Prime numbers and prime polynomials

Paul Pollack
Dartmouth College

May 1, 2008

Analogies everywhere!

- Analogies in elementary number theory (continued fractions, quadratic reciprocity, Fermat's last theorem)
- Analogies in algebraic number theory (the theory of global function fields vs. the theory of algebraic number fields)
- Analogies in analytic number theory, especially prime number theory

A partial dictionary between Z and $\mathrm{F}_{q}[T]$

Primes \longleftrightarrow Irreducibles
$\{ \pm 1\} \longleftrightarrow \mathbf{F}_{q}[T]^{\times}=\mathbf{F}_{q}^{\times}$
Positive integers \longleftrightarrow Monic polynomials
Usual absolute value $\longleftrightarrow|f|=q^{\operatorname{deg} f}$

Observe
$\# \mathbf{Z} / n \mathbf{Z}=|n| \quad$ and $\quad \# \mathbf{F}_{q}[T] /(p(T))=|p(T)|$.

Prime number theorem (Hadamard, de la Vallée Poussin). If $\pi(x)$ denotes the number of primes $p \leq x$, then

$$
\pi(x) \sim \frac{x}{\log x} \quad \text { as } x \rightarrow \infty
$$

Prime number theorem for polynomials. Let $\pi(q ; d)$ denote the number of monic, degree d irreducibles over the finite field \mathbf{F}_{q}. Then as $q^{d} \rightarrow \infty$, we have

$$
\pi(q ; d) \sim \frac{q^{d}}{d}
$$

Notice that if $X=q^{d}$, then $q^{d} / d=X / \log _{q} X$.

Gauss's take on the prime number theorem: Empirical observations suggest that the primes near x have a density of about $1 / \log x$. So we should have

$$
\pi(x) \approx \frac{1}{\log 2}+\frac{1}{\log 3}+\cdots+\frac{1}{\log x} .
$$

Theorem (von Koch). If the Riemann Hypothesis is true, then

$$
\pi(x)=\sum_{2 \leq n \leq x} \frac{1}{\log n}+O\left(x^{1 / 2} \log x\right)
$$

In the polynomial setting, Gauss's proof shows that

$$
\left|\pi(q ; d)-\frac{q^{d}}{d}\right| \leq 2 \frac{q^{d / 2}}{d} .
$$

But perhaps irregularities surface if we introduce a finer count?

Let p be a prime. To each nonnegative integer in base p, we associate a polynomial in $\mathbf{F}_{p}[T]$, $a_{0}+a_{1} p+\cdots+a_{k} p^{k} \longleftrightarrow a_{0}+a_{1} T+\cdots+a_{k} T^{k}$. Say that f is encoded by the integer $\|f\|$.

Define $\pi_{p}(X)$ as the number of $n \leq x$ which encode irreducible polynomials over \mathbf{F}_{p}.

We might hope that

$$
\pi_{p}(X) \approx \sum_{\|f\| \leq x} \frac{1}{\operatorname{deg} f}
$$

Theorem. If $X \geq p$, then

$$
\pi_{p}(X)=\sum_{\|f\| \leq x} \frac{1}{\operatorname{deg} f}+O\left(d p^{d / 2+1}\right)
$$

where $p^{d} \leq X<p^{d+1}$.
Notice $d p^{d / 2+1} \asymp_{p} X^{1 / 2} \log X$, so this is a von Koch analogue.

Proof idea: To each global function field K (finite extension of $\mathbf{F}_{q}(T)$) one associates a zeta function,

$$
\zeta_{K}(s)=\sum_{\mathfrak{a} \geq 0} \frac{1}{\mathrm{Nm}(\mathfrak{a})^{s}}
$$

A deep theorem of Weil asserts that these zeta functions all satisfy the analogue of the Riemann Hypothesis.

Define L-functions which are sensitive to the behavior of the initial coefficients of a polynomial in $\mathbf{F}_{q}[T]$. The analytic properties of this L-function can then be linked to the analytic properties of $\zeta_{K}(s)$ for an appropriate K and the Riemann Hypothesis brought into play.

Twin primes

Twin prime conjecture. There are infinitely many prime pairs $p, p+2$.

Hypothesis H (Schinzel). Let $f_{1}(T), \ldots, f_{r}(T)$ be nonconstant polynomials with integer coefficients and positive leading coefficients, all irreducible over Z. Suppose that there is no prime p for which
p divides $f_{1}(n) \cdots f_{r}(n)$ for all n.
Then for infinitely many positive integers n, the specializations $f_{1}(n), \ldots, f_{r}(n)$ are simultaneously prime.

Examples: Twin prime conjecture, or the infinitude of primes of the form $n^{2}+1$.

Theorem (Hall). Suppose $q>3$. Then there are infinitely many monic irreducibles $P(T)$ over \mathbf{F}_{q} for which $P(T)+1$ is also irreducible.

Theorem (P.). Suppose $q>3$. Then there are infinitely many monic irreducibles $P(T)$ over \mathbf{F}_{q} for which $P(T)+1$ is also irreducible.

Theorem (Capelli's Theorem). Let F be any field. The binomial $T^{m}-a$ is reducible over F if and only if either of the following holds:

- there is a prime l dividing m for which a is an lth power in F,
- 4 divides m and $a=-4 b^{4}$ for some b in F.

Observe: We have

$$
x^{4}+4 y^{4}=\left(x^{2}+2 y^{2}\right)^{2}-(2 x y)^{2} .
$$

Example: The cubes in $\mathbf{F}_{7}=\mathbf{Z} / 7 \mathrm{Z}$ are $-1,0,1$. So by Capelli's theorem,

$$
T^{3^{k}}-2
$$

is irreducible over \mathbf{F}_{7} for $k=0,1,2,3, \ldots$
Similarly, $T^{3^{k}}-3$ is always irreducible. Hence:

$$
T^{3^{k}}-2, \quad T^{3^{k}}-3
$$

is a pair of prime polynomials over \mathbf{F}_{7} differing by 1 for every k.

A finite field analogue of Hypothesis \mathbf{H}. Suppose f_{1}, \ldots, f_{r} are irreducible polynomials in $\mathbf{F}_{q}[T]$ and that there is no irreducible P in $\mathbf{F}_{q}[T]$ for which
$P(T)$ always divides $f_{1}(h(T)) \cdots f_{r}(h(T))$.
Then $f_{1}(h(T)), \ldots, f_{r}(h(T))$ are simultaneously irreducible for infinitely many monic polynomials $h(T) \in \mathbf{F}_{q}[T]$.

Example: "Twin prime" pairs: take $f_{1}(T):=$ T and $f_{2}(T):=T+1$.

Observation: The local condition is always satisfied if

$$
q>\sum_{i=1}^{r} \operatorname{deg} f_{i} .
$$

Theorem (P.). Suppose f_{1}, \ldots, f_{r} are irreducible polynomials in $\mathbf{F}_{q}[T]$. Let $D=\sum_{i=1}^{r} \operatorname{deg} f_{i}$. If

$$
q>\max \left\{3,2^{2 r-2} D^{2}\right\},
$$

then there are infinitely many monic polynomials $h(T)$ for which all of $f_{1}(h(T)), \ldots, f_{r}(h(T))$ are simultaneously irreducible.

Example: Primes one more than a square

Let \mathbf{F}_{q} be a finite field without a square root of -1 ; i.e., with $q \equiv 3$ (mod 4). We prove there are infinitely many irreducibles of the form $h(T)^{2}+1$, where $h(T)$ is monic.

Fix a square root i of -1 from the extension $\mathbf{F}_{q^{2}}$. We have
$h(T)^{2}+1$ irreducible over $\mathbf{F}_{q} \Longleftrightarrow$ $h(T)-i$ irreducible over $\mathbf{F}_{q^{2}}$.

Try for $h(T)$ a binomial - say $h(T)=T^{l^{k}}-\beta$, with l a fixed prime.

By Capelli, it suffices to find $\beta \in \mathbf{F}_{q}$ so that $\beta+i$ is a non-lth power.

Choose any prime l dividing $q^{2}-1$, and let let χ be an l th power-residue character on $\mathbf{F}_{q^{2}}$. If there is no such β, then

$$
\sum_{\beta \in \mathbf{F}_{q}} \chi(\beta+i)=q .
$$

But Weil's Riemann Hypothesis gives a bound for this incomplete character sum of $\sqrt{q}-\mathrm{a}$ contradiction.

Quantitative problems and results

Twin prime conjecture (quantitative version). The number of prime pairs $p, p+2$ with $p \leq x$ is asymptotically

$$
2 C_{2} \frac{x}{\log ^{2} x} \quad \text { as } x \rightarrow \infty
$$

where $C_{2}=\prod_{p>2}\left(1-1 /(p-1)^{2}\right)$.

Can generalize to the full Hypothesis H situation (Hardy-Littlewood/Bateman-Horn).

A quantitative finite field Hypothesis H. Let $f_{1}(T), \ldots, f_{r}(T)$ be nonassociated polynomials over \mathbf{F}_{q} satisfying the conditions of Hypothesis H. Then
$\#\{h(T): h$ monic, $\operatorname{deg} h=n$, and $f_{1}(h(T)), \ldots, f_{r}(h(T))$ are all prime $\}$

$$
\frac{\mathfrak{S}\left(f_{1}, \ldots, f_{r}\right)}{\prod_{i=1}^{r} \operatorname{deg} f_{i}} \frac{n^{r}}{n^{r}}
$$

Here the local factor $\mathfrak{S}\left(f_{1}, \ldots, f_{r}\right)$ is defined by

$$
\mathfrak{S}\left(f_{1}, \ldots, f_{r}\right):=
$$

$$
\prod_{n=1}^{\infty} \prod_{\substack{\operatorname{deg} P=n \\ P \text { monic prime of } \mathbf{F}_{q}[T]}} \frac{1-\omega(P) / q^{n}}{\left(1-1 / q^{n}\right)^{r}},
$$

where

$$
\begin{aligned}
& \omega(P):= \\
& \quad \#\left\{h \bmod P: f_{1}(h) \cdots f_{r}(h) \equiv 0 \quad(\bmod P)\right\} .
\end{aligned}
$$

Theorem. Let n be a positive integer. Let $f_{1}(T), \ldots, f_{r}(T)$ be pairwise nonassociated irreducible polynomials over \mathbf{F}_{q} with the degree of the product $f_{1} \cdots f_{r}$ bounded by B.

The number of univariate monic polynomials h of degree n for which all of $f_{1}(h(T)), \ldots, f_{r}(h(T))$ are irreducible over \mathbf{F}_{q} is

$$
q^{n} / n^{r}+O\left((n B) n!^{B} q^{n-1 / 2}\right)
$$

provided $\operatorname{gcd}(q, 2 n)=1$.

Example: The number of monic polynomials $h(T)$ of degree 3 over \mathbf{F}_{q} for which $h(T)^{2}+1$ is irreducible is asymptotically $q^{3} / 3$ as $q \rightarrow \infty$ with $q \equiv 3(\bmod 4)$ and $(q, 3)=1$.

Some ideas of the proof

The inspiration:
Conjecture (Chowla, 1966). Fix a positive integer n. Then for all large primes p, there is always an irreducible polynomial in $\mathbf{F}_{p}[T]$ of the form $T^{n}+T+a$ with $a \in \mathbf{F}_{p}$.

In fact, for fixed n the number of such a is asymptotic to p / n as $p \rightarrow \infty$.

Proved by Ree and Cohen (independently) in 1971.

Idea of their proof:

Kummer: For most a, the polynomial $T^{n}+T-$ a factors over \mathbf{F}_{q} the same way as the prime $u-a$ of $\mathbf{F}_{q}(u)$ factors over the field obtained by adjoining a root of $T^{n}+T-u$ over $\mathbf{F}_{q}(u)$.

Chebotarev: The splitting type of primes from $\mathrm{F}_{q}(u)$, on average, is governed by the Galois group of the splitting field of $T^{n}+T-u$ over $\mathrm{F}_{q}(u)$. (Chebotarev.)

Birch and Swinnerton-Dyer: This splitting field is, if q is prime to $n(n-1)$, a geometric Galois extension with Galois group the full symmetric group on n letters.

The proportion of n-cycles in S_{n} is 1 in n, and this implies that about 1 in n polynomials of the form $T^{n}+T-a$, with $a \in \mathbf{F}_{q}$, are irreducible.

Prime gaps

Recall that the average gap between primes near N is about $\log N$.

Conjecture (Primes are Poisson distributed). Fix $\lambda>0$. Suppose h and N tend to infinity in such a way that $h \sim \lambda \log N$. Then
$\frac{1}{N} \#\{n \leq N: \pi(n+h)-\pi(n)=k\} \rightarrow e^{-\lambda} \frac{\lambda^{k}}{k!}$
for every fixed integer $k=0,1,2, \ldots$.

Gallagher has shown that this follows from a uniform version of the prime k-tuples conjecture.

Polynomial prime gaps

For a prime p and an integer a, let \bar{a} denote the residue class of a in $\mathbf{Z} / p \mathbf{Z}=\mathbf{F}_{p}$.

For each prime p and each integer $h \geq 0$, define

$$
\begin{aligned}
I(p ; h):= & \left\{\overline{a_{0}}+\overline{a_{1}} T+\cdots+\overline{a_{j}} T^{j}:\right. \\
& \left.0 \leq a_{0}, \ldots, a_{j}<p \text { with } \sum a_{i} p^{i}<h\right\} .
\end{aligned}
$$

Let $P_{k}(p ; h, n)$ be the number of polynomials $A(T)$ of degree n over \mathbf{F}_{p} for which the translated "interval" $A+I(p ; h)$ contains exactly k primes.

Conjecture. Fix $\lambda>0$. Suppose h and n tend to infinity in such a way that $h \sim \lambda n$. Then

$$
\frac{1}{p^{n}} P_{k}(p ; h, n) \rightarrow e^{-\lambda} \frac{\lambda^{k}}{k!} \quad(\text { as } n \rightarrow \infty)
$$

for each fixed $k=0,1,2,3, \ldots$, uniformly in the prime p.

Theorem. Fix $\lambda>0$. Suppose h and n tend tOo infinity in such a way that $h \sim \lambda n$. Then for each fixed integer $k \geq 0$,

$$
\frac{1}{p^{n}} P_{k}(p ; h, n) \rightarrow e^{-\lambda} \frac{\lambda^{k}}{k!},
$$

if both n and p tend to infinity, with p tending to infinity faster than any power of $n^{n^{2}}$.

