K

(finite extension of Fq(T )) one associates a

zeta function,

ζK(s) =
∑

a≥0

1

Nm(a)s
.

A deep theorem of Weil asserts that these zeta

functions all satisfy the analogue of the Rie-

mann Hypothesis.

Define L-functions which are sensitive to the

behavior of the initial coefficients of a polyno-

mial in Fq[T ]. The analytic properties of this

L-function can then be linked to the analytic

properties of ζK(s) for an appropriate K and

the Riemann Hypothesis brought into play.
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Twin primes

Twin prime conjecture. There are infinitely

many prime pairs p, p+ 2.

Hypothesis H (Schinzel). Let f1(T ), . . . , fr(T )

be nonconstant polynomials with integer co-

efficients and positive leading coefficients, all

irreducible over Z. Suppose that there is no

prime p for which

p divides f1(n) · · · fr(n) for all n.

Then for infinitely many positive integers n,

the specializations f1(n), . . . , fr(n) are simulta-

neously prime.

Examples: Twin prime conjecture, or the in-

finitude of primes of the form n2 + 1.
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Theorem (Hall). Suppose q > 3. Then there

are infinitely many monic irreducibles P (T ) over

Fq for which P (T ) + 1 is also irreducible.

Theorem (P.). Suppose q > 3. Then there are

infinitely many monic irreducibles P (T ) over Fq
for which P (T ) + 1 is also irreducible.
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Theorem (Capelli’s Theorem). Let F be any

field. The binomial Tm − a is reducible over F

if and only if either of the following holds:

• there is a prime l dividing m for which a is

an lth power in F ,

• 4 divides m and a = −4b4 for some b in F .

Observe: We have

x4 + 4y4 = (x2 + 2y2)2 − (2xy)2.
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Example: The cubes in F7 = Z/7Z are −1,0,1.

So by Capelli’s theorem,

T3k − 2

is irreducible over F7 for k = 0,1,2,3, . . . .

Similarly, T3k − 3 is always irreducible. Hence:

T3k − 2, T3k − 3

is a pair of prime polynomials over F7 differing

by 1 for every k.
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A finite field analogue of Hypothesis H.

Suppose f1, . . . , fr are irreducible polynomials

in Fq[T ] and that there is no irreducible P in

Fq[T ] for which

P (T ) always divides f1(h(T )) · · · fr(h(T )).

Then f1(h(T )), . . . , fr(h(T )) are simultaneously

irreducible for infinitely many monic polynomi-

als h(T ) ∈ Fq[T ].

Example: “Twin prime” pairs: take f1(T ) :=

T and f2(T ) := T + 1.

Observation: The local condition is always sat-

isfied if

q >
r∑

i=1

deg fi.
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Theorem (P.). Suppose f1, . . . , fr are irreducible

polynomials in Fq[T ]. Let D =
∑r
i=1 deg fi. If

q > max{3,22r−2D2},

then there are infinitely many monic polynomi-

als h(T ) for which all of f1(h(T )), . . . , fr(h(T ))

are simultaneously irreducible.
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Example: Primes one more than a square

Let Fq be a finite field without a square root

of −1; i.e., with q ≡ 3 (mod 4). We prove

there are infinitely many irreducibles of the

form h(T )2 + 1, where h(T ) is monic.

Fix a square root i of −1 from the extension

Fq2. We have

h(T )2 + 1 irreducible over Fq ⇐⇒
h(T )− i irreducible over Fq2.

Try for h(T ) a binomial – say h(T ) = T l
k − β,

with l a fixed prime.

By Capelli, it suffices to find β ∈ Fq so that

β + i is a non-lth power.

14



Choose any prime l dividing q2 − 1, and let let

χ be an lth power-residue character on Fq2. If

there is no such β, then
∑

β∈Fq
χ(β + i) = q.

But Weil’s Riemann Hypothesis gives a bound

for this incomplete character sum of
√
q – a

contradiction.
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Quantitative problems and results

Twin prime conjecture (quantitative version).

The number of prime pairs p, p + 2 with p ≤ x

is asymptotically

2C2
x

log2 x
as x→∞,

where C2 =
∏
p>2(1− 1/(p− 1)2).

Can generalize to the full Hypothesis H situa-

tion (Hardy-Littlewood/Bateman-Horn).
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A quantitative finite field Hypothesis H. Let

f1(T ), . . . , fr(T ) be nonassociated polynomials

over Fq satisfying the conditions of Hypothesis

H. Then

#{h(T ) : h monic, degh = n,

and f1(h(T )), . . . , fr(h(T )) are all prime} ∼
S(f1, . . . , fr)∏r

i=1 deg fi

qn

nr
as qn →∞.

Here the local factor S(f1, . . . , fr) is defined by

S(f1, . . . , fr) :=
∞∏

n=1

∏

degP=n
P monic prime of Fq[T ]

1− ω(P )/qn

(1− 1/qn)r
,

where

ω(P ) :=

#{h mod P : f1(h) · · · fr(h) ≡ 0 (mod P )}.
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Theorem. Let n be a positive integer. Let

f1(T ), . . . , fr(T ) be pairwise nonassociated ir-

reducible polynomials over Fq with the degree

of the product f1 · · · fr bounded by B.

The number of univariate monic polynomials h

of degree n for which all of f1(h(T )), . . . , fr(h(T ))

are irreducible over Fq is

qn/nr +O((nB)n!Bqn−1/2)

provided gcd(q,2n) = 1.

Example: The number of monic polynomials

h(T ) of degree 3 over Fq for which h(T )2 + 1

is irreducible is asymptotically q3/3 as q → ∞
with q ≡ 3 (mod 4) and (q,3) = 1.
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Some ideas of the proof

The inspiration:

Conjecture (Chowla, 1966). Fix a positive in-

teger n. Then for all large primes p, there is

always an irreducible polynomial in Fp[T ] of the

form Tn + T + a with a ∈ Fp.

In fact, for fixed n the number of such a is

asymptotic to p/n as p→∞.

Proved by Ree and Cohen (independently) in

1971.
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Idea of their proof:

Kummer: For most a, the polynomial Tn+T −
a factors over Fq the same way as the prime

u − a of Fq(u) factors over the field obtained

by adjoining a root of Tn + T − u over Fq(u).

Chebotarev: The splitting type of primes from

Fq(u), on average, is governed by the Galois

group of the splitting field of Tn + T − u over

Fq(u). (Chebotarev.)

Birch and Swinnerton-Dyer: This splitting field

is, if q is prime to n(n−1), a geometric Galois

extension with Galois group the full symmetric

group on n letters.

The proportion of n-cycles in Sn is 1 in n, and

this implies that about 1 in n polynomials of

the form Tn+T−a, with a ∈ Fq, are irreducible.
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Prime gaps

Recall that the average gap between primes

near N is about logN .

Conjecture (Primes are Poisson distributed).

Fix λ > 0. Suppose h and N tend to infinity in

such a way that h ∼ λ logN . Then

1

N
#{n ≤ N : π(n+ h)− π(n) = k} → e−λ

λk

k!
for every fixed integer k = 0,1,2, . . . .

Gallagher has shown that this follows from a

uniform version of the prime k-tuples conjec-

ture.
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Polynomial prime gaps

For a prime p and an integer a, let a denote

the residue class of a in Z/pZ = Fp.

For each prime p and each integer h ≥ 0, define

I(p;h) := {a0 + a1T + · · ·+ ajT
j :

0 ≤ a0, . . . , aj < p with
∑

aip
i < h}.

Let Pk(p;h, n) be the number of polynomials

A(T ) of degree n over Fp for which the trans-

lated “interval” A + I(p;h) contains exactly k

primes.
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Conjecture. Fix λ > 0. Suppose h and n tend

to infinity in such a way that h ∼ λn. Then

1

pn
Pk(p;h, n)→ e−λ

λk

k!
(as n→∞)

for each fixed k = 0,1,2,3, . . . , uniformly in the

prime p.
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Theorem. Fix λ > 0. Suppose h and n tend

t0o infinity in such a way that h ∼ λn. Then

for each fixed integer k ≥ 0,

1

pn
Pk(p;h, n)→ e−λ

λk

k!
,

if both n and p tend to infinity, with p tending

to infinity faster than any power of nn
2
.
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