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Abstract

The ring of univariate polynomials over a finite field shares many foundational arith-

metic properties with the ring of rational integers. This similarity makes it possible

for many problems in elementary number theory to be translated ‘through the

looking glass’ into the universe of polynomials. In this thesis we look at polynomial

analogues of Schinzel’s Hypothesis H and other problems related to the multiplica-

tive structure of polynomial values. We obtain results both in the situation where

the finite field Fq is fixed and in the more uniform situation where Fq is allowed to

vary. The most important tool in these investigations is Weil’s Riemann Hypothesis

for global function fields, which yields an explicit form of the Chebotarev density

theorem for such fields.
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Chapter 1

An overview of polynomial

prime number theory

This thesis collects a number of results obtained by the author on the arithmetic

properties of polynomials over finite fields, most of which concern the distribution

of irreducible polynomials. Many of these investigations were motivated by well-

known problems in the setting of ordinary (rational) arithmetic. In this introductory

chapter we set the stage for our results by recounting the history of polynomial prime

number theory.

1.1 The polynomial prime number theorem

It is easy to prove that there are infinitely many (nonassociated) primes in Fq[T ]; in

fact, Euclid’s familiar argument gives this conclusion for any infinite principal ideal

domain with a finite unit group. It is, of course, too much to ask that such a general

argument offers us any detailed information about the distribution of primes.

For the case of Fq[T ], it is not difficult to formulate a plausible conjecture for
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n π(2;n) ratio: π(2;n)/2n reciprocal ratio
5 6 0.18750000000 5.333333333
6 9 0.14062500000 7.111111111
7 18 0.14062500000 7.111111111
8 30 0.11718750000 8.533333333
9 56 0.10937500000 9.142857143

10 99 0.09667968750 10.34343434
11 186 0.09082031250 11.01075269
12 335 0.08178710938 12.22686567
13 630 0.07690429688 13.00317460
14 1161 0.07086181641 14.11197244
15 2182 0.06658935547 15.01741522
16 4080 0.06225585938 16.06274510

Table 1.1: The number of monic primes π(2;n) of degree n over F2, together with
the proportion of irreducibles and the reciprocal of this proportion.

the number of monic primes (irreducibles) of a given magnitude (degree). Table 1.1

shows the number of irreducible polynomials over F2 of degree n for 5 ≤ n ≤ 16.

These data suggest that if we set

π(q; n) := #{A ∈ Fq[T ] : A monic, irreducible, deg A = n},

then π(2;n) is approximately 2n/n; at the very least we expect that π(2; n) ∼
2n/n as n → ∞. If we put X = 2n, then 2n/n is precisely X/ log2 X, and the

asserted asymptotic bears a startling similarity to the statement of the classical

prime number theorem. (Here and below, logq(·) denotes the base q logarithm.)

Moreover, there is nothing special about q = 2: a bit more experimentation suggests

that for any fixed q,

π(q;n) ∼ qn

n
as n →∞. (1.1)

If this is true, then it seems to merit being called the ‘polynomial prime number

theorem.’

Perhaps surprisingly, given the difficulty that seems inherent in even the simplest

2



proofs of the classical prime number theorem, the polynomial version can be proved

in a few lines. For fields with a prime number of elements, the proof appears already

in work of Gauss, who thoroughly investigated the ring of polynomials over Fp for

a planned eighth section of his masterwork Disquisitiones Arithmeticae. An early

manuscript of section eight (Disquisitiones generales de congruentiis), attached to

a 1797 draft of the Disquisitiones Arithmeticae, was found after Gauss’s death; this

manuscript appears never to have been translated into English, but is available in

German as an appendix to Maser’s version of the Disquisitiones [53]. For a thorough

discussion, see [49].

Though Gauss worked over Fp, the argument runs just as well over an arbitrary

finite field Fq. Since each of the qn monic polynomials of degree n over Fq factor

uniquely as a product of prime polynomials, Gauss reasons that

qn =
∑

α1+2α2+3α3+···=n

(1α1)(2α2) . . . (nαn),

where Gauss’s notation (iαi) refers to the number of ways of choosing αi monic

irreducible polynomials of degree i, with replacement. This identity can be recast

in terms of generating functions;

∞∏

j=1

(
1

1− uj

)π(q;j)

=
∞∏

j=1

(
1 + uj + u2j + . . .

)π(q;j)

= 1 + qu + q2u2 + q3u3 + · · · = 1
1− qu

. (1.2)

Taking the logarithmic derivative and multiplying by u, he deduces that

∑

d≥1

dπ(q; d)
ud

1− ud
=

qu

1− qu
.

3



Now comparing the coefficients of un on both sides, we find that

qn =
∑

d|n
dπ(q; d). (1.3)

Gauss inverts this formula to find (adopting modern notation) that

π(q;n) =
1
n

∑

d|n
µ(d)qn/d. (1.4)

The main term in this expression occurs when d = 1, and a crude estimate of the

remaining terms shows that

π(q; n) =
1
n

qn + O

(
qn/2

n

)
, (1.5)

with the implied constant 2. Actually it is easy to do somewhat better: Suppose

n > 1 and let l be the least prime factor of n. The terms with d > 1 in the sum

on the right of (1.4) are bounded by qn/l/n in absolute value, and decrease at least

geometrically with ratio 1/q ≤ 1/2. Hence

∣∣∣∣π(q; n)− qn

n

∣∣∣∣ ≤ 2
qn/l

n
. (1.6)

We refer to (1.4) as Gauss’s formula for π(q;n), and to either of (1.5) or (1.6) as

Gauss’s estimate for π(q;n). We also make repeated use of the tidy upper bound

π(q; n) ≤ qn/n,

which we obtain by taking π(q; d) ≥ 0 for each d < n in (1.3).

There are other elementary paths leading to these estimates for π(q; n). An

instructive example is suggested by A. Granville (personal communication), and is

4



based on computing
∑

deg A=n
A monic

deg A

in two different ways, first as nqn, and then via the relation

deg A =
∑

P,a
P a|A

deg P,

where the sum is over monic irreducibles P and positive integers a. (This is the

polynomial analogue of the well-known formula log n =
∑

d|n Λ(d), where Λ denotes

von Mangoldt’s function.) This leads quickly to (1.3), from which everything follows.

In the next section we will see yet another way of deriving (1.3) which has proved

particularly important for later developments.

Note that we have proved a bit more than (1.1). The estimate (1.5) shows

immediately that π(q; n) ∼ qn/n not only when q is fixed and n tends to infinity,

but in any case when qn → ∞. This uniform perspective will be important when

we state our results below.

1.2 The Riemann Hypothesis for Function Fields and

its consequences

1.2.1 Gauss from the viewpoint of Euler

The Riemann zeta function has proved itself the most fundamental object in the

study of the distribution of rational primes, and so it may be surprising that there

is no zeta function appearing in Gauss’s proof of the prime number theorem for

polynomials. Actually it is lurking just beneath the surface. For a nonzero polyno-

mial A over Fq, define its absolute value by |A| := qdeg A; thus the absolute value

5



of A measures the size of Fq[T ]/(A) in the same way that the usual absolute value

of a nonzero integer n measures the size of Z/nZ. Define

ζq(s) =
∑

A monic

1
|A|s .

As with the Riemann zeta function, our function ζq(s) converges and defines an

analytic function for <(s) > 1. Moreover, because |A| is totally multiplicative in A,

there is an Euler factorization (in the region <(s) > 1):

ζq(s) =
∏

P monic, irreducible

1
1− |P |−s

. (1.7)

All irreducibles of the same degree have the same absolute value, so that we may

reorganize the right-hand product to arrive at

∞∏

d=1

(
1

1− q−sd

)π(q;d)

.

It is easy to obtain an alternate expression for ζq(s), which at the same time yields

its analytic continuation. Working first for <(s) > 1, we see that

ζq(s) =
∞∑

n=1

qn 1
qns

=
1

1− q1−s
. (1.8)

But now the right hand side is analytic everywhere except at the obvious poles (viz.

s = 1 + 2πim/ log q). Putting u = q−s, we recover Gauss’s identity (1.2). The rest

of the proof of the prime number theorem can be run as before.

What have we gained? Actually quite a lot; we can now see that the reason the

prime number theorem for polynomials was so easy to obtain is that the appropriate

zeta function has a simple form: it is an easily grasped rational function of q−s.

6



1.2.2 Artin and the zeta functions of quadratic function fields

Artin was the first to obtain results which hinted that this nice behavior of ζq(s)

is not an isolated phenomenon. In his 1921 thesis [2], he studies the arithmetic

of quadratic function fields of odd characteristic: Let k be a finite field of odd

characteristic, and let T be an element transcendental over k. Suppose K/k(T ) is

a quadratic extension. Artin studies the integral closure R of k[T ] in K and treats

all of the themes that are familiar from the number field setting:

• ideal theory of R,

• structure of the unit group of R,

• determination of the ramified primes in R,

• connection between ideal classes in R and classes of quadratic forms,

• division of the ideals of R into genera.

(Actually we have again taken some historical liberties; in his thesis Artin treats

only the case when k = Fp. He worked out, but never published, the analogous

details for general k; see [3].)

These discussions constitute Part I of Artin’s thesis, the so-called ‘arithmetic’

part. More germane for our purposes is the second, ‘analytic’ part, where Artin

introduces the zeta function associated to a quadratic function field. Artin’s zeta

function is defined in analogy with the Dedekind zeta function and, as Artin showed,

encodes much of the same information; e.g.,

• one can prove a class number formula in terms of the residue of the zeta

function at s = 1,

7



• the L-functions governing the behavior of the distribution of primes in pro-

gressions which come from real characters may be viewed as factors of the

zeta function of a quadratic function field.

Artin proves that the zeta function of a quadratic function field is always a

rational function in u = q−s of the form

L(u)
1− qu

,

where L(u) is a polynomial in u of predictable degree. He also writes down a

functional equation, which can be viewed as describing symmetries among the co-

efficients of L. Perhaps most stunning of all is that in the roughly forty examples

he is able to compute, all the ‘nontrivial’ zeros of L(u) have absolute value q−1/2.

(The precise sense of ‘nontrivial’ here is unimportant; it arises only because Artin’s

definition of the zeta function is somewhat unnatural, as mentioned below.) In

other words, all the nontrivial zeros of the zeta function lie on the line <(s) = 1/2,

in exact analogy with the classical Riemann Hypothesis.

Artin does not prove such a Riemann Hypothesis, but by adapting function-

theoretic techniques familiar from the number field setting, he is at least able to

show that his zeta function is zero-free on the line <(s) = 1. This already admits

interesting applications. For example, he proves the following version of the prime

number theorem for arithmetic progressions:

Theorem 1.2.1. Fix polynomials A,M ∈ Fq[T ] with M nonzero and gcd(A,M) =

1. The number of monic irreducible polynomials P of degree n satisfying P ≡ A

(mod M) is
1

ϕ(M)
qn

n
+ O

(
qθn

n

)
,

where θ < 1 is a constant depending only on M .

8



Here and below, we write ϕ(M) for the size of the unit group (Fq[T ]/(M))×.

This theorem improves on a result of Kornblum [78], according to which each

such progression contains infinitely many monic primes P . (Actually Kornblum

showed a bit more; see the discussion of his results Chapter 6.) It may seem sur-

prising that Artin is able to obtain a ‘power savings’ in his error term (i.e., that he

can take θ < 1), given that such a result is still not known for the classical prime

number theorem. The key is that the L-functions in question here are rational

functions of q−s, and so their values remain unchanged if s is shifted by 2πi/ log q.

This periodicity implies that if there are no zeros on <(s) = 1, then all zeros are

bounded away from <(s) = 1.

1.2.3 Weil’s Riemann Hypothesis: statement

Artin’s definition of the zeta function of a quadratic function field K depends on

representing K in the form Fq(T )(
√

f(T )), and so depends implicitly on the choice

of a transcendental element T . This defect can be remedied by working not with

ideals but with divisors, as suggested by Schmidt [109]. If K is a global function

field, set

ζK(s) :=
∑

a≥0

1
|a|s =

∏
p

1
1− |p|−s

,

where the sum is taken over the effective divisors of K and the product is over the

prime divisors. The precise definitions of divisor theory can be sidestepped here;

what is important is that we have nailed down a canonical zeta function for every

global function field K. When both definitions apply, Schmidt’s differs from Artin’s

(and the definition of ζq(s) that we gave earlier for the rational function field) only

in a finite number of Euler-product factors, corresponding to the poles of T . For

9



example, the zeta function of the rational function field Fq(T ) is precisely

ζFq(u)(s) =
1

1− q−s
ζq(s) =

1
(1− q−s)(1− q1−s)

,

which includes an extra factor 1/(1− q−s) with respect to (1.8).

As Schmidt showed in 1931 (ibid.), the zeta function ζK(s) is always a rational

function of u = q−s. Moreover, if K has genus g, then there is a univariate polyno-

mial LK with integer coefficients, constant term 1 and degree 2g with the property

that

ζK(s) =
LK(u)

(1− u)(1− qu)
,

where u = q−s.

For arithmetic applications, it is important to understand the zeros of ζK(s)

(equivalently, of LK(u)). In the case when K = Fq(u), we have LK(u) ≡ 1, and so

there are no zeros. This can be seen as a meta-reason for why the prime number

theorem in Fq[T ] came to us so easily and with such a strong error term.

In general the situation is not so simple; however, we have the following funda-

mental and immensely powerful result, proved by Weil in 1940 (see [128]):

Riemann Hypothesis for Function Fields. If K is any global function field,

then the roots of ζK(s) lie on the line <(s) = 1/2. Equivalently, the inverse of each

root of LK(T ) has absolute value
√

q.

Weil’s original proof required a reworking of the foundations of algebraic geom-

etry. The Riemann Hypothesis now admits a more or less elementary proof, due to

Bombieri; see, e.g., [117, Chapter V].
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1.2.4 Weil’s Riemann Hypothesis: consequences

The Riemann Hypothesis for Function Fields is useful in many circumstances. Here

are two examples which will prove important in the sequel:

First, the Riemann Hypothesis offers a handle on the distribution of power

residues in finite fields. To take a classical example, suppose n ≥ 1, and let εi = ±1

for 1 ≤ i ≤ n. If p is an odd prime, how many integers a ∈ [0, p− 1] satisfy

(
a + i

p

)
= εi

for all 1 ≤ i ≤ n? On probabilistic grounds this number should be roughly p/2n;

the Riemann Hypothesis for Function Fields yields a count of

p

2n
+ O(p1/2),

where the implied constant depends only on n. This estimate is easy to prove

directly for n = 1 and 2, but nontrivial already for n = 3. (For these cases, see [1,

Chapter 10].) Davenport succeeded in proving the estimate when n = 4 or n = 5

but only with the weaker error term O(p3/4). There is reason to believe that the first

result towards Weil’s Riemann Hypothesis, namely Hasse’s proof of the genus 1 case

(which gives the above estimate when n = 4), may have been a result of a challenge

from the problem-solver Davenport to the theory-builder Hasse to put his algebra

to good use! (See [105, §3.3].) In Chapter 3, we will need a result on configurations

of power-residues of a very similar flavor, and we will obtain it from an estimate for

character sums (essentially due to Lenstra and Wan [125]) that comes from Weil’s

Riemann Hypothesis.

Second, the Riemann Hypothesis allows one to produce useful, explicit versions

of various estimates in prime number theory. For example, one can show that
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θ = 1/2 is permissible in Artin’s Theorem 1.2.1, and at the same time make explicit

the dependence of the implied constant on p, A and M . In fact one can be a bit

more general: as pointed out by Hayes [63] one can obtain analogous formulas for

the number of primes which lie in a given arithmetic progression and whose first

several coefficients are prescribed. We will obtain and apply formulas of this type

in Chapter 2, where additional references are given.

The applications appearing in the second half of this thesis depend heavily on

a function field analogue of the Chebotarev density theorem. An explicit version

of this result, resting on Weil’s Riemann Hypothesis, was used by Cohen [29] and

Ree [99] to confirm a conjecture of Chowla: for prime p > p0(n), there is always an

irreducible of the form Tn + T + a over Fp. These papers were the inspiration for

our work in Chapters 4–7. Cohen has written extensively on this method; see, e.g.,

[30], which discusses some of the same problems considered by Hayes (op. cit.) but

obtains estimates useful in different ranges of the parameters.

Remark. For a complete history of Weil’s Riemann Hypothesis, see the series of

papers by Roquette ([104], [105], [106]).

1.3 Hypothesis H and its polynomial analogue

Since the number of all primes is infinite . . . we have the question of

whether the number of primes, which for example are contained in the

form aa + 1, is also infinite . . . . If these are also infinite, one could also

ask the same question for the primes of the form a4 + 1 or a8 + 1, etc.

– L. Euler [48]

. . . I do not mean to deny that there are mathematical truths, morally

certain, which will defy and will probably to the end of time continue

12



to defy proof, as, e.g., that every indecomposable integer polynomial

function must represent an infinitude of primes. – J. J. Sylvester [119]

1.3.1 The classical situation

At this point in our historical survey we narrow our focus to a specific class of

problems in prime number theory, those concerning prime values of polynomials.

As the quotation from Euler demonstrates, particular problems of this type have

long been of interest; however, the first formulation of a precise conjecture had to

wait until Bunyakovsky in 1857 [14]:

Conjecture 1.3.1 (Bunyakovsky’s conjecture). Suppose f(T ) is a nonconstant

polynomial with integer coefficients and positive leading coefficient. Moreover, sup-

pose that f is irreducible in Z[T ] and that there is no prime p which divides f(n)

for every integer value of n. Then f(n) is prime for infinitely many positive integer

values of n.

The condition on the primes dividing f(n) is needed to exclude examples like

f(T ) = T 2 + T + 2, which assumes only even values.

Bunyakovsky’s conjecture was later generalized to a finite family of polynomi-

als by Schinzel, who with Sierpiński [108] gave several applications to elementary

number theory:

Conjecture 1.3.2 (Hypothesis H). Suppose f1(T ), . . . , fr(T ) are nonconstant poly-

nomials with integer coefficients and positive leading coefficients. Moreover, suppose

that each fi is irreducible in Z[T ], and that there is no prime p for which

f1(n)f2(n) · · · fr(n) ≡ 0 (mod p)

for every value of n. Then there are infinitely many positive integers n for which
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f1(n), . . . , fr(n) are simultaneously prime.

In the case of a single linear polynomial, Hypothesis H amounts to Dirichlet’s

1837 theorem on primes in progressions. Several other cases of Hypothesis H corre-

spond to well-known problems in number theory; e.g., when r = 1 and f1 = T 2 + 1

we have exactly Euler’s conjecture mentioned above, and when f1 = T, f2 = T + 2,

we have the celebrated twin prime conjecture. But Dirichlet’s theorem remains the

only proven case of Hypothesis H. In this respect the situation is unchanged from

when Sylvester made his rather gloomy prediction.

Despite the difficulties in proving any qualitative conjecture of this type beyond

Dirichlet’s theorem, it is easy to go a bit further and formulate quantitative predic-

tions along the same lines. The first plausible predictions of this type are due to

Hardy and Littlewood [59], via a heuristic application of the circle method. How-

ever, similar predictions can also be derived by purely probabilistic reasoning. Let

us consider the problem of estimating the number of twin prime pairs p, p + 2 with

p ≤ x. The prime number theorem can be viewed as asserting that a number near

n is prime with probability roughly 1/ log n. Thus we expect, under the assumption

of independence, that

#{p ≤ x : p, p + 2 prime} ≈
∑

n≤x

1
log(n) log (n + 2)

;

this last sum is easily shown to be asymptotically x/ log2 x.

However, the assumption of independence is clearly untenable in this case; e.g.,

if n > 2 is prime, then n is odd, and so n + 2 is automatically odd. Thus n + 2

already has a leg up on being prime!

To obtain a precise conjecture, we need to understand these deviations from

independence. An integer is composite exactly when it has a nontrivial prime factor.
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This suggests we compare the probability that neither entry of a random pair of

integers is divisible by the prime p with the probability that neither element of our

special pair (n, n + 2) is divisible by p. The former occurs (ignoring the niceties

required to quantify ‘random’) with probability (1 − 1/p)2, and the latter with

probability (1− ρ(p)/p), where

ρ(p) := #{n mod p : n(n + 2) ≡ 0 (mod p)}.

When p > 2, we have ρ(p) = 2, and so

(1− ρ(p)/p)
(1− 1/p)2

=
1− 2/p

(1− 1/p)2
= 1− 1

(p− 1)2
.

On the other hand, when p = 2 we have ρ(p) = 1, and the corresponding ratio is

precisely 2. This argument, coupled with a healthy dose of optimism, motivates the

following prediction:

Conjecture 1.3.3 (Quantitative twin prime conjecture). If π2(x) denotes the num-

ber of twin prime pairs p, p + 2 with p ≤ x, then

π2(x) ∼ 2
∏

p>2

(
1− 1

(p− 1)2

)
x

log2 x
as x →∞.

This argument appears to originate with Selmer in 1942 [111]. Whatever one’s

opinion of this reasoning, Conjecture 1.3.3 is supported by a massive accumulation

of numerical evidence. See, e.g., the online tables of Nicely [88].

Hardy and Littlewood never formulated a quantitative conjecture of the same

generality as Hypothesis H, though this seems to have been within their power.

This was left to Bateman and Horn [8]:

Conjecture 1.3.4 (Hardy and Littlewood, Bateman and Horn). Suppose that
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f1(T ), . . . , fr(T ) ∈ Z[T ] are nonassociated polynomials with positive leading coef-

ficients, all irreducible in Z[T ]. For each prime p, define

ρ(p) := #{n mod p : f1(n)f2(n) · · · fr(n) ≡ 0 (mod p)}.

Assume that ρ(p) < p for all p. Then

#{n ≤ x : f1(n), . . . , fr(n) are all prime} = (1 + o(1))
S(f1, . . . , fr)∏r

i=1 deg fi

x

logr x
,

as x →∞. Here the “singular series” S(f1, . . . , fr) is defined by

S(f1, . . . , fr) :=
∏
p

(
1− ρ(p)

p

)(
1− 1

p

)−r

.

We leave to the reader the straightforward task of generalizing the heuristic

argument given for the twin prime conjecture to this more general context.

One can show that the singular series S(f1, . . . , fr) is always positive under

the hypotheses of Conjecture 1.3.4, so that Conjecture 1.3.4 implies the qualitative

Hypothesis H (Conjecture 1.3.2). Conjecture 1.3.4 is proved only in the case of

a single linear polynomial, where it coincides with the prime number theorem for

arithmetic progressions.

1.3.2 A surprise in characteristic p, and the work of Conrad, Con-

rad, and Gross

Is there a plausible function field analogue of Hypothesis H, and if so, what is it?

Here the situation is sufficiently complicated that we content ourselves with a dis-

cussion of the single-polynomial (Bunyakovsky) situation. Guided by our intuition

from the number field setting, it is tempting to conjecture the following:
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Conjecture 1.3.5 (Naive Bunyakovsky/Bateman-Horn conjecture over Fq[u]). Let

f(T ) be a polynomial in Fq[u][T ]. Suppose that f(T ) is irreducible in Fq[u][T ],

and that there is no prime P of Fq[u] that divides f(g(u)) for every polynomial

g(u) ∈ Fq[u]. Then there are infinitely many g(u) ∈ Fq[u] for which f(g(u)) is

irreducible over Fq. Moreover, the number of such g(u) having degree n is

(1 + o(1))
S(f)

degT f

(q − 1)qn

n
as n →∞.

Here

S(f) =
∏

P

(
1− ρ(P )

|P |
)(

1− 1
|P |

)−1

,

where ρ(P ) = #{g(u) mod P : f(g(u)) ≡ 0 (mod P )}.

Once again, the singular series S(f) can be shown to be positive under the given

hypotheses, so that the quantitative half of this conjecture is indeed a strengthening

of the qualitative part.

One could quibble a bit with our formulation of Conjecture 1.3.5: Bunyakovsky’s

conjecture is a prediction about prime values of f(n), where n ranges over positive

values. One might argue that for the sake of analogy, in Conjecture 1.3.5 we ought

only to sample over monic g. We ignore this objection for now but will return briefly

to it later.

Is Conjecture 1.3.5 as well-supported by the numerical evidence as Conjecture

1.3.4? For many polynomials, computations (carried out by Conrad, Conrad, and

Gross [34]) do appear to confirm the prediction of Conjecture 1.3.5. Indeed, this

seems to be the case whenever f(T ) is separable over Fq(u), i.e., whenever f(T ) is

not a polynomial in T p (where p is the characteristic of Fq). In the remaining cases
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n count prediction ratio
9 1624 1168.3 1.390

10 4228 3154.5 1.340
11 11248 8603.2 1.307
12 31202 23658.7 1.319
13 87114 65516.5 1.330
14 244246 182510.2 1.338
15 683408 511028.6 1.337
16 1914254 1437268.0 1.332

n count prediction ratio
9 1404 1458.0 0.963

10 7776 3936.6 1.975
11 10476 10736.2 1.001
12 0 29524.5 0
13 82140 81760.2 1.005
14 455256 227760.4 1.999
15 637440 637729.2 1.000
16 0 1793613.4 0

Table 1.2: Left hand table: number of g of degree n for which g(u)12+(u+1)g(u)6+u4

is irreducible over F3, vs. the number expected from Conjecture 1.3.5. Right hand
table: number of g of degree n for which g(u)3+u is irreducible over F3, vs. expected
number.

the conjecture sometimes appears correct, but there are also apparent counterex-

amples. See Table 1.3.2 for two such examples over F3, taken from [35]. Note that

in the first example, the ratio appears to be tending not to 1, but to 4/3. In the

second example, the ratios appear to be converging to limits depending on n mod 4,

which go in the cycle 0, 1, 2, 1.

As pointed out in [34], the falsity of Conjecture 1.3.5, even in its weaker, qual-

itative form, is implied by work of Swan [118] from 1962. Let q be a power of 2.

Taking m = 3 in [118, Example, p.1102] we see that for every g(u) ∈ Fq[u], the

polynomial

g(u)8 + u3

is either divisible by u, or has an even number of prime factors in Fq[u]. In either

case g(u)8 + u3 is reducible. This is true even though (as is easily checked) T 8 + u3

satisfies all the conditions of Conjecture 1.3.5. Swan does not point out that his

formulas falsify the naive polynomial analogue of Hypothesis H, but given that

Schinzel’s hypothesis had appeared in print only five years before, this omission is

certainly understandable.
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Driving Swan’s result is a formula for the Möbius function of a polynomial in

characteristic 2. (The Möbius µ function of a polynomial is defined to be zero if

the polynomial is not squarefree, and (−1)r otherwise, where r is the number of its

monic irreducible factors.) Here Swan is generalizing a result that had been derived

much earlier in odd characteristic:

Corollary 1.3.6 (Pellet [92]). If f(T ) ∈ Fq[T ] is a nonzero polynomial of degree n

over Fq where q is odd, then

µ(f) = (−1)nχ(disc(f)),

where χ is the quadratic character on F×q , and χ(0) = 0.

(The existence of formulas of this type is rather surprising, as over Z, no algo-

rithm for determining the Möbius function is known which improves on factoring.)

Conrad, Conrad, and Gross observe (see [35, Example 4.3]) that one can use this

theorem of Pellet to cook up examples similar to Swan’s over any finite field of odd

order. Set f(T, u) := T 4q + u2q−1 ∈ Fq[u, T ]. The irreducibility of f(T, u) follows

from Capelli’s theorem quoted below (p. 24), and the local condition of Conjecture

1.3.5 is immediate since f(0, u) and f(1, u) are relatively prime in Fq[u]. However,

one can use Pellet’s formula to show that µ(f(g(u))) = 0 or 1 for every g(u) ∈ Fq[u].

Thus f(T, u) is a counterexample to the analogue of Bunyakovsky’s conjecture.

The last two examples are quite extreme; the polynomials f involved admit no

prime specializations at all. In both cases, this can be traced to the Möbius function

only assuming the values 0 or 1 along the Fq[u]-specializations of f . That is, the

Möbius function is as biased there as possible. It is reasonable to expect that less

severe biases of the Möbius function on the values f(g(u)) might skew prime-value

statistics also, and that by quantifying these biases one could understand the more
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complicated and puzzling behavior of the examples in Table 1.3.2.

The idea that studying such Möbius biases could lead to a plausible analogue

of Hypothesis H was first developed by Conrad, Conrad, and Gross. (But see [31],

where Cohen notes that a similar explanation can be given for anomalous counts

of irreducible ‘windmill polynomials.’) We have already recorded their observation

that if f is not a polynomial in T p, then both the qualitative and quantitative

predictions of Conjecture 1.3.5 appears correct. So we may assume f is a polynomial

in T p. In this case Conrad, Conrad and Gross are able to prove a formula for the

Möbius function at the specializations of f . If p > 2, or if p = 2 and f is a

polynomial in T 4 and not merely T 2, this formula implies a certain periodicity in

the values µ(f(g)):

Theorem 1.3.7 (see [34, Theorem 4.8]). Let f(T ) be a squarefree polynomial in

Fq[u][T ] with positive T -degree. Assume, moreover, that f(T ) is a polynomial in

T p when p 6= 2 and is a polynomial in T 4 when p = 2. When p 6= 2, let χ be the

quadratic character on F×q .

Then there is a polynomial M = Mf,q in Fq[u]1 such that for g1 = c1u
n1 + . . .

and g2 = c2u
n2 + . . . in Fq[u] with sufficiently large degrees n1 and n2,

g1 ≡ g2 (mod M), n1 ≡ n2 (mod 4), χ(c1) = χ(c2) =⇒ µ(f(g1)) = µ(f(g2))

when p 6= 2 and

g1 ≡ g2 (mod M), n1 ≡ n2 (mod 4) =⇒ µ(f(g1)) = µ(f(g2))

when p = 2.
1This M is not unique; e.g., if M works in this theorem, then so does any multiple of M . It can

be shown that there is a choice of M of minimal degree which divides all such M .
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Thus when g is sufficiently large, µ(f(g(T ))) depends only on g mod M , n mod 4

and the quadratic character of the leading coefficient of g (when p 6= 2). The last

dependence is our excuse for not insisting that g be monic from the start; it would

have prevented us from observing an interesting phenomenon.

We can now describe the correction to Conjecture 1.3.5 proposed by Conrad,

Conrad, and Gross: Suppose f(T ) satisfies the hypotheses of Theorem 1.3.7. Choose

a polynomial M = Mf,q as in Theorem 1.3.7 and define

Λq(f ;n) := 1−
∑

deg g=n,(f(g),M)=1 µ(f(g))∑
deg g=n,(f(g),M)=1 |µ(f(g))| .

Work of Poonen [98] implies that the denominator here is positive for large n;

moreover, for large n the value of Λq(f ; n) is independent of the particular choice

of M . So the tail-end of this sequence is a well-defined sequence of real numbers in

the interval [0, 2].

The role of Λq is clarified by imposing a probabilistic interpretation. Let f(T )

be as in Conjecture 1.3.5. For g(u) ∈ Fq[u] of sufficiently large degree, the de-

gree of f(g(u)), say N , behaves linearly in n (and, in particular, is independent of

the particular choice of g(u)). Then Λq(f ;n) is approximated by the quotient of

probabilities

Prob(µ(f(g)) = −1 for deg g = n | f(g) squarefree, gcd(f(g),M) = 1)
Prob(µ(A) = −1 for deg A = N | A squarefree, gcd(A,M) = 1)

.

Indeed, for large N the denominator here is nearly 1/2; an elementary computation

gives an estimate of 1/2+OM (q1−NNk−1), where k is the number of distinct monic

irreducible factors of M . And if one replaces the denominator here with 1/2, it is

easily checked that we obtain Λq(f ; n) on the nose.

Using the proof of Theorem 1.3.7, Conrad, Conrad and Gross deduce that
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Λq(f ; n) is eventually periodic with minimal period length dividing 4.

Conjecture 1.3.8 (Conrad, Conrad, and Gross). Suppose Fq is a field of odd

characteristic, and let f(T ) ∈ Fq[u][T ] have positive T -degree. Then f(g(u)) is

irreducible for infinitely many g(u) ∈ Fq[u] if and only if the following conditions

hold:

(i) f(T ) is irreducible in Fq[u][T ],

(ii) no irreducible P in Fq[u] divides f(g(u)) for every g(u) ∈ Fq[u],

(iii) f(T ) 6∈ Fq[u][T p], or f(T ) ∈ Fq[u][T p], but the periodic part of the sequence

Λq(f ;n) is not identically zero.

If these conditions hold, then the number of g(u) of degree n for which f(g(u)) is

irreducible is

(1 + o(1))Λq(f ; n)
S(f)

degT (f)
(q − 1)qn

n
(n →∞), (1.9)

where Λq(f ; n) is interpreted as being identically 1 if f(T ) 6∈ Fq[u][T p]. This asymp-

totic formula also holds when Fq has characteristic 2, if in (iii) we assume that

f(T ) 6∈ Fq[u][T 2], or that f(T ) ∈ Fq[u][T 4].

Unfortunately when p = 2 and f(T ) ∈ Fq[u, T ] is a polynomial in T 2 but not in T 4,

there is still no satisfactory conjecture (see the remarks in [34, §5] and [33]).

One can prove (see [34, Examples 6.9, 6.10]) that in the first example of Table

1.3.2, Λq(f ;n) ≡ 4/3 for large n, and that in the second example, Λq(f ;n) cycles

over 1, 2, 1, 0. The data of Table 1.3.2 thus serves to confirm Conjecture 1.3.8.

We conclude by remarking that it is not necessary to restrict to the Bunyakovsky

situation where only irreducible specializations of a single polynomial are in view;

analogous predictions can be given in the more general Hypothesis H scenario.
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One expects that the naive generalization of Hypothesis H (as well as the direct

quantitative analogue of Conjecture 1.3.4) should be correct whenever dealing with

a finite family of separable polynomials.

Remark. For a more detailed survey of the results of Conrad, Conrad, and Gross,

see K. Conrad’s article [35].

1.3.3 Other recent approaches to Hypothesis H in positive charac-

teristic

As we have seen, there are polynomials in Fq[u][T ] which do not admit a single

irreducible specialization. It is natural to wonder what conditions could be imposed

to preclude this rather unpleasant behavior. Conjecture 1.3.8 of course gives condi-

tions of this type, but does not seem at all easy to prove. In this direction we have

the following theorem of Bender and Wittenberg [9]:

Theorem 1.3.9. Let f1, f2, . . . , fr ∈ Fq[u, T ] be irreducible polynomials whose total

degrees deg(fi) satisfy p - deg(fi)(deg(fi) − 1) for all i. Assume that the curves

Ci ∈ P2(Fq) defined as the Zariski closures of the affine curves

fi(u, T ) = 0

are smooth. Then for all large s, there are a, b ∈ Fqs such that the polynomials

f1(u, au + b), . . . , fr(u, au + b) ∈ Fqs [u] are all irreducible over Fqs.

The way we have stated this result, the irreducible specializations are produced

only over an extension Fqs of the ground field. However, it appears from the proof

that if q is large compared to the total degree of f1 · · · fr, then one may take s = 1.

The next result we wish to highlight here is perhaps the most surprising encoun-

tered so far. Recall that the naive polynomial analogue of Hypothesis H appears
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to hold for any finite family of separable polynomials over Fq; in particular, over

any field satisfying the necessary local conditions, there should be infinitely many

pairs of irreducibles P, P + 1. These conditions are satisfied whenever q > 2; but

fail when q = 2, as one of P or P + 1 always has zero constant term.

It therefore appears reasonable to conjecture that when q > 2, there are infinitely

many ‘twin prime pairs’ P, P +1 over Fq. Remarkably, given the difficulty associated

with the classical twin prime conjecture, this polynomial version can be proven. The

following result appears in Hall’s 2003 doctoral thesis [57] (see also [58]):

Theorem 1.3.10. If Fq is a field with q > 3 elements, then there are infinitely

many pairs of monic irreducibles P, P + 1 ∈ Fq[T ].

This leaves open the case q = 3, but as we will see in Chapter 3, this case can

be handled by a small variation in the argument.

The most startling aspect of Hall’s theorem is its simple, short proof. Hall

bases the argument on the following irreducibility criterion of Capelli (see, e.g., [79,

Chapter VI, Theorem 9.1]):

Theorem 1.3.11 (Capelli). Let F be any field. Then the polynomial Tn − a is

irreducible over F unless one of the following holds:

(i) for some prime l dividing n and some b ∈ F , we have a = bl,

(ii) 4 divides n and a = −4b4 for some b ∈ F .

To give the flavor of Hall’s proof we describe the q = 7 case. There are only

three cubes in F7: 0, 1, and −1. For each k = 0, 1, 2, 3, . . . , consider the polynomial

T 3k − 2 ∈ F7[T ]. As a binomial, if it is to factor, it must factor for one of the two

reasons given in Capelli’s theorem. But since 2 is not on our list of cubes, this is

impossible; hence T 3k −2 is irreducible for every value of k. By the same argument,
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T 3k − 3 is irreducible over F7 for each k. But now we are staring at a twin prime

pair: T 3k − 3 and T 3k − 2. Varying k, we see we have proven an F7 analogue of the

twin prime conjecture!

1.4 Miscellaneous results

There are a number of results on the distribution of irreducible polynomials over

finite fields on which we have not yet touched; here we survey some representatives

examples.

Perhaps surprisingly, quite a bit can be done under very limited hypotheses.

Knopfmacher and Zhang (see [74], [75]) develop much of analytic and probabilistic

number theory in the framework of ‘arithmetic semigroups satisfying Axiom A#’.

The monic polynomials over a finite field form one of the motivating examples of

such semigroups, and so all of their results are applicable in this context. This

includes, e.g., the Hardy-Ramanujan inequality and Erdős-Kac theorem, estimates

for the maximal order of various arithmetic functions, theorems on mean values of

multiplicative functions, and quite a bit more. A similar approach is taken in the

pair [82] of articles by Liu.

Various authors deal more directly with the polynomial setting. For example,

sieve methods are independently generalized to the polynomial setting by Cherly

[26], Webb [127], Hsu ([70], [71]), and Bareikis ([6], [7]). From the numerous results

obtained by these authors, we choose to quote two ‘almost-prime’ results. The first

is due to Cherly (op. cit.).

Theorem 1.4.1. All of the following hold, with multiple irreducible divisors counted

multiply:

(i) Let Fq be a finite field, and suppose q > 2. Let A be a polynomial of degree n
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over Fq. If n is sufficiently large, then A can be written in the form P + Q,

where deg P = n − 1, deg Q = n, and each of P and Q have at most four

monic irreducible factors.

(ii) Let Fq be a finite field, and suppose q > 2. For each a ∈ F×q , there are

infinitely many polynomials P over Fq for which both P and P + a have at

most four monic irreducible factors.

(iii) Fix a finite field Fq with q ≡ 3 (mod 4). Then there are infinitely many

polynomials A over Fq for which A2 + 1 has at most six monic irreducible

factors.

As stated, item (ii) is superseded by the results on twin irreducibles discussed

in §1.3.3. (Indeed, whenever {P, P + 1} is a monic twin prime pair, multiplying by

a gives us a pair as in (ii).) In Chapter 3, we will prove that there are infinitely

many irreducibles of the form f2 + 1 over every field Fq with q ≡ 3 (mod 4), and

so a similar comment applies to (iii). Nevertheless, the quantitative lower bounds

implicit in the proofs of Cherly’s results remain of independent interest.

The most intricate applications of sieve methods in the polynomial setting are

due to Car. For example, in [17] she proves the following generalization of Chen’s

famous theorem on the Goldbach problem:

Theorem 1.4.2. Let Fq be a finite field, where we suppose first that q > 2. Then

every A ∈ Fq[T ] of sufficiently large degree n can be represented as P + Q, where P

is an irreducible polynomial of degree ≤ n, and Q is either irreducible or the product

of two irreducibles. Moreover, the number of such representations is at least

0.33
∏

P |A

(
1 +

1
|P | − 1

) ∏

P -A

(
1− 1

(|P | − 1)2

)
qn+1

n2
,
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where the products are indexed by monic irreducibles P . The same holds if q = 2,

if we only consider polynomials A(T ) divisible by T (T + 1).

In [18], Car adapts work of Iwaniec on the half-dimensional sieve to obtain the

following result (which we state in a simplified, qualitative form):

Theorem 1.4.3. Let M be a nonzero element of Fq[T ], and suppose that T (T + 1)

divides M if q = 2. Then there are infinitely many irreducible polynomials over Fq

of the form M + N , where N is the norm (from Fq2 down to Fq) of an element of

Fq2 [T ].

For example (taking q = 3, M = T , and viewing F9 as F3(
√−1)), there are

infinitely many irreducible polynomials over F3 of the form T + X(T )2 + Y (T )2,

where X(T ), Y (T ) ∈ F3[T ].

There has also been progress adapting the circle method to study problems in

additive prime number theory. In 1966, Hayes proved the first result of this type,

an analogue of Vinogradov’s 3-primes theorem [64]:

Theorem 1.4.4. Let A be a polynomial of degree n over Fq. Suppose α, β, γ are

nonzero elements of Fq for which α + β + γ agrees with the leading coefficient of A.

If q = 2, suppose also that gcd(A, T (T + 1)) = 1. The number of ordered triples of

monic irreducible polynomials P1, P2, P3 over Fq of degree n with

αP1 + βP2 + γP3 = A

is
∏

P |A

(
1− 1

(|P | − 1)2

) ∏

P -A

(
1 +

1
(|P | − 1)3

)
q2n

n2
+ O

(
q1/4q7n/4

)
.

Moreover, for A as above, the coefficient of q2n/n2 is bounded below by an absolute

positive constant.
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A similar (but somewhat weaker) result was later independently established by

Car [15]. In the same paper she goes on to estimate the exceptional set in the

corresponding binary problem:

Theorem 1.4.5. Let Fq be a finite field with q > 2. Then for every h > 0, the

number of polynomials A of degree n ≥ 1 over Fq which cannot be written in the

form P + Q, where P and Q are irreducibles of degree ≤ n, is

¿ qn

nh
,

where the implied constant depends at most on q and h. The same holds if q = 2,

provided we only consider polynomials A divisible by T (T + 1).

Theorem 1.4.5 is the analogue of the result, proved independently by Chudakov

[28], van der Corput [121], and Estermann [47], that ¿ x/ logh x even integers ≤ x

are not the sum of two primes. A sharpening of Theorem 1.4.5 is presented in

Chapter 7.

In [22], Car studies the number of representations of a polynomial in the form

A1P1 +A2P2 +A3P3, where the Pi are irreducible and (in contrast to Hayes’s result

above) the Ai are not restricted to be constant.

Effinger and Hayes ([43], [42, Chapter 7]) study a variant of the three primes

problem. Call a monic polynomial A of degree n over Fq a 3-primes polynomial if

it can be written as a sum of three irreducibles, P1 + P2 + P3, where P1 has degree

n and P2, P3 have smaller degree. They prove that every monic polynomial A(T )

of degree n ≥ 2 (assumed coprime to T (T + 1) in the case q = 2) is a 3-primes

polynomial, unless A(T ) has the form T 2 + α and q is even. This is as complete a

classification as one could hope: being prime to T (T + 1) in the case q = 2 is the

polynomial analogue of being ‘odd’, while the exceptional polynomials T 2 + α are
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just “too small” to admit a representation. The result of Effinger and Hayes may be

compared with the theorem of [38], which asserts that if the RH holds for Dirichlet

L-functions, then every odd integer n > 5 is a sum of three rational primes.

Applications of the circle method to additive problems mixing primes and powers

appear in the work of Webb [126] and Car [16], [19], [20]. Of course the circle

method also has applications outside distribution of primes; a recent example in

the polynomial context is the work of Liu and Wooley on Waring’s problem [83].

We conclude this section by mentioning the recent work of Thorne. In [120],

he shows that Maier’s ‘matrix method’ (introduced in [84]) can be applied in the

polynomial setting. As evidence, he presents analogues of two familiar results: the

first is Maier’s construction (ibid.) of intervals with either significantly more or less

primes than probabilistic considerations suggest, and the second is Shiu’s result [113]

that there are arbitrarily long runs of consecutive primes in any coprime arithmetic

progression.

1.5 Summary of later chapters

Chapter 2 treats two problems. In the first half, we revisit the polynomial prime

counting function. Suppose p is a prime; then there is a natural correspondence

between nonnegative integers and polynomials over Fp, given by sending

a0 + a1p + · · ·+ ajp
j 7→ a0 + a1T + · · ·+ ajT

j ,

where we assume that the left hand-integer is written in base p (so 0 ≤ ai < p).

Define πp(X) to be the number of integers 0 ≤ n < X which encode irreducible

polynomials. Gauss’s prime number theorem gives us information about πp(X) as

X goes through powers of p, or through multiples of these powers by 0, 1, 2, . . . , p−1,
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and it is natural to wonder about the behavior of πp(X) for general X.

We prove an unconditional result analogous to the estimate

π(x) =
∫ x

2

dt

log t
+ O(x1/2 log x),

which was proved by von Koch [77] under the assumption of the Riemann Hypoth-

esis. We also prove an analogue of the asymptotic series expansion

π(x) =
x

log x
+ 1!

x

log2 x
+ · · ·+ r!

x

logr+1 x
+ Or

(
x

logr+2 x

)
.

Our estimates are obtained without assuming p fixed; an easy consequence of our

results is that πp(X) ∼ X/ logp X whenever logp X →∞.

The second half of Chapter 2 treats a version of the polynomial twin prime

problem. Let n be a positive integer and M a nonzero polynomial over Fq of degree

< n. We consider the number of (not necessarily monic) prime pairs P, P + M ,

where P has degree n. For large q, one expects on probabilistic grounds that this is

≈ qn+1

n2

∏

Q|M

(
1− 1

|Q|
)−1

,

where the product extends over those monic primes Q dividing M . Among other

results, we show that this approximation holds as an asymptotic whenever q/n2 →
∞. Our results both strengthen and generalize work of Hayes [61], who considered

the special case when deg M = n− 1.

In Chapter 3, we systematize Hall’s strategy in his attack on the twin prime

problem. We take aim at the following conjecture, which is a restricted polynomial

analogue of Hypothesis H:

Conjecture 1.5.1. Let f1(T ), . . . , fr(T ) be irreducible polynomials belonging to
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Fq[T ]. Suppose that there is no prime P ∈ Fq[T ] for which every g(T ) ∈ Fq[T ]

satisfies

f1(g(T )) · · · fr(g(T )) ≡ 0 (mod P ). (1.10)

Then the specializations f1(g(T )), . . . , fr(g(T )) are simultaneously irreducible for

infinitely many monic polynomials g(T ) ∈ Fq[T ].

The hypotheses here are more stringent than in the conjectures of §1.3.2, since

now we are only considering polynomials in T with constant (i.e., Fq) coefficients.

This restriction lifts the burden of worrying about the anomalies of that section,

as irreducible polynomials over Fq cannot be polynomials in T p. So we expect

Conjecture 1.5.1 to hold, and we even believe the analogue of Conjecture 1.3.4 holds

without the need for any new correction factors. Note that we have re-introduced in

Conjecture 1.5.1 the policy of sampling only over monic g(T ); this has the merits of

leading to a stronger statement than otherwise, being the true analogue of Schinzel’s

Hypothesis H (Conjecture 1.3.2), and being easily accommodated in our proofs

below.

Since a polynomial over a field cannot have more roots than its degree, the

number of distinct g(T ) mod P satisfying the congruence (1.10) is bounded by the

degree B (say) of the product f1 · · · fr. So we obtain a weakened form of Conjecture

1.5.1 if we replace the local condition there by the assumption that q > B. The

main result of Chapter 3 is a proof that the conclusion of Conjecture 1.5.1 holds

under the stricter hypothesis that q > max{3, 22r−2B2}.
Chapter 4 introduces, for us, the Chebotarev density theorem as a tool for

counting the number of irreducible polynomials of a specified form. Let f(T, u) be

an absolutely irreducible polynomial in Fq[T, u], monic in T . We give conditions

which allow us to assert that there are about q/n values of a ∈ Fq for which the

specialization f(T, a) is irreducible over Fq. The methods used to prove this theorem
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allow us to establish the following result in the additive theory of prime polynomials:

If Fq is a finite field of characteristic 6= 2, 3, then infinitely many monic irreducibles

in Fq[T ] have a representation in the form

P 3
1 + P 3

2 + P 3
3 ,

where the Pi are also monic irreducibles, and where deg P1 > max{deg P2, deg P3}.
In Chapter 5, we develop the method of Chapter 4 to investigate the following

quantitative analogue of Conjecture 1.5.1:

Conjecture 1.5.2. Suppose that f1, . . . , fr are nonassociate irreducible one-variable

polynomials over Fq with the degree of the product f1 · · · fr bounded by B. Suppose

that there is no prime P of Fq[T ] for which the map

g(T ) 7→ f1(g(T )) · · · fr(g(T )) mod P

is identically zero. Then

#{g(T ) : g monic, deg g = n, and f1(g(T )), . . . , fr(g(T )) all prime}

= (1 + oB(1))
S(f1, . . . , fr)∏r

i=1 deg fi

qn

nr
as qn →∞.

Here the local factor S(f1, . . . , fr) is defined by

S(f1, . . . , fr) :=
∞∏

m=1

∏

deg P=m
P monic, prime

1− ρ(P )/qm

(1− 1/qm)r
,

where

ρ(P ) := #{A mod P : f1(A) · · · fr(A) ≡ 0 (mod P )}.
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A key departure from Conjecture 1.3.5 and from Conjecture 1.3.8 is that the

asymptotic is stated in a uniform manner: rather than fixing q and studying asymp-

totics as n tends to infinity, Conjecture 1.5.2 proposes an asymptotic formula valid

whenever either q or n tends to infinity.

A heuristic argument for Conjecture 1.5.2 is given in §5.2. The remainder of

Chapter 5 is devoted to obtaining an estimate which confirms Conjecture 1.5.2 when

q is large compared to n and B and satisfies gcd(q, 2n) = 1. Actually we obtain a

more general result; in a similar range of q and n, we are able to describe the joint

distribution of the factorization types of f1(g(T )), . . . , fr(g(T )). (The factorization

type of a polynomial is the unordered list of degrees of its irreducible factors.)

Both of these results have a number of applications, which we explore in Chap-

ter 6. For example, our result towards Conjecture 1.5.2 gives us a handle on the

distribution of irreducibles in certain short intervals (in a certain range of q); such

a result allows one to prove that, in a similar range, irreducible polynomials are

Poisson distributed in a sense analogous to that considered by Gallagher [52]. Us-

ing the more general result on factorization types mentioned above, we investigate

smooth specializations of polynomials and sequences of consecutive smooth polyno-

mials, and we confirm polynomial analogues of conjectures appearing in the work

of Martin [85] and of Erdős and Pomerance [46].

We conclude the thesis in Chapter 7 with some remarks on a polynomial analogue

of the Goldbach conjecture. Let n be a positive integer, and let α and β be nonzero

elements of Fq. Set γ := α + β. If γ 6= 0, we suppose that A is a polynomial of

degree n with leading coefficient γ; otherwise we suppose A is a nonzero polynomial

of degree < n. Let R(A) be the number of pairs of irreducibles P1, P2 of degree n

and respective leading coefficients α, β for which P1 + P2 = A. Heuristically, one
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expects that

R(A) ≈ (1 + o(1))
∏

P |A

(
1 +

1
|P | − 1

) ∏

P -A

(
1− 1

(|P | − 1)2

)
qn

n2
. (1.11)

(Here, as usual, P is restricted to monic prime values.) In fact, one expects that

this holds as an asymptotic whenever qn tends to infinity. We show that (1.11) is a

good approximation for most A, by estimating the second moment of the difference

between the left and right-hand sides.

One consequence is an improvement on Car’s Theorem 1.4.5. Conditional on

the Riemann Hypothesis for L-functions, Hardy and Littlewood [60] proved that

the exceptional set in Goldbach’s problem has counting function ¿ x1/2+ε, for each

fixed ε > 0. We prove an unconditional polynomial analogue. Our proof uses the

circle method in the form applied by Hayes to the 3-primes problem.

We also prove, in the same spirit and by the same methods as in Chapter 5, that

(1.11) holds as an asymptotic when q is much larger than n and gcd(q, 2n) = 1.

This dissertation is largely a synthesis of results that are on their way to being

published: The second half of Chapter 2 (from §2.4 onward) is taken from [96].

Chapter 3 is substantially reproduced from [95], which also contains an appendix

with the heuristic argument for Conjecture 1.5.2. The main result of Chapter 5, as it

relates to Conjecture 1.5.2, appears in [97]. The more general result on factorization

types, along with most of the applications of Chapter 6, can be found in [94]. The

exceptions are Theorems 6.1.1 and 6.1.2, which appear already in [97]. Chapters 4

and 7 originate with this thesis.
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1.6 Notation

For ease of reference, we collect here frequently needed definitions. More localized

notation will be defined as it appears.

We write π(q; n) for the number of monic irreducibles of degree n in Fq[T ]. The

term Gauss’s formula for π(q; n) refers to (1.4), while Gauss’s estimate refers to

either of of (1.5), (1.6).

Throughout we make free use of standard notation from elementary and ana-

lytic number theory, such as the usual symbols for arithmetic functions and the

Bachmann/Landau/Vinogradov symbols (O(·), o(·), ¿, etc.) for indicating orders

of magnitude.

If A is a polynomial over Fq, we write |A| for qdeg A, which is the size of the

ring Fq[T ]/(A), and we write ϕ(A) for the size of the corresponding unit group. We

write ϕq(A) for this latter quantity when the ground field is ambiguous. We write

µ(A) for the Möbius function of A, defined as zero when A is not squarefree, and as

(−1)r otherwise, where r is the number of monic irreducible factors of A. Finally,

we use ω(A) for the number of distinct monic irreducible factors of A.

We reserve the letters P and Q for irreducible polynomials. We will often (but

not always) additionally restrict P and Q to monic values; e.g., this is always the

case when they are indexing a product.
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Chapter 2

Two applications of Hayes’s

theory of primes in congruence

classes

2.1 Introduction

In 1965, Hayes investigated the distribution of monic irreducible polynomials in

congruence classes which are more general than those considered by Kornblum and

Artin. We begin by recalling some results of Hayes’s paper [63] in the sharp form

derived by Rhin [100] on the basis of Weil’s Riemann Hypothesis. (Even sharper

estimates than these are now available in papers of Hsu [69] and Car [23], but these

are not required in the sequel.)

We give two applications of these results. The first is a prime number theorem

for Fq[T ] that refines the classical Gauss formula for the number of irreducibles of

a given degree. Our second application both corrects and extends work of Hayes

[61] concerning a polynomial analogue of the Goldbach conjecture; here we give an
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asymptotic formula, valid in a certain range of q and n, for the number of prime

pairs of degree n over Fq with a certain fixed difference. In §2.4.6 we use sieve

methods to prove an estimate of the same character valid over all q and n.

Notation

Throughout this chapter Q always denotes a monic irreducible element of Fq[T ].

2.2 The distribution of primes in congruence classes

Let M be the (multiplicative) monoid of monic polynomials over Fq. If l ≥ 0 and

M ∈ M, we define a relation Rl,M on M by saying that A ≡ B (mod Rl,M ) if

and only if A and B have the same first l next-to-leading coefficients and A ≡ B

(mod M). Then Rl,M is a congruence relation on M, i.e., an equivalence relation

satisfying

A ≡ B mod Rl,M ⇒ AC ≡ BC mod Rl,M for all A,B, C ∈M.

Thus there is a well-defined quotient monoid M/Rl,M . It can be shown that an

element of M is invertible modulo Rl,M if and only if it is coprime to M . Thus,

the units of this monoid form an abelian group of size qlϕ(M), which we denote by

(M/Rl,M )× (cf. [63, Theorem 8.6]).

One of the principal results of Hayes’s paper [63, Theorem 1.2] is that the monic

irreducibles are uniformly distributed in the unit group modulo Rl,M . (When l = 0,

this reduces to Artin’s version of the polynomial prime number theorem in arith-

metic progressions.) We now outline a proof of this uniform distribution statement

with an explicit error term, optimized to take advantage of Weil’s Riemann Hy-

pothesis.
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2.2.1 An explicit formula

Fix an integer l ≥ 0 and M ∈ M. Let χ be a character of (M/Rl,M )×, and lift

χ to a function on M (defining χ to vanish at elements of M that are nonunits of

M/Rl,M ). For u ∈ C with |u| < 1/q, define

L(u, χ) :=
∏

Q

(1− χ(Q)udeg Q)−1. (2.1)

If χ is nontrivial, it may be shown that L(u, χ) is a polynomial in u, and that for

some integer a(χ) ≤ l + deg M , we have a factorization

L(u, χ) =
a(χ)∏

i=1

(1− βi(χ)u), (2.2)

where from Weil’s Riemann Hypothesis and the work of Rhin [100, Chapter 2] we

know that |βi(χ)| ≤ q1/2 for 1 ≤ i ≤ a(χ). (Cf. the proof of [42, Theorem 5.7].)

From the Euler product representation (2.1), we deduce

u
L′(u, χ)
L(u, χ)

=
∑

Q

deg Q
χ(Q)udeg Q

1− χ(Q)udeg Q

=
∞∑

n=1

un
∑

deg Qj=n

χ(Qj) deg Q,

while from (2.2), we have

u
L′(u, χ)
L(u, χ)

= −
a(χ)∑

i=1

βi(χ)u
1− βi(χ)u

= −
∞∑

n=1

un




a(χ)∑

i=1

βi(χ)n


 .

38



Comparing coefficients in these two expansions, we conclude that

∑

deg Qj=n

χ(Qj) deg Q = −
a(χ)∑

i=1

βi(χ)n.

On the other hand, if χ = χ0, then

L(u, χ) =
1

1− qu

∏

Q|M
(1− udeg Q) =

1
1− qu

a(χ0)∏

i=1

(1− βi(χ0)u),

for certain roots of unity βi(χ0) (say), the number of which, say a(χ0), is exactly

∑

Q|M
deg Q ≤ deg M.

Proceeding as above we find

∑

deg Qj=n

χ0(Qj) deg Q = qn −
a(χ0)∑

i=1

βi(χ0)n.

It is worth noting for future use that the right hand sum is always nonnegative,

since
∑

deg Qj=n deg Q = qn, by (1.3).

Combining these results with the orthogonality relations for characters, we de-

duce the following explicit formula for primes in residue classes modulo Rl,M :

Lemma 2.2.1. Let A be a polynomial prime to M . Then

qlϕ(M)
∑

Qj≡A (mod Rl,M )

deg Qj=n

deg Q = qn −
∑
χ

χ̄(A)
a(χ)∑

i=1

βi(χ)n,

where χ runs over all characters modulo Rl,M . Here a(χ) ≤ l + deg M for all χ,

and each |βi(χ)| ≤ q1/2.
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2.2.2 A prime number theorem for progressions

As a straightforward consequence of the explicit formula, we obtain the following

result (cf. [42, Exercise 3, p. 83]):

Lemma 2.2.2. Let M be a monic polynomial over Fq and l a nonnegative integer.

Then the number of monic irreducibles of degree n belonging to a given unit residue

class modulo Rl,M is

1
n

qn

qlϕ(M)
+ O

(
(l + deg M + 1)

qn/2

n

)
.

Proof. The right hand side of Lemma 2.2.1 differs from qn by an error which is

O(qlϕ(M)(l + deg M)qn/2),

so that
∑

Qj≡A (mod Rl,M )

deg Qj=n

deg Q =
qn

qlϕ(M)
+ O((l + deg M)qn/2).

The terms of the sum for which j > 1 contribute

≤
∑

d|n
d<n

dπ(q; d) ≤
∑

d|n
d<n

qd ≤ 2qn/2.

Hence

n
∑

Q≡A (mod Rl,M )
deg Q=n

1 =
qn

qlϕ(M)
+ O

(
(l + deg M + 1)qn/2

)
.

Dividing by n gives the result.
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2.3 The prime number theorem for polynomials

2.3.1 The polynomial analogue of von Koch’s theorem

Colloquially, the classical prime number theorem asserts that a number n is prime

“with probability roughly 1/ log n.” Of course this can only be sensibly interpreted

as a heuristic device, but it has proved surprisingly useful in that capacity. For

example, it predicts that the number of primes up to X should be well-approximated

by the sum
∑

2≤n≤X

1
log n

,

and we know from the work of von Koch [77] that that this approximation is good

to within O(X1/2 log X) if and only if the Riemann Hypothesis holds. Here we show

that an analogue of von Koch’s estimate holds (unconditionally) in the polynomial

setting, as a consequence of Weil’s Riemann Hypothesis.

For the sake of simplicity, we initially formulate our result only for finite fields

of the form Fp, with p a prime. Notice that the nonnegative integers are in bijection

with the univariate polynomials over Fp via the map

anpn + an−1p
n−1 + · · ·+ a1p + a0 ←→ anTn + an−1T

n−1 + · · ·+ a1T + a0,

where the integer represented on the left hand side is assumed written in its base p

expansion (so that 0 ≤ ai < p). If the integer a corresponds to the polynomial A,

we will write ‖A‖ = a. For an interval of real numbers I, we define

πp(I) := #{P ∈ Fp[T ] : ‖P‖ ∈ I and P is irreducible},

and we set

πp(X) := πp([0, X)).
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Gauss’s formula implies that a degree n polynomial over Fp is prime with proba-

bility roughly 1/n, which leads us to expect that πp(X) should be well-approximated

by
∑

||f ||≤X
deg f>0

1
deg f

.

This is indeed the case. We prove the following:

Theorem 2.3.1. Let p be a prime and X ≥ p. Let n = blog X/ log pc (so that

n ≥ 1). Then

πp(X) =
∑

||f ||≤X
deg f>0

1
deg f

+ O(npn/2+1),

where the O-constant is absolute.

Remark. The inside of the O-term in our theorem is ³p X1/2 log X, in exact analogy

with von Koch’s result.

For the proof of Theorem 2.3.1 we may (and do) assume that X is an integer.

Write X = anpn + an−1p
n−1 + · · ·+ a1p + a0, with each 0 ≤ ai < p. Then we have

the basic decomposition

πp(X) = πp([0, pn)) + πp([pn, anpn)) +
n∑

j=1

πp

([∑n

i=j
aip

i,
∑n

i=j−1
aip

i
))

, (2.3)

induced by partitioning the integers 0 ≤ n < X according as to how far their base p

expansion (starting from the pn position at the left) agrees with that of the bound

X. We treat the three terms of (2.3) separately.

Lemma 2.3.2. We have

πp([0, pn)) = (p− 1)
n−1∑

m=1

pm

m
+ O(p(n+1)/2/n).
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Proof. We have the exact expression πp([0, pn)) = (p−1)
∑n−1

m=1 π(p; m). The result

follows now from Gauss’s estimate for π(p; m).

Lemma 2.3.3. We have

πp([pn, anpn)) = (an − 1)
pn

n
+ O(pn/2+1/n).

Proof. The left hand side counts the number of irreducibles of degree n with leading

coefficient one of 1, 2, . . . , an − 1, so that

πp((pn, anpn]) = (an − 1)
(

pn

n
+ O(pn/2/n)

)
= (an − 1)

pn

n
+ O(pn/2+1/n).

Lemma 2.3.4. For every 1 ≤ j ≤ n, we have

πp

([∑n

i=j
aip

i,
∑n

i=j−1
aip

i
))

= aj−1
pj−1

n
+ O

(
(n− j + 2)

pn/2+1

n

)
.

Proof. The left hand side represents the number of degree n primes whose first

n− j + 1 leading coefficients are an, an−1, . . . , aj , and whose T j−1-coefficient is one

of the an−1 values 0, 1, . . . , an−1 − 1. For each fixed value of the T j−1-coefficient,

the number of such irreducibles is the same as the number of monic irreducibles

belonging to a certain prescribed congruence class modulo Rn−j+1,1. By Lemma

2.2.2, each such congruence class contains

1
n

pj−1 + O

(
(n− j + 2)

pn/2

n

)

such irreducibles. Summing over the aj−1 possible coefficients of T j−1 yields the

lemma.
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From the decomposition (2.3) and Lemmas 2.3.2–2.3.4 we obtain that

πp(X) =
X − pn

n
+ (p− 1)

n−1∑

m=1

pm

m
+ O(npn/2+1).

But the main term here coincides precisely with
∑
‖f‖<X,deg f>0 1/deg f , and so

Theorem 2.3.1 follows.

2.3.2 An asymptotic series for πp(X)

The estimate of von Koch alluded to before is more often written in the form

π(X) =
∫ X

2

dt

log t
+ O(X1/2 log X),

which is permissible since the integral here (traditionally denoted li(X)) differs by a

bounded amount from the sum
∑

2≤n≤X 1/ log n. In seeking to approximate li(X),

one is led (by repeated integration by parts) to the approximation

li(X) =
X

log X
+ 1!

X

log2 X
+ 2!

X

log3 X
+ · · ·+ r!

X

logr+1 X
+ Or

(
X

logr+1 X

)
, (2.4)

valid for every r ≥ 1. (This is one of the canonical examples of an asympotic series;

for background see, e.g., [37, Chapter 1.5].) Since the difference between π(X) and

li(X) is known (unconditionally) to be O(X/ logr X) for every r, it follows that

π(X) has the same asymptotic expansion.

It is natural to wonder if there is any analogue for πp(X). We prove the following:

Theorem 2.3.5. Let p be a prime, and X ≥ p an integer with X =
∑n

i=0 aip
i, and

0 ≤ ai < p for each i. Assume n ≥ 2. For r ≥ 2, we have

πp(X) =
X

n
+

r∑

k=2

(1− 1/p)Ap,k
pn

nk
+ O

(
npn/2+1 + Ap,r+2

pn

nr+1
+

p

n

r∑

k=1

Ap,k

)
.
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Here the constants Ap,k are defined by

Ap,k :=
∞∑

m=1

mk−1

pm−1
.

Remark. From the definitions it is clear that for every fixed value of k ≥ 1, the Ap,k

are well-defined constants, decreasing in p. Consequently, Theorem 2.3.5 implies

that (in the stated range)

πp(X) =
X

n
+

r∑

k=2

(1− 1/p)Ap,k
pn

nk
+ Or

(
pn

nr+1

)
.

In particular, Theorem 2.3.5 makes transparent that

πp(X) ∼ X/ logp X

whenever logp(X) →∞.

Most of the groundwork for the proof of Theorem 2.3.5 has already been laid

in the course of proving Theorem 2.3.1. The only new ingredient required is the

following, which is a minor variant of a result of Lenskoi [80]:

Lemma 2.3.6. For each r ≥ 1 and n ≥ 2, we have

n−1∑

m=1

pm

m
=

r∑

k=1

Ap,k
pn−1

nk
+ O

(
1
n

r∑

k=1

Ap,k

)
+ O

(
Ap,r+2

pn−1

nr+1

)
,

where the constants Ap,k are defined as in the statement of Theorem 2.3.1.
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Proof. We largely follow Lenskoi. We have

1
pn−1

n−1∑

m=1

pm

m
=

n−1∑

m=1

1
mpn−1−m

=
n−1∑

m=1

1
(n−m)pm−1

=
n−1∑

m=1

1
pm−1

∞∑

k=1

mk−1

nk
=

∞∑

k=1

1
nk

n−1∑

m=1

mk−1

pm−1
.

We split this last expression into three parts:

∞∑

k=1

1
nk

n−1∑

m=1

mk−1

pm−1
=

r∑

k=1

1
nk

n−1∑

m=1

mk−1

pm−1
+

∞∑

k=r+1

1
nk

n−1∑

m=1

mk−1

pm−1

=
r∑

k=1

1
nk

Ap,k −
r∑

k=1

1
nk

∞∑
m=n

mk−1

pm−1
+

∞∑

k=r+1

1
nk

n−1∑

m=1

mk−1

pm−1
.

The first sum yields the main term in our theorem, and it remains to show that

the latter two contribute only error terms. The first double sum is just

r∑

k=1

1
nk

1
pn−1

∞∑

m=1

(m− 1 + n)k−1

pm−1
≤ 1

n

1
pn−1

r∑

k=1

∞∑

m=1

mk−1

pm−1
=

1
n

1
pn−1

r∑

k=1

Ap,k,

using
m− 1 + n

n
= 1 +

m− 1
n

≤ 1 + (m− 1) = m.

This corresponds to the first O-term above.

To estimate the remaining double sum, notice that

∞∑

k=r+1

1
nk

n−1∑

m=1

mk−1

pm−1
=

1
nr+1

∞∑

s=0

1
ns

n−1∑

m=1

ms+r

pm−1

=
1

nr+1

n−1∑

m=1

mr

pm−1

1
1−m/n

=
1

nr+1

n−1∑

m=1

mr

pm−1

(
1 +

m

n−m

)
.
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Since m/(n−m) ≤ m, this is bounded above by

1
nr+1

(
n−1∑

m=1

mr

pm−1
+

n−1∑

m=1

mr+1

pm−1

)
≤ Ap,r+1 + Ap,r+2

nr+1
≤ 2

Ap,r+2

nr+1
.

Multiplying through by pn−1, we obtain the second O-term in the estimate of the

theorem.

We can now prove Theorem 2.3.5. According to Lemma 2.3.6, we have

(p− 1)
n−1∑

m=1

pm

m
=

r∑

k=1

(1− 1/p)Ap,k
pn

nk
+O

(
p

n

r∑

k=1

Ap,k

)
+O

(
Ap,r+2

pn

nr+1

)
. (2.5)

Now the k = 1 term in the right-hand sum contributes exactly

(
(1− 1/p)

∞∑

m=1

1
pm−1

)
pn

n
=

pn

n
,

so that inserting (2.5) into the result of Theorem 2.3.1 yields Theorem 2.3.5.

While Theorem 2.3.5 gives an asymptotic expansion of πp(X), it is not imme-

diately obvious that the terms of this expansion have much in common with the

corresponding terms in the asymptotic expansion of π(X) in (2.4). To highlight the

similarity, we note the following estimate for the constants Ap,k:

Lemma 2.3.7. If p is a prime and k is a positive integer, then

Ap,k = p
(k − 1)!
(log p)k

(
1 + O

(
log p√

k

))
.

Proof. We have Ap,k := p
∑∞

m=1 mk−1p−m. The Euler-Maclaurin summation for-

mula shows that

∞∑

m=1

mk−1p−m =
∫ ∞

0
tk−1 exp(−t log p) dt + O

(∫ ∞

0

∣∣∣∣
d

dt

(
tk−1 exp(−t log p)

)∣∣∣∣ dt

)
.
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A change of variables gives a main term of precisely

Γ(k)
(log p)k

=
(k − 1)!
(log p)k

,

while the unimodality of the original integrand ensures that the error term is

¿ max
t≥0

tk−1 exp(−t log p) = tk−1 exp(−t log p)|t=(k−1)/ log p =

((k − 1)/e)k−1/(log p)k−1 ¿ (k − 1)!
(log p)k

log p√
k

.

In the last line we have applied Stirling’s formula to estimate (k − 1)!.

Now suppose that X = pn is a power of p; as the proof of Lemma 2.3.6 makes

clear, it is these values of X which give rise to the tail of the expansion of Theorem

2.3.5. By Theorem 2.3.5, we have

πp(X) =
r∑

k=1

(1− 1/p)Ap,k
pn

nk
+ O(pn/nr+1),

where r ≥ 2 is an integer parameter at our disposal. By Lemma 2.3.7, the kth term

in this expansion is

(p− 1)
(k − 1)!
(log p)k

pn

nk

(
1 + O

(
log p√

k

))
= (p− 1)(k − 1)!

X

logk X

(
1 + O

(
log p√

k

))
.

If k is large compared to log p, then it makes sense to say that the main term here

is

(p− 1)(k − 1)!
X

logk X
.

This coincides with the kth term in the asymptotic expansion of π(X), except

for a factor of p − 1. This factor can be attributed to πp(X) counting all primes
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irrespective of their leading coefficient, whereas π(X) counts only positive primes.

2.3.3 The case of arbitrary finite fields

When q is not prime, then there is no longer an obvious correspondence between the

integers 0, 1, 2, . . . , q − 1 and the elements of Fq. However, if we pick any labeling

of the elements of Fq by {0, 1, . . . , q − 1} in which 0 corresponds to 0, then all the

results of this section remain true, with O-constants uniform in both q and the

choice of labeling. The proofs require only trivial modifications.

2.4 A polynomial analogue of the twin prime conjecture

2.4.1 A uniform conjecture

Let M be a nonzero polynomial over a finite field Fq, and let R(n; M, q) denote

the number of ‘twin prime pairs’ P, P + M , where P runs over the irreducible

polynomials of degree n. Reasoning in analogy with the usual heuristic arguments

offered for configurations of rational primes (compare, e.g., with [101, pp. 409-411]),

we are led to expect that for n > deg M ,

R(n;M, q) ≈ R0(n;M, q), (2.6)

where

R0(n;M, q) := (q − 1)
qn

n2

∏

Q|M

(
1− 1

|Q|
)−1 ∏

Q-M

(
1− 2

|Q|
)(

1− 1
|Q|

)−2

.

The factor of q − 1 in front stems from the fact that P is not restricted to monic

values.

There are various ways one might attempt to make the approximation (2.6)
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precise; perhaps the most obvious is to fix q and M , and to read (2.6) as an asymp-

totic estimate as n tends to infinity. Various special cases of such a conjecture were

proposed by Effinger, Hicks & Mullen (see [44]). Little is known in this direction;

in fact it was only recently that Hall [58, p. 140] showed the existence of infinitely

many twin prime pairs P, P + M over Fq in the special case when M is constant

(and q > 3), but his clever proof only yields very weak lower bounds on the num-

ber of such pairs. Hall’s result together with some generalizations is discussed in

Chapter 3.

A different approach is suggested by another result from the same paper of

Effinger, Hicks & Mullen. A special case of these authors’ Proposition 1 (op. cit.)

is that for M a nonzero constant polynomial, one has R(n;M, q) > 0 for q ≥ 2n.

Thus they are able to guarantee the existence of twin prime pairs not over a fixed

finite field Fq, but when q is large compared to the degree n of the polynomials

in the sought-after pair. This suggests that R(n; M, q) may be more amenable to

study as a function of multiple parameters. Once in this frame of mind, it is easy

to formulate a more uniform conjecture, justified by the same classical heuristic

alluded to above:

Conjecture 2.4.1. Let M be a nonzero polynomial of degree < n over Fq. Then

R(n;M, q) = (1 + o(1))R0(n; M, q) as qn →∞,

uniformly in M . In other words: For every ε > 0, there is a constant B = B(ε)

with the property that whenever M is a nonzero polynomial over Fq of degree < n

and qn > B, we have

|R(n; M, q)−R0(n; M, q)| < εR0(n; M, q).
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Here we use the explicit formula of §2.2.1 to prove an estimate for R(n; M, q)

which confirms Conjecture 2.4.1 whenever q/n2 tends to infinity (uniformly in the

choice of M ∈ Fq[T ] of degree < n). In §2.4.6, we use Selberg’s upper bound sieve

to derive an upper estimate for R(n; M, q) valid uniformly in n,M and q.

2.4.2 Statement of the main result

Considering again the right hand side of the approximation (2.6), we observe that

each factor in the second product is 1 + O(|Q|−2). From this one may deduce that

R0(n;M, q) = (1 + O(1/q))
qn+1

n2

∏

Q|M

(
1− 1

|Q|
)−1

.

In particular, Conjecture 2.4.1 would imply that as q →∞, we have

R(n;M, q) = (1 + o(1))
qn+1

n2

∏

Q|M

(
1− 1

|Q|
)−1

, (2.7)

uniformly in n and M (with 0 ≤ deg M < n).

We can now state our main result. Recall that
∏

Q|M (1−1/|Q|)−1 = |M |/ϕ(M).

Theorem 2.4.2. Let k ≥ 0 and n ≥ 2 be integers with 0 ≤ k < n. Let M be a

polynomial of degree k over Fq. Then

−qn

n
− 4

|M |
ϕ(M)

qn/l+1

n2
≤ R(n; M, q)− |M |

ϕ(M)
qn+1

n2
≤ qn − qn

n
+ 2

qn/l

n
,

where l is the least prime divisor of n.

In the omitted case k = 0 and n = 1, the pair P, P +M is counted by R(n; M, q)

for every linear polynomial P , so that R(n; M, q) = q2 − q.
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Remark. As a consequence of Theorem 2.4.2, we see that

1 + O(n/q) ≤ R(n; M, q)
(|M |/ϕ(M))qn+1/n2

≤ 1 + O(n2/q),

uniformly in n,M , and q. Thus if qn tends to infinity in such a way that n2/q tends

to zero, we have the asymptotic for R(n; M, q) predicted by (2.7), while the lower

bound aspect of this asymptotic holds already if n/q tends to zero. These estimates

can be compared with the uniform upper bound

R(n;M, q) ≤ 8
|M |

ϕ(M)
qn+1

n2
(2.8)

which follows from an application of Selberg’s upper-bound sieve, as developed in

the polynomial setting by Webb (see [127]). The details of the proof of (2.8) are

supplied in §2.4.6.

When k = n − 1, a weaker version of Theorem 2.4.2 was stated by Hayes [61,

Theorem 2]. However, the proof of his lower bound on R(n; M, q) contained a

gap [62], and he salvaged his main result only under additional hypotheses. Our

argument for the upper bound in Theorem 2.4.2 closely follows Hayes. Our proof of

the lower bound rests on a simple averaging argument applied to the estimate (1.6)

for the number of prime polynomials of a given degree.

Finally, we remark that if we let P run over only monic primes, then we still

believe the analogue of Conjecture 2.4.1, but obtaining an analogue of Theorem 2.4.2

appears substantially more difficult. A weaker result in this direction is contained

in Theorem 7.1.4 of Chapter 7.

Notation

For the remainder of this chapter, l denotes the least prime factor of the integer n.
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2.4.3 A heuristic

Let M be a polynomial of degree k over Fq and suppose n > k. Let h(T ) range over

a set of representatives of the units modulo Rn−1−k,M , and let Nh be the number of

monic primes of degree n congruent to h(T ) modulo Rn−1−k,M . (If we choose our

representatives h(T ) from the set of monic, degree n polynomials, then Nh can be

interpreted as the number of prime polynomials in the q-element set {h(T ) + αM},
where α ranges over Fq.) Then

∑
h N2

h is precisely the number of monic prime pairs

Q,Q′ of degree n whose difference is an Fq-multiple of M . If Q′ − Q is nonzero

for such a pair, then necessarily Q′ − Q = αM for some α ∈ F×q . But then α−1Q

and α−1Q′ form a pair of primes differing by M . Thus, removing the pairs where

Q = Q′, we find that

R(n; M, q) =
∑

h

N2
h − π(q;n). (2.9)

There are a total of qnϕ(M)/|M |monic, degree n polynomials which are prime to M ,

of which about qn/n are irreducible. Thus, a random monic, degree n polynomial

coprime to M is irreducible with probability about n−1|M |/ϕ(M). Hence it is

natural to guess that Nh is roughly (q/n)|M |/ϕ(M) for each h, and this leads us to

expect that

∑

h

N2
h ≈ (q/n)2(|M |/ϕ(M))2#(M/Rn−1−k,M )× =

q2

n2

|M |2
ϕ(M)2

qn−1−kϕ(M) =
|M |

ϕ(M)
qn+1

n2
.

2.4.4 Lower bound of Theorem 2.4.2

To obtain a lower bound it is not necessary to understand the numbers Nh individu-

ally. Since every monic prime of degree n belongs to some unit residue class modulo

Rn−1−k,M , we have
∑

h Nh = π(q; n), so that by the Cauchy-Schwarz inequality
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and Gauss’s estimates,

∑

h

12
∑

h

N2
h ≥

(∑

h

Nh

)2

≥ q2n

n2
− 4

qn(1+1/l)

n2
,

and so

∑

h

N2
h ≥

1
qn−1−kϕ(M)

(
q2n

n2
− 4

qn(1+1/l)

n2

)

=
|M |

ϕ(M)

(
qn+1

n2
− 4

qn/l+1

n2

)
.

The relation (2.9) now implies that

R(n; M, q) ≥ |M |
ϕ(M)

qn+1

n2
− 4

|M |
ϕ(M)

qn/l+1

n2
− π(q;n). (2.10)

The upper estimate π(q;n) ≤ qn/n completes the proof of the lower bound.

2.4.5 Upper bound of Theorem 2.4.2

From Lemma 2.2.1, if h represents a unit residue class modulo Rn−1−k,M , then

qn−1−kϕ(M)nNh ≤ qn−1−kϕ(M)
∑

Qj≡h (mod Rn−1−k,M )

deg Qj=n

deg Q

= qn −
∑
χ

χ(h)
a(χ)∑

i=1

βi(χ)n.
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Now square both sides and sum over h:

n2q2(n−1−k)ϕ(M)2
∑

h

N2
h ≤

∑

h

q2n − 2qn
∑

h

∑
χ

χ(h)
a(χ)∑

i=1

βi(χ)n

+
∑

h

∑

χ,χ′
χ(h)χ′(h)

∑

1≤i≤a(χ)
1≤j≤a(χ′)

βi(χ)nβj(χ′)n.

Interchanging the sums over h with the sums over χ and χ′, and using the orthog-

onality relations once again, we find that the right hand side simplifies to

qn−1−kϕ(M)q2n − 2qnqn−1−kϕ(M)
a(χ0)∑

i=1

βi(χ0)n

+ ϕ(M)qn−1−k
∑
χ

∑

1≤i≤a(χ)
1≤j≤a(χ−1)

βi(χ)nβj(χ−1)n.

As noted on p. 39, the first sum appearing here is nonnegative, and so the entire

term it belongs to is nonpositive and can therefore be ignored, since we are looking

for an upper bound. Moreover, since |βi(χ)| and |βj(χ−1)| are bounded by q1/2,

and both a(χ) and a(χ−1) are bounded by n− 1, the final term here is bounded in

absolute value by

(qn−1−kϕ(M))2(qn/2)2n2 = q3n−2−2kϕ(M)2n2.

Thus
∑

h

N2
h ≤

q3n−1−kϕ(M) + q3n−2−2kϕ(M)2n2

n2q2n−2−2kϕ(M)2
,
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so that

R(n; M, q) =
∑

h

N2
h − π(q; n)

≤ |M |
ϕ(M)

qn+1

n2
+ qn − π(q; n).

Inserting Gauss’s lower estimate for π(q;n) completes the proof of the upper bound.

2.4.6 An upper bound for twin prime pairs in Fq[T ]

In this section we establish the following estimate:

Proposition 2.4.3. Let n ≥ 2 be an integer, and let M 6= 0 be a polynomial of

degree < n over the finite field Fq. Then

#{P : P, P + M are both monic irreducibles of degree n} ≤ 8
|M |

ϕ(M)
qn

n2
.

As a corollary, we have

R(n; M, q) ≤ 8
|M |

ϕ(M)
qn+1

n2
,

whenever 0 ≤ deg M < n.

The estimate of Proposition 2.4.3 is analogous to an explicit upper bound on

generalized twin prime pairs obtained by Riesel and Vaughan ([102, Lemma 5]),

but working in the polynomial setting enables us to give a much simpler proof. We

begin with a statement of Selberg’s upper-bound sieve for polynomials (cf. [127,

Theorem 1]).

Lemma 2.4.4 (Selberg’s Λ2-sieve for Fq[T ]). Let A be a multiset of polynomials

over Fq, and let Q be a finite set of monic irreducibles over Fq. Suppose that

56



f is a multiplicative function defined on the squarefree divisors of
∏

Q∈QQ with

1 < f(Q) ≤ |Q| for each Q ∈ Q, and write

∑

A∈A
D|A

1 =
#A
f(D)

+ RD. (2.11)

Let D be any nonempty subset of the monic divisors of
∏

Q∈QQ which is divisor

closed (i.e., every monic divisor of an element of D belongs to D). Then

∑

A∈A
gcd(A,

∏
Q∈QQ)=1

1 ≤ #A
∑

D∈D f(D)−1
∏

Q|D
(
1− f(Q)−1

)−1

+
∑

D1,D2∈D
|XD1XD2R[D1,D2]|,

where

XD = µ(D)f(D)

∑
C∈D,D|C f(C)−1

∏
Q|C

(
1− f(Q)−1

)−1

∑
C∈D f(C)−1

∏
Q|C

(
1− f(Q)−1

)−1 .

Before proceeding we introduce a bit more notation. Let A be a nonzero poly-

nomial over Fq. Then we can express A uniquely in the form

A = εQe1
1 Qe2

2 · · ·Qer
r ,

where ε ∈ F×q , the Qi are distinct monic irreducibles, and the ei are positive integers.

We define the arithmetic functions Ω(·), d(·), and rad(·) in analogy with their integer

counterparts by setting

Ω(A) :=
r∑

i=1

ei, d(A) :=
r∏

i=1

(ei + 1), rad(A) :=
r∏

i=1

Qi.

Proof of Proposition 2.4.3. In the case when q = 2, we may assume that T (T + 1)
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divides M , since otherwise there are no prime pairs P, P + M of degree n. Thus

|Q| > 2 for every prime Q not dividing M . Define the multiset

A := {A(A + M) : A monic, deg A = n}.

Let Q be the set of monic primes of degree ≤ n/2. Then the number of monic,

degree n prime pairs P, P + M is precisely the number of elements of A coprime to
∏

Q∈QQ, a quantity which may be estimated with Lemma 2.4.4.

We take D to be the (divisor-closed) set of squarefree, monic polynomials of

degree ≤ n/2. Define the multiplicative function f appearing in Lemma 2.4.4 by

setting (for monic primes Q)

f(Q) =





|Q|/2 if Q does not divide M,

|Q| if Q divides M,

and extending f to be a completely multiplicative function on the monoid of monic

polynomials. It is easy to check that if the squarefree polynomial D has degree ≤ n,

then (2.11) holds without any error term, i.e., with RD = 0.

Since the least common multiple of any pair D1, D2 ∈ D has degree ≤ n, we

obtain from Lemma 2.4.4 the following clean inequality:

∑

A∈A
gcd(A,

∏
Q∈QQ)=1

1 ≤ #A
∑

D∈D f(D)−1
∏

Q|D
(
1− f(Q)−1

)−1 . (2.12)

To proceed we need a lower bound on the denominator in this expression. For

each D ∈ D, write D = D1D2, where D1 divides M and D2 is prime to M . Then
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we have

f(D)−1
∏

Q|D

(
1− f(Q)−1

)−1
=

∏

Q|D1

1
|Q| − 1

∏

Q|D2

2
|Q| − 2

,

using |Q| > 2 for every Q dividing D2. Thus we have reduced the problem to

obtaining a lower bound on

∑

D∈D

∏

Q|D1

1
|Q| − 1

∏

Q|D2

2
|Q| − 2

=
∑

D∈D

∏

Q|D1

(
1
|Q| +

1
|Q|2 +

1
|Q|3 + . . .

) ∏

Q|D2

(
2
|Q| +

4
|Q|2 +

8
|Q|3 + . . .

)
.

We may rewrite this expression as

∑

A monic

2Ω(A2)

|A|
∑

D∈D
rad(A)=D

1,

where A2 denotes that part of A supported on the primes not dividing M . The

inner sum is at least 1 whenever deg A ≤ n/2, which yields a lower bound of

∑

A2 monic
deg A2≤n/2

gcd(A2,M)=1

2Ω(A2)

|A2|
∑

A1 monic
deg A1≤n/2−deg A2

rad(A1)|M

1
|A1| . (2.13)
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Now 2Ω(A2) ≥ d(A2), while for the inner sum we have

∑

A1 monic
deg A1≤n/2−deg A2

rad(A1)|M

1
|A1| =

ϕ(M)
|M |

∑

A1 monic
deg A1≤n/2−deg A2

rad(A1)|M

1
|A1|

∏

Q|M

(
1− 1

|Q|
)−1

=
ϕ(M)
|M |

∑

A1 monic
deg A1≤n/2−deg A2

rad(A1)|M

1
|A1|

∑

B monic
rad(B)|M

1
|B|

≥ ϕ(M)
|M |

∑

C monic
deg C≤n/2−deg A2

rad(C)|M

d(C)
|C| .

Assembling these results, we find that (2.13) is bounded below by

ϕ(M)
|M |

∑

A monic
deg A≤n/2

d(A)
|A| .

But (cf. [24])

∑

A monic
deg A=k

d(A) =
∑

A

∑

B|A
B monic

1 =
∑

B monic
deg B≤k

∑

A:B|A
1

=
∑

j≤k

∑

B monic
deg B=j

qk−j =
∑

j≤k

qjqk−j = (k + 1)qk,

and so our last-displayed sum is just

∑

0≤k≤n/2

(k + 1) ≥ n2

8
,

so that (2.13) is bounded below by (ϕ(M)/|M |)n2/8. Since the numerator in (2.12)

is #A = qn, we obtain the stated result.
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Remark. Let Iq(n) denote the set of monic irreducibles of degree n over Fq. Then

our argument shows that for any nonzero polynomial M (without any restriction

on its degree) there are at most 8(|M |/ϕ(M))qn/n2 values of P ∈ Iq(n) for which

P +M is free of prime factors of degree ≤ n/2. As a consequence, there are at most

8
|M |

ϕ(M)
qn

n2
+ qbn/2c+1

values of P ∈ Iq(n) for which P + M is irreducible, where the qbn/2c+1 term can be

omitted unless M has degree n and leading coefficient −1. (The extra term is due

to irreducible values of P + M which are nevertheless removed in the sieve because

deg(P + M) ≤ n/2.)
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Chapter 3

The substitution method

3.1 Introduction

In Chapter 1 we alluded to the following finite field analogue of Schinzel’s Hypoth-

esis H:

Conjecture 3.1.1. Let f1(T ), . . . , fr(T ) be irreducible polynomials belonging to

Fq[T ]. Suppose that there is no prime P ∈ Fq[T ] for which every g(T ) ∈ Fq[T ]

satisfies

f1(g(T )) · · · fr(g(T )) ≡ 0 (mod P ). (3.1)

Then the specializations f1(g(T )), . . . , fr(g(T )) are simultaneously irreducible for

infinitely many monic polynomials g(T ) ∈ Fq[T ].

The first nontrivial result towards this Conjecture is due to Hall ([57]; see also

[58]), who settled (in the affirmative) the cases when f1(T ) = T, f2(T ) = T + 1 and

q > 3. The first theorem we prove here is an extension of this result:

Theorem 3.1.2 (Twin prime polynomial theorem). For every q 6= 2 and every

α ∈ F×q , there are infinitely many monic twin prime polynomials f, f + α in Fq[T ].
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Note that in contrast to the results of §2.4, in this theorem we produce infinitely

many twin prime pairs over a fixed finite field Fq.

The main result of this Chapter is that Conjecture 3.1.1 holds for an arbitrary

family of polynomials, provided q is large in a suitable sense:

Theorem 3.1.3. Let f1(T ), . . . , fr(T ) be irreducible polynomials over Fq. If q is

large compared to both r and the sum of the degrees of the fi, then there is a prime

l dividing q − 1 and an element β ∈ Fq for which every subsitution

T 7→ T lk − β with k = 0, 1, 2, . . .

leaves all of f1, . . . , fr irreducible. Explicitly, the above conclusion holds provided

q > max
{

3, 22r−2
(∑r

i=1
deg fi

)2
}

. (3.2)

Actually we obtain the theorem for q satisfying a slightly weaker (but more

complicated) inequality than (3.2). It may be initially surprising that we have not

included a local condition in our statement of Theorem 3.1.3. But such a condition

is actually implicit in our requirements on q: the number of incongruent solutions

to (3.1) is bounded by the sum of the degrees of the fi, so that the local condition

of Conjecture 3.1.1 is automatically satisfied for q >
∑r

i=1 deg fi, an inequality less

stringent than (3.2).

Treating smaller q appears more difficult. Here we restrict ourselves to some

remarks concerning those cases when r = 1 and q is fixed. This corresponds to

searching for irreducible specializations of a single polynomial, so to a polynomial

analogue of Buniakowsky’s conjecture.

Our best result is conditional on the following well-known conjecture of Masser

and Oesterlé (see [89]):
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abc Conjecture. Let ε > 0, For any three coprime positive integers a, b and c

satisfying a + b = c, we have

c ¿ε


 ∏

p|abc

p




1+ε

.

Conditional on this conjecture, we can prove the following. Below la(m) denotes

the multiplicative order of a modulo m.

Theorem 3.1.4. Fix a finite field Fq. For each d ≥ 2, define

Ad := {f ∈ Fq[T ] : deg f = d; for some prime l | qd − 1,

f(T lk) is irreducible for k = 0, 1, 2, . . . },

and let Ed denote the set of monic irreducibles of degree d not in Ad. Then for any

ε > 0,

#Ed ¿ qd/d2 (unconditionally), (3.3)

¿ε q1+εd (assuming the abc Conjecture). (3.4)

Moreover, if we assume that

∑

r prime
r-q

1
lq(r2)

< ∞, (3.5)

then Ed is empty for almost all d (in the sense of asymptotic density).

The complicated-looking assumption (3.5) asserts, in crude terms, that there

are not too many q-Wieferich primes (i.e., primes r for which qr−1 ≡ 1 (mod r2)).

For example, in order for (3.5) to hold, it suffices that there be ¿ (log x)1−δ such
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primes up to x; the natural conjecture is that there are only ¿ log log x. We note

that in the case q = 2 an assumption equivalent to (3.5) already appears in the

work of Granville & Soundararajan (cf. [56, Theorem 4]).

Notation and conventions

We use rad(n) :=
∏

p|n p to denote the radical of the positive integer n and rad′(n)

to denote the odd part of rad(n), i.e., rad′(n) :=
∏

p|n,p>2 p. We remind the reader

that la(m) denotes the multiplicative order of a modulo m.

3.2 The substitution method: Overview

Suppose f(T ) is an irreducible polynomial over a finite field. Under what conditions

is the composition f(g(T )) also irreducible? At the heart of the substitution method

is the observation that this question has a simple answer when g(T ) is a binomial

polynomial Tm − β.

Since the linear substitution T 7→ T − β always preserves irreducibility, to un-

derstand the effect of binomial substitutions it suffices to study the case when

g(T ) = Tm. This question was considered by Serret in the case of prime fields

[112] and Dickson in the general case ([40], p. 382; see also [41], §34). Since it is

somewhat simpler and suffices for us, we restrict ourselves to the case when m is a

prime power. Recall that the order of an irreducible polynomial f(T ) ∈ Fq[T ], not

an associate of T , is the multiplicative order of any of its roots.

Lemma 3.2.1 (Serret, Dickson). Let f be an irreducible polynomial over Fq of

degree d and order e. Let l be an odd prime. Suppose that f has a root α ∈ Fqd

which is not an lth power, or equivalently that

l divides e but l does not divide (qd − 1)/e. (3.6)
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Then the substitution T 7→ T lk leaves f irreducible for every k = 1, 2, 3, . . . . The

same holds for the prime l = 2 under the additional hypothesis qd ≡ 1 (mod 4).

The proof depends on the following well-known elementary result:

Lemma 3.2.2. Let a be an integer and suppose a ≡ 1 (mod l), where l is an odd

prime. Then for every pair of positive integers k and r, we have

lk | ar − 1
a− 1

⇐⇒ lk | r.

The same holds in the case when l = 2, if we suppose now that a ≡ 1 (mod 4).

Proof. Write vl(·) for the l-adic valuation; then we are claiming that

vl(r) = vl

(
ar − 1
a− 1

)
. (3.7)

We consider first the case when r = l. Suppose that l = 2. Then a ≡ 1 (mod 4),

and
a2 − 1
a− 1

= a + 1 ≡ 2 (mod 4),

which implies (3.7). If l > 2, write a = 1 + lk. Then ai ≡ 1 + ikl (mod l2), and so

al − 1
a− 1

=
l−1∑

i=0

ai ≡ l +
l(l − 1)

2
kl ≡ l (mod l2),

and again (3.7) holds.

Next consider the case when l does not divide r. Then

ar − 1
a− 1

=
r−1∑

i=0

ai ≡ r (mod l),

so that (3.7) holds in this case as well.
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We now consider the general case: write r = ljr0, where l - r0. Then

ar − 1
a− 1

=

(
j∏

i=1

alir0 − 1
ali−1r0 − 1

)
· ar0 − 1

a− 1
.

Using the above, vl((ar − 1)/(a− 1)) =
∑j

i=1 1 = j = vl(r).

Proof of Lemma 3.2.1. Clearly α 6= 0. Let k be a positive integer, and let β be

an lk-th root of α taken from the algebraic closure of Fq. Showing that f(T lk) is

irreducible is equivalent to showing that β has degree dlk over Fq. This, in turn, is

equivalent to showing that

βqi
= β ⇐⇒ dlk | i.

We first show that βqd−1 is a primitive lk-th root of unity. Since βlk = α and

αqd−1 = 1, it is clear that βqd−1 is an lk-th root of unity. Moreover, since α is not

an lth power it must be that l divides #F×
qd = qd − 1, and that

(
βqd−1

)lk−1

= α(qd−1)/l 6= 1.

Thus the order of βqd−1 must be a divisor of lk that is not a divisor of lk−1; since l

is prime, the only possibility for this order is lk itself, giving our claim.

If βqi
= β, then raising both sides to the lk-th power we find that αqi

= α; since

α has degree d, this implies that d divides i. So write i = di′. Then

βqi
= β ⇐⇒ βqdi′−1 = 1 ⇐⇒

(
βqd−1

) qdi′−1

qd−1 = 1.

From the above, the last equality holds precisely when

lk | qdi′ − 1
qd − 1

.
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By Lemma 3.2.2 (applied with the prime l and the integer a = qd), this last pos-

sibility holds if and only if lk divides i′, which in turn holds if and only if dlk

divides i.

Applied to polynomials of the form T−β, this Lemma immediately yields the fol-

lowing result (which can also be deduced from Capelli’s classification of irreducible

binomials; see, e.g., [79, Chapter VI, Theorem 9.1]):

Corollary 3.2.3. Let l be an odd prime. If β ∈ Fq is not an lth power, then

T lk − β is irreducible over Fq for every k = 0, 1, 2, . . . .

The same result holds for l = 2 if also q ≡ 1 (mod 4).

How are these results useful? Consider, e.g., the problem of producing twin

prime pairs f, f +1 over a finite field. With l a prime to be chosen conveniently, we

consider the binomials T lk +α and T lk +α+1. Corollary 3.2.3 tells us that whether

or not both of these polynomials are irreducible depends (at least if l > 2) only on

the lth power character of α and α + 1. (In particular, there is no dependence on

k!) Thus, if we can choose l and α appropriately, then varying k gives us an infinite

family of twin prime pairs. This was Hall’s strategy, and it is also our strategy in

proving Theorem 3.1.2.

Consider now the situation of Theorem 3.1.3. Thus we are given irreducibles

f1, . . . , fr over Fq and we seek a prime l and a β ∈ Fq for which each fi(T lk − β)

is irreducible (for all k ≥ 0). If l is a prime for which the hypotheses of Lemma

3.2.1 are satisfied simultaneously with respect to every fi(T ), then our job is easy:

use this l and take β = 0. Of course there is no guarantee that such an l exists.

We prove Theorem 3.1.3 by showing that we can always satisfy the hypotheses of
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Lemma 3.2.1 for some l if we allow ourselves to replace the given family {fi(T )}r
i=1

by the translated family {fi(T − β)}r
i=1 for an appropriate β ∈ Fq.

To summarize, in both cases our success hinges on the existence of an appropriate

configuration of lth power nonresidues. In the proof of Theorem 3.1.2, the arguments

guaranteeing that these configurations exist are usually combinatorial. To prove

Theorem 3.1.3, we take a different tack, detecting configurations of nonresidues via

estimates for character sums.

3.3 Proof of Theorem 3.1.2

The following near-trivial combinatorial lemma is at the heart of Theorem 3.1.2:

Lemma 3.3.1. Let α be a nonzero element of Fq. Suppose that for every pair a, b

of elements of Fq which differ by α, either a or b belongs to some given set S. Then

#S ≥ q/2; i.e., S contains at least half the elements of Fq.

Proof. Indeed, in this case Fq ⊂ S ∪ S′, where S′ := {s− α : s ∈ S}.

The remainder of the proof is divided into three cases:

3.3.1 Case I: q > 4 and q ≡ 1 (mod l) for some odd prime l

Theorem 3.1.2 for a given α then follows from Corollary 3.2.3 if we can produce a

pair of lth power nonresidues of Fq differing by α. The set of lth powers in Fq has

cardinality 1+(q−1)/l, and this is strictly smaller than q/2 except when q = 4 and

l = 3 (which will be treated in Case III). We now appeal to Lemma 3.3.1, taking

for S the set of lth powers in Fq; this finishes the proof whenever q − 1 has an odd

prime divisor and q 6= 4.
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3.3.2 Case II: q > 5 and q = 1 + 2k for some k

One can show elementarily that the only prime powers q meeting this requirement

are q = 9 and the Fermat primes greater than 5 (see [114], p. 374, Exercise 1). We

apply Corollary 3.2.3 with l = 2, noting that all the q under consideration satisfy

q ≡ 1 (mod 4). It is straightforward to check directly that every nonzero element

of F9 is a difference of nonsquares. To treat the case when q is a Fermat prime, we

note that if p is any odd prime and α any nonzero element of Fp, then the number

of pairs of nonsquares in Fp differing by α is

1
4

∑

a (mod p)
a 6≡0, a+α 6≡0 (mod p)

(
1−

(
a

p

))(
1−

(
a + α

p

))
=

1
4


p +

∑

a (mod p)

(
a

p

)(
a + α

p

)
−

(
1−

(
α

p

))
−

(
1−

(−α

p

))
 .

Simplifying this expression using the evaluation
∑(

a
p

)(
a+α

p

)
= −1 of the Jacobsthal

sum (cf. [10], Theorem 2.1.2) gives a count of

1
4

(
p− 3 +

(
α

p

)
+

(−α

p

))
,

which is always positive if p > 5. This settles all cases when q− 1 has no odd prime

divisor, except those corresponding to q = 3 and q = 5.

3.3.3 Case III: q = 3, 4 or 5

The cases not covered by the above analysis are handled by a direct appeal to

Lemma 3.2.1. For each q and α, we find a pair of twin prime polynomials f, f + α

and a prime l for which the conditions of Lemma 3.2.1 hold simultaneously for both

f and f +α. The pairs f, f +α and the information needed to verify the hypotheses
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q α Twin Prime Pair f, f + α Orders qd − 1 l

3 1 T 3 − T + 1, T 3 − T + 2 2 · 13, 13 2 · 13 13
4 1 T − β, T − β + 1 3, 3 3 3

β T 2 + (β + 1)T + 1, T 2 + (β + 1)T + β + 1 5, 3 · 5 3 · 5 5
β + 1 T 2 + βT + 1, T 2 + βT + β 5, 3 · 5 3 · 5 5

5 1 T + 2, T + 3 22, 22 22 2
2 T 3 + T + 4, T 3 + T + 1 31, 2 · 31 22 · 31 31

Table 3.1: Explicit monic twin prime pairs for small q, where β is such that F4 =
F2(β). In odd characteristic we include only one of {α,−α}.

of the lemma are presented in Table 3.1. For example, the first line of Table 3.1

describes the proof that the polynomials

T 3·13k − T 13k
+ 1, T 3·13k − T 13k

+ 2

form a twin prime pair over F3 for each k = 1, 2, 3, . . . .

Without giving the details, we mention the analogous theorem for prime triplets:

Theorem 3.3.2 (Prime triplet theorem). Let Fq be a finite field with q > 3. If

α and β are distinct elements of F×q , then there are infinitely many monic prime

triplets f, f + α, f + β in Fq[T ].

That such a result is valid for all but finitely many q is immediate from Theorem

3.1.3; all that remains is to check the validity of this result over the remaining

“small” finite fields Fq, as in our Table 3.1. This is a straightforward (if somewhat

tedious) computation.
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3.4 Proof of Theorem 3.1.3

3.4.1 A character sum estimate

The following consequence of Weil’s Riemann Hypothesis appears as [125, Corollary

2.2]:

Lemma 3.4.1 (Lenstra). Suppose we are given an n-dimensional commutative Fq-

algebra A, an element x ∈ A and a character χ of the multiplicative group A×

(extended by zero to all of A) which is nontrivial on Fq[x]. Then

∣∣∣∣∣∣
∑

β∈Fq

χ(β + x)

∣∣∣∣∣∣
≤ (n− 1)

√
q.

Lemma 3.4.2. Let f1(T ), . . . , fs(T ) be nonassociate irreducible polynomials over

Fq. Fix roots α1, . . . , αs of f1, . . . , fs, respectively, lying in an algebraic closure of

Fq. Suppose that for every 1 ≤ i ≤ s we are given a multiplicative character χi of

Fq(αi) and that at least one of these χi is nontrivial. Then

∣∣∣∣∣∣
∑

β∈Fq

χ1(α1 + β) · · ·χs(αs + β)

∣∣∣∣∣∣
≤ (D − 1)

√
q, (3.8)

where D is the sum of the degrees of the fi.

Proof. We argue as in [125, Corollary 2.4]. Define F :=
∏s

i=1 fi and set A :=

Fq[T ]/(F ). Thus A is generated over Fq by the residue class T mod F . By the

Chinese remainder theorem, we obtain a multiplicative character χ on A by setting

χ(g mod F ) :=
∏s

i=1 χi(g(αi)). Since some χi is nontrivial on Fq(αi), we see that χ

is nontrivial on A. Moreover, for β ∈ Fq, we have χ((β +T ) mod F ) =
∏s

i=1 χ(αi +

β). The result now follows from Lemma 3.4.1, since A is an Fq-algebra of dimension

deg F =
∑s

i=1 deg fi = D.
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3.4.2 Proof of Theorem 3.1.3

We now turn to the proof of Theorem 3.1.3. We may assume that the fi are

nonassociate. We will prove that the conclusion of Theorem 3.1.3 holds provided

q > 3 and

q +

(
2r − 1− 2r−1

r∑

i=1

deg fi

)
√

q − 2r−1r > 0. (3.9)

Note that if the condition (3.2) from Theorem 3.1.3 holds, then (3.9) also holds. To

see this, write D =
∑

deg fi. If (3.2) holds, then
√

q > 2r−1D; thus

q +

(
2r − 1− 2r−1

r∑

i=1

deg fi

)
√

q =
√

q
(√

q − 2r−1D
)

+
√

q(2r − 1)

>
√

q(2r − 1) > (2r−1D)(2r − 1) ≥ 2r−1r(2r − 1) ≥ 2r−1r,

which gives (3.9).

Choose roots α1, . . . , αr of f1, . . . , fr, respectively, from a fixed algebraic closure

of Fq. We can fix l so that one of the following two conditions holds:

(i) l is an odd prime dividing q − 1,

(ii) l = 2 and q ≡ 1 (mod 4).

Indeed, since q > 3, if there is no l for which (i) holds, then the choice l = 2 always

satisfies (ii).

Lemma 3.4.3. Assuming the above notation and hypotheses, there always exists

an element β ∈ Fq with the property that for every 1 ≤ i ≤ r,

αi + β is not an lth power (vanishing or otherwise) in Fq(αi).

Proof. For each i = 1, 2, . . . , r, fix a multiplicative character χi of order l on Fq(αi).
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Consider the sum

∑

β∈Fq

(1− χ1(α1 + β))(1− χ2(α2 + β)) · · · (1− χr(αr + β)). (3.10)

Multiplying this out, it is

q +
∑

I⊂{1,2,...,r}
I6=∅

∑

β∈Fq

∏

i∈I
χi(αi + β).

By Lemma 3.4.2, we can bound this from below by

q −
∑

I⊂{1,2,...,r}
I6=∅

(
−1 +

∑

i∈I
deg fi

)
√

q

= q + (2r − 1)
√

q −
r∑

i=1

deg fi




∑

I⊂{1,2,...,r}
i∈I

1



√

q

= q + (2r − 1)
√

q − 2r−1

(
r∑

i=1

deg fi

)
√

q > 2r−1r, (3.11)

using (3.9) for the last inequality. Suppose the lemma is false and so for each β ∈ Fq,

there is an i = i(β) for which αi+β is an lth power in Fq(αi). If αi+β is nonzero for

this i, then the summand corresponding to β in (3.10) vanishes, while if αi +β = 0,

then the corresponding summand has absolute value at most 2r−1. Since the latter

is possible for at most r values of β, the sum (3.10) is bounded above by 2r−1r,

contradicting (3.11).

Proof of Theorem 3.1.3. With β as in Lemma 3.4.3, apply the substitution T 7→
T−β to the sequence of polynomials f1, . . . , fr. This yields a new sequence h1, . . . , hr

(say) of irreducible polynomials over Fq with corresponding nonzero roots α1 +
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β, . . . , αr + β. By Lemma 3.2.1 all the polynomials

h1(T lk) = f1(T lk − β), . . . , hr(T lk) = fr(T lk − β) for k = 0, 1, 2, . . .

are irreducible, which proves the theorem.

Example. Let α be any nonsquare in F×q ; we show that there are infinitely many

monic primes in Fq[T ] of the form f2 − α. By Theorem 3.1.3 (with r = 1 and

f1(T ) = T 2 − α), we know this is true for all large q; referring to (3.9) shows that

q > 3 is large enough. When q = 3, we must have α = −1, and we can treat this

case directly. Indeed, the irreducible polynomial (T + 1)2 + 1 has order 8 = 32 − 1,

and so Lemma 3.2.1 shows that (T 2k
+ 1)2 + 1 is irreducible over F3 for every

k = 0, 1, 2, . . . .

Example. Let f(x, y) be an irreducible binary form over Fq of degree n ≥ 2. We

claim that if q > n2, then f(A,A + 1) is irreducible for infinitely many monic A.

Since n ≥ 2, we may express f as the homogenization of an irreducible degree n

polynomial g:

f(x, y) = yng(x/y), where g(T ) = anTn + an−1T
n−1 + · · ·+ a0.

The polynomial f(T, T + 1) has degree n and leading coefficient g(1) 6= 0. Let α

be a root of f(T, T + 1); since f(−1, 0) = an(−1)n 6= 0, we have α 6= −1. Now

α/(α + 1) is a root of g and so has degree n over Fq. But then α must also have

degree n, which yields the irreducibility of f(T, T +1). The original assertion is now

obtained by applying Theorem 3.1.3 to f(T, T + 1). Actually for q > 16(n + 2)2,

the same statement holds even if we require also that A and A + 1 are prime, as we

see by applying Theorem 3.1.3 to the three polynomials T , T + 1, and f(T, T + 1).
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3.5 Proof of Theorem 3.1.4

Lemma 3.5.1. Fix a finite field Fq. For each d ≥ 2,

#Ed ≤ 1
rad′(qd − 1)

qd − 1
d

. (3.12)

Proof. Let E be the set of elements of Fqd whose minimal polynomials belong to

Ed. By Lemma 3.2.1, each α in E is an lth power for every odd prime l | qd − 1, so

is an Lth power for

L :=
∏

l odd prime
l|qd−1

l = rad′(qd − 1).

Thus #E ≤ #((F×
qd)L) = (qd − 1)/L. But the action of Gal(Fqd/Fq) partitions E

into orbits of length d, each of which corresponds to a single element of Ed. This

proves (3.12).

Before proceeding we recall an 1886 result of Bang [5] (see, e.g., [103] for a

modern proof):

Bang’s theorem. Let a and n be integers > 1. There is a prime l which divides

an − 1 but not am − 1 for any m < n, except in the following cases:

(i) n = 2, a = 2s − 1, where s ≥ 2,

(ii) n = 6, a = 2.

Proof of the upper bounds (3.3) and (3.4) on #Ed. By Bang’s theorem, if d > 6 (as

we can assume), then there is a primitive prime divisor l of qd − 1. Then l ≡ 1

(mod d), and so in particular L ≥ l > d. Lemma 3.5.1 now gives (3.3). The abc
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Conjecture implies that for each ε > 0,

L ≥ 1
2
rad(qd − 1) Àε qd(1−ε)−1,

and this proves (3.4).

Remark. Actually one can do a bit better unconditionally than stated in Theorem

3.1.4; for example, the results of Stewart & Yu toward the abc Conjecture [116] imply

that rad′(qd − 1) ≥ d3+oq(1) as d → ∞, leading to a corresponding (unconditional

but no longer elementary) upper bound of qd/d4+oq(1).

Proof that Ed is empty for almost all d, assuming (3.5). It is enough to prove that

for almost all d, no element of Fqd of degree d over Fq is an Lth power for L :=

rad′(qd − 1). Suppose, on the contrary, that α is such an element. Let

Q :=
qd − 1

L
and let m := lq(Q).

Then trivially m ≤ d. Now αQ = 1 (as α is a nonzero Lth power), so that

αqm
= α

(
αQ

) qm−1
Q = α.

Thus α has degree ≤ m over Fq and so d ≤ m ≤ d. So m = d.

Now fix a large positive number B. We may restrict attention to those d with

a prime factor > B, since the exceptional d have density 0. Given d of this type,

let l > B be its largest prime factor. As m = d, it follows that l divides m = lq(Q),

and so l divides lq(R) for some prime power R ‖ Q. If R is a power of the prime r,

then necessarily r ≥ l > B, and from r | Q we deduce that

r2 | rQ =
qd − 1
L/r

| qd − 1,
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so that lq(r2) | d.

Thus d is divisible by lq(r2) for some prime r > B. But the number of such

d ≤ x is

≤ εBx, where εB :=
∑

r>B
r prime

r-q

1
lq(r2)

.

So the upper density of such d is bounded by εB; but (3.5) implies that εB → 0 as

B →∞.

Example. In practice it is rare that d = m, which as we have just seen is forced

upon us if Ed 6= ∅. Consider, e.g., the case q = 2. At the time of writing, the first

d for which the complete factorization of 2d − 1 is not known is d = 787 (see [12]).

Using the known factorizations for smaller d, one can calculate that m < d for all

d < 787, except for d = 364. In that case

2364 − 1
rad′(2364 − 1)

= 1093 and l2(1093) = 364.

Thus the only polynomials f(T ) of degree 364 over F2 for which Buniakowsky’s

conjecture can fail are those with a root α ∈ F2364 with α1093 = 1. Now if f(T ) has

this property, replace f(T ) with f(T − 1). This has the root α + 1, and we cannot

have both

α1093 = 1 and (α + 1)1093 = 1 in F2364 ,

since one can compute that the resultant

Res(T 1093 − 1, (T + 1)1093 − 1) 6≡ 0 (mod 2).

So Bouniakowsky’s conjecture must hold for f(T −1), and so also for our original f .

We conclude that Bouniakowsky’s conjecture holds for every irreducible of degree
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d < 787.

3.6 Other applications of the substitution method

Consider the problem of studying Fq[T ]-points on algebraic sets defined over Fq. In

other words, suppose that we have a system of equations

fi(X1, . . . , XN ) = 0

where each fi belongs to Fq[X1, . . . , XN ]. Suppose that (A1(T ), . . . , AN (T )) ∈
Fq[T ]N is an initial solution. Then trivially, (A1(g(T )), . . . , AN (g(T ))) is also a

solution for every polynomial g(T ). It follows that if there is a single Fq[T ]-valued

point on this algebraic set, not having all its coordinates constant, then there are

infinitely many. The importance of Theorem 3.1.3 is that it allows us to obtain

results of the same kind when some of the coordinates Xi are restricted to irreducible

values, provided that q is large compared to the sum of the degrees of the initial

solution (A1(T ), . . . , AN (T )).

For example, suppose we are interested in exhibiting infinitely many irreducibles

which are sums of three irreducible cubes. Then we are looking for solutions to the

equation

X3
1 + X3

2 + X3
3 = X4 (3.13)

where all of X1, . . . , X4 are prescribed to be irreducible. If we can write down a

single solution to (3.13) with all the Xi small (say of absolutely bounded degree),

then Theorem 3.1.3 implies that as long as q is large enough, this equation has

infinitely many solutions. Moreover, the solutions provided by Theorem 3.1.3 arise

from the initial solution in a very explicit way, so that properties of the initial

solution translate predictably to properties of the entire family of solutions. (For
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example, if all the Xi in the initial solution are monic, then so are all the Xi in the

infinite family, etc.)

Following this strategy, in Chapter 4 we will prove the following result:

Theorem. If Fq is a finite field with characteristic > 3, then infinitely many monic

primes P over Fq have a representation in the form

P = A3 + B3 + C3, where A,B, C are monic primes,

deg A > max{deg B, deg C}.

The difficulty in proving this result lies in showing that for any field Fq of

characteristic 6= 2, 3, one can find an initial solution to (3.13) with each Xi of

bounded degree.

If one is content in proving the preceding theorem for a positive proportion of

fields, then the proof is much easier: Start with the universal identity

T 3 + (T + 1)3 + (T 2 + 1)3 = T 6 + 3T 4 + 2T 3 + 6T 2 + 3T + 2. (3.14)

The polynomial on the right-hand side of this identity has Galois group over Q the

full symmetric group on six letters. Moreover, its splitting field has odd discrimi-

nant, and so is linearly disjoint over Q from the splitting field Q(i) of T (T +1)(T 2+

1). So by the Chebotarev density theorem for number fields, the four polynomials

involved in the identity (3.14) are irreducible modulo q for precisely 1
2 · 1

6 = 1
12 of

all primes q. And for these primes q, we may take (3.14) as our initial input to

Theorem 3.1.3.

To obtain an initial solution for all fields of characteristic 6= 2, 3, we will again

appeal to the Chebotarev density theorem. However, what is needed is not the

number field version applied above, but an effective version for function fields. It is
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to this circle of ideas that we now turn our attention.
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Chapter 4

Preliminary applications of the

Chebotarev density theorem

4.1 Introduction

In this chapter we show how the Chebotarev density theorem for function fields

can be used to settle certain problems concerning the distribution of irreducible

polynomials over finite fields. The proofs exhibit a similar structure to the applica-

tions towards Hypothesis H that will be given in the next chapter, but the technical

details are far less daunting.

We take as our primary target an analogue of the classical Hilbert irreducibility

theorem. In its simplest form, that theorem asserts that if f(T, u) is a polynomial in

two variables irreducible over Q, then there are infinitely many choices of a ∈ Q for

which f(T, a) is irreducible as a one-variable polynomial over Q. It is not obvious

how to formulate a finite field analogue; if f(T, u) is irreducible over Fq, there need

not be any values of a ∈ Fq for which f(T, u) is irreducible. (For example, Tn − u

is always irreducible over Fq, but if n is coprime to q − 1 then Tn − a always has a
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linear factor.)

The following theorem can be seen as a partial result in this direction:

Theorem 4.1.1. Let f(T, u) be an absolutely irreducible polynomial in two variables

over Fq, monic in T , with degT f(T, u) = n and degu f(T, u) = m. Suppose that the

characteristic of Fq exceeds n. Assume further that the T -discriminant of f(T, u)

is squarefree in Fq[u]. Then there are

q/n + O(n!mq1/2)

values of a ∈ Fq for which f(T, a) is irreducible in Fq[T ]. Here the implied constant

is absolute.

Theorem 4.1.1 is no doubt far from optimal in both the conditions imposed on f

and in the shape of the error-term. However, formulating a satisfactory conjecture

at any level of generality appears difficult.

Example. Fix a positive integer n ≥ 2. Chowla conjectured [27] that for p > p0(n),

one can always find an irreducible polynomial over Fp of the form Tn +T +a, where

a ∈ Fp. Moreover, he predicted that the number of such a is asymptotically p/n as

p →∞, and proved this in the first nontrivial case, when n = 3.

Theorem 4.1.1 is immediately applicable to this problem. Let p be a prime larger

than n. The T -discriminant of Tn + T + u is

(−1)(
n
2)(nnun−1 + (1− n)n−1),

which is squarefree in Fp[u] since p - n − 1. It follows from Theorem 4.1.1 that

the number of a ∈ Fp for which Tn + T + a is irreducible is p/n + O(n!p1/2). This

confirms Chowla’s predicted asymptotic formula, and at the same time shows that
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one can take p0(n) = C((n + 1)!)2 for an appropriate constant C. In fact, a bit of

attention to detail in the proofs below shows that one may take C = 2. We expect

that in fact, p0(n) ¿ n log n.

Chowla’s asymptotic formula was confirmed independently but almost simulta-

neously by Cohen [29] and Ree [99], using the theory of algebraic function fields and

an effective version of the Chebotarev density theorem for such fields. (However,

neither author made explicit the dependence on n to obtain a value for C.) The

proof of Theorem 4.1.1 was inspired by these authors’ arguments and exhibits a

very similar structure.

The second goal of this chapter is to establish the following result, alluded to in

Chapter 3:

Theorem 4.1.2. If Fq is a finite field with characteristic > 3, then infinitely many

monic primes P over Fq have a representation in the form

P = A3 + B3 + C3, where A,B, C are monic primes,

and deg A > max{deg B, deg C}.

The proof technique was already hinted at in the preceding chapter: For suffi-

ciently large q, the substitution method shows that is enough to exhibit an identity

of the shape

P (T ) = T 3 + (T + 1)3 + (T 2 + a)3,

where a ∈ Fq, and both P (T ) and T 2 + a are irreducible. Were it not for the

requirement that T 2 + a be irreducible, such a result would follow (for large q and

with certain restrictions on the characteristic) from Theorem 4.1.1 applied to the

polynomial f(T, u) = T 3 + (T + 1)3 + (T 2 + u)3. While Theorem 4.1.1 cannot be

applied as it stands, we shall see that it is possible to modify its proof to yield
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Theorem 4.1.2.

4.2 Preparation for the proof of Theorem 4.1.1

4.2.1 Algebraic function fields

The proof of Theorem 4.1.1 depends on the arithmetic theory of global function

fields: finite extensions of the field of rational functions over a finite field.

For the convenience of the reader, we summarize some of the relevant defi-

nitions. Readable introductions to the theory of algebraic function fields include

Stichtenoth’s monograph [117] where the subject is developed alongside applications

to coding theory, Rosen’s textbook [107], and the very thorough recent treatment

of Villa Salvador [123].

We say that K is an algebraic function field over k if K/k is a finitely generated

extension of transcendence degree 1. A global function field is an algebraic function

field K/k with k finite. If K/k is a function field, the set of elements of K algebraic

over k is called the field of constants of K. Henceforth we adopt the usual convention

that whenever we are given a function field K/k, the field k is the full field of

constants of K. (To satisfy this requirement, it suffices to replace k with its algebraic

closure in K.)

To each function field K/k there is an important nonnegative integer invariant,

known as the genus of K. When k = C is the field of complex numbers, this admits

a topological interpretation: One can identify the function field K/k as the field of

meromorphic functions of a compact Riemann surface (uniquely determined up to

conformal equivalence). Such a Riemann surface is a compact orientable 2-manifold,

and so is homeomorphic to a g-holed torus for a unique integer g ≥ 0; this integer g

is called the genus of K. For an arbitrary function field K/k, the definition of the
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genus of K goes through the theory of the adeles of K, and is too complicated to

be given here. (See [123, §3.3] for the details.)

If L/l and K/k are two function fields, we say that L/l is an extension of K/k

if K is a subfield of L and l ∩K = k. We say that L/l is a geometric extension of

K/k if l = k. One can show that if L is a finite (resp. algebraic) extension of K,

then l is a finite (resp. algebraic) extension of k ([123, Propositions 5.1.8, 5.1.9]).

As a consequence, if k is algebraically closed, then every algebraic extension of K

is geometric.

To each function field K/k, there is an associated theory of divisors, which

plays a foundational role analogous to the role of ideals in the number field setting.

(See [123, Chapters 2, 3].) The theory of the decomposition of prime divisors

under extensions is quite analogous to the corresponding theory for prime ideals.

For example, if L is a finite extension of K, then every prime P of L lies over a

unique prime P of K. Moreover, in this case there are well-defined positive integers

e(P/P ) and f(P/P ), the ramification index and residual degree, respectively (cf.

[123, Definition 5.1.5, Proposition 5.1.8]). A prime P of K is said to be unramified

in L if e(P/P ) = 1 for every prime P of L that lies over P . We say that the prime P

of K is tamely ramified in L if for every prime P of L above P , the characteristic of

K does not divide e(P/P ). We say that L/K is unramified (resp. tamely ramified)

if every prime P of K is unramified in L (resp. tamely ramified).

Suppose L/K is a Galois extension of function fields. If P is a prime of K

unramified in L, then proceeding as in the number field case, one can define the

Frobenius of P in L/K, denoted (L/K, P ); it is a well-defined conjugacy class

of the Galois group of L/K. Moreover, such Frobenius elements are “uniformly

distributed” in an appropriate sense; i.e., there is an analogue of the Chebotarev

density theorem in this context. (See [123, §11.2].) We shall meet a precise version
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of this last result in §4.3 below.

4.2.2 A criterion of Hayes

Here we establish a criterion for certain Galois groups to be the full symmetric group

on n letters. This can be considered as making explicit results which are already,

for the most part, implicit in Hayes’s paper [65].

Lemma 4.2.1. Let K be a rational function field and L a finite, geometric, tamely

ramified extension of K. Let P be a prime of K of degree 1. Suppose that L/K is

unramified except possibly at primes lying above P . Then L = K.

Proof. Let P1, . . . , Pr denote the primes which lie above P . Since L/K is tamely

ramified and unramified except at the Pi, writing ei = e(Pi/P ) we have that the

different DL/K is given by

DL/K =
r∑

i=1

(ei − 1)Pi.

(See [123, Theorem 5.6.3].) Thus, by the Riemann-Hurwitz genus formula ([123,

Theorem 9.4.2]),

2gL − 2 = [L : K](2gK − 2) +
r∑

i=1

(ei − 1) deg Pi.

But K is a rational function field, so that gK = 0. Moreover, since P has de-

gree 1, we have deg Pi = f(Pi/P ). Making these substitutions and recalling that
∑

eif(Pi/P ) = [L : K], we find that

2gL − 2 = −2[L : K] + [L : K]−
r∑

i=1

f(Pi/P )

≤ −[L : K]− r.
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Since gL ≥ 0, we must have r = 1 = [L : K], so that L = K as claimed.

Before proceeding we recall Hensel’s lemma in the form in which we need it (see

[123, Theorems 2.2.20, 2.3.14]):

Hensel’s lemma. Let K be a field complete with respect to a discrete, nonar-

chimedean valuation, O the valuation ring, M the maximal ideal, and k the corre-

sponding residue field (so that k = O/M). Suppose f(T ) ∈ O[T ] is a polynomial

with leading coefficient not in M. Let f̄(T ) := f(T ) mod M ∈ k[T ], and suppose

that f̄(T ) = h(T )g(T ) with h(T ), g(T ) ∈ k[T ] and h(T ), g(T ) relatively prime. Then

there exist H(T ), G(T ) ∈ O[T ] with

f(T ) = H(T )G(T ), H̄(T ) = h(T ), Ḡ(T ) = g(T ),

and

deg H(T ) = deg h(T ), deg G(T ) = deg g(T ).

The next two lemmas constitute the main results of this section:

Lemma 4.2.2. Let f(T, u) be an absolutely irreducible polynomial in Fq[T, u] which

is monic in T of T -degree n, where n is coprime to q. Let K be the splitting field

of f(T, u) over Fq(u), and let K̄ = KFq be the splitting field of f(T, u) over Fq(u).

Suppose that

(i) the prime P∞ corresponding to the (1/u)-adic valuation on Fq(u) is tamely

ramified in the extension K̄/Fq(u),

(ii) for each β ∈ Fq, the polynomial f(T, β) has at most one multiple root, which

is then a root of exact multiplicity 2.

Then Gal(K̄/Fq(u)) is the full symmetric group on the n roots of f(T, u). Conse-

quently, Gal(K/Fq(u)) is also the full symmetric group on the roots of f(T, u).
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Proof. Since n is coprime to q, the (absolutely irreducible) polynomial f(T, u) is

automatically separable, so that K̄/Fq(u) (as well as K/Fq(u)) is Galois. Let Ḡ

denote the Galois group of K̄/Fq(u), and let H be the subgroup of Ḡ generated

by the decomposition groups of all the ramified primes of K̄ that do not lie over

P∞. Let F be the fixed field of Ḡ. Then F/Fq(u) is unramified except possibly at

primes above P∞, where (by hypothesis) the ramification is tame. (See [117, III.8.3.

Theorem].) Moreover, since Fq is algebraically closed, F/Fq(u) is geometric. By

Lemma 4.2.1, we must have F = Fq(u), so that H = Ḡ.

Now to complete the proof that Ḡ is the full symmetric group, it suffices to

show that H is generated by transpositions. (Here we use that the symmetric

group has no proper transitive subgroups generated by transpositions – see [123,

Lemma 14.4.13].) Let P be a ramified prime of K̄. Then P lies over a prime of

Fq(u) corresponding to the (u− β)-adic valuation for some β ∈ Fq; call this prime

Pβ.

The decomposition group of P/Pβ can be canonically identified with the Galois

group of the extension of local fields K̄P/Fq(u)Pβ
([123, Theorem 5.4.10]). By

Hensel’s lemma and our hypothesis (ii), all but two of the roots of f(T, u) belong to

Fq(u)Pβ
, so that Gal(K̄P/F̄q(u)Pβ

) is generated by a transposition of the remaining

two roots.

Thus Gal(K̄/Fq(u)) is the full symmetric group. Since Gal(K̄/Fq(u)) injects

(via restriction) into Gal(K/Fq(u)), this latter group must also be the full symmetric

group.

Lemma 4.2.3. Under the same hypotheses as Lemma 4.2.2 (and with the same

notation), the extension K/Fq(u) is geometric.

Proof. In the proof of Lemma 4.2.2 we saw that restriction induces an isomorphism

between Gal(K̄/Fq(u)) and Gal(K/Fq(u)). Suppose that α ∈ K is algebraic over
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Fq; then α is fixed by every element of Gal(K̄/Fq(u)) and so also by every element

of Gal(K/Fq(u)). The latter forces α to belong to Fq(u). But since α is algebraic

over Fq, it follows that α belongs to Fq.

4.2.3 Remarks on the conditions of Lemma 4.2.2

Let f(T, u) be an absolutely irreducible polynomial over Fq. Suppose moreover that

f is monic in T and that degT f(T, u) = n, where n is coprime to q. We make a few

remarks in connection with Theorem 4.1.1 about the additional conditions (i) and

(ii) on f(T, u) imposed in Lemmas 4.2.2 and 4.2.3.

First, condition (i) of Lemma 4.2.2 is automatically satisfied if p > n. Indeed,

in this case P∞ is, for trivial reasons, tamely ramified in each of the degree n

extensions obtained by adjoining a single root of f(T, u) to Fq(u). That P∞ is also

tamely ramified in their compositum K̄ now follows from repeated application of

the following result (see [123, Theorem 12.4.4]):

Abhyankar’s lemma. Let F ′/F be a finite separable extension of function fields.

Suppose that F ′ = F1F2 is the compositum of two intermediate fields F ⊂ F1, F2 ⊂
F ′. Let P be a prime of F and P ′ a prime of F ′ lying above P . With Pi := P ′ ∩Fi

for i = 1 and 2, assume that at least one of the extensions P1/P or P2/P is tame.

Then

e(P ′/P ) = lcm[e(P1/P ), e(P2/P )].

In particular, if both P1/P and P2/P are tamely ramified, then so is P ′/P .

Second, condition (ii) of Lemma 4.2.2 holds provided that

discT f(T, u) is a squarefree polynomial in u.

To see this, we recall Zeuthen’s rule, as it appears in [34, Lemma 4.6] (with
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minor changes in notation):

Zeuthen’s rule. Let g1(T, u) = 0 and g2(T, u) = 0 be (possibly empty) plane curves

over an algebraically closed field K, and assume that these zero loci do not share a

common irreducible component and that the leading T -coefficients of g1 and g2 do

not have a common zero at β ∈ K. Then the resultant resT (g1, g2) vanishes at β to

order
∑

c∈K

i(c,β)(g1, g2),

where ix(g1, g2) is the intersection number of the curves g1 and g2 at the point x.

Remark. For the definition of the intersection number and a discussion of its prop-

erties, see [51, Chapter 3, §3]. For our purposes the following suffices: Let K be

an algebraically closed field and suppose g1 and g2 are two affine plane curves over

K. Let x ∈ A2(K). Then the intersection number ix(g1, g2) of g1 and g2 at x is

either a nonnegative integer or ∞, the latter occurring exactly when x belongs to

a common component of g1 and g2. Also, ix(g1, g2) ≥ 1 if and only if x belongs to

the intersection of g1 and g2, and equality holds precisely when x is a nonsingular

point of both g1 and g2 and g1 and g2 have distinct tangent lines at x.

We are assuming that f(T, u) is absolutely irreducible, monic in T of T -degree

n, and that n is coprime to q. It follows that

discT f(T, u) = (−1)n(n−1)/2 resT

(
f(T, u),

∂

∂T
f(T, u)

)

vanishes at u = β to order

∑

c∈Fq

i(c,β)

(
f,

∂

∂T
f

)
,

where i(c,β)(f, ∂
∂T f) is the intersection number at (c, β) of the affine plane curves

91



f(T, u) = 0 and ∂
∂T f(T, u) = 0. Suppose β ∈ Fq is such that either f(T, β) has more

than one multiple root or f(T, β) has a root of multiplicity ≥ 3. In the former case

at least two of the above intersection multiplicities are positive, and in the latter

case some intersection multiplicity is ≥ 2. In either case, discT f(T, u) vanishes at

u = β to order ≥ 2, so that discT f(T, u) is not squarefree.

4.3 Proof of Theorem 4.1.1

We now make precise the connection we alluded to before between the factorization

of (u− a) and the irreducibility of f(T, a). The following is one version of a result

often useful in the theory of global fields (cf. [123, Theorem 5.8.2]):

Kummer’s theorem. Let F/k be a function field. Suppose we are given an ex-

tension F ′ = F (α), where α is integral over the valuation ring OP corresponding to

the prime P of F . Let π(T ) ∈ OP [T ] be the minimal polynomial of α over F , and

suppose that the reduction of π(T ) factors, over the residue field F̄ := OP /P , into

distinct irreducibles:

π̄(T ) =
r∏

i=1

γi(T ).

Then P is unramified in F ′, and there are r distinct places P1, . . . , Pr of F ′ that

lie over P which can be ordered so that the residue field corresponding to Pi is

isomorphic to F̄ [T ]/(γi(T )). In particular, the Pi can be ordered so that f(Pi/P ) =

deg γi(T ).

Lemma 4.3.1. Suppose f(T, u) ∈ Fq[u, T ] is monic in T of positive T -degree and

irreducible in Fq(u)[T ] (or, what amounts to the same thing by Gauss’s lemma, in

Fq[u][T ]). Assume that a ∈ Fq is not a root of the polynomial

Z(u) := discT f(T, u) ∈ Fq[u].
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Then f(T, a) is irreducible over Fq if and only if the prime of Fq(u) corresponding

to the (u − a)-adic valuation remains prime when a root of f(T, u) is adjoined to

Fq(u).

Proof. Let P be the prime corresponding to the (u − a)-adic valuation on Fq(u).

Then OP /P ∼= Fq, and under this identification the reduction of f(T, u) modulo

P becomes f(T, a) ∈ Fq[T ]. Kummer’s theorem now shows that the conclusion of

the corollary holds for all values of a except possibly those for which f(T, a) has a

multiple root. Any such value of a is a zero of Z(u).

Our hypothesis that Z(a) 6= 0 is a mild one for large q, excluding at most

(2n − 1)m values of a. Indeed, one can express Z(u) as the determinant of a

(2n − 1) × (2n − 1) Sylvester matrix, from which it follows immediately that the

degree of Z(u) is at most (2n − 1)m. Moreover, Z(u) is not identically zero: if it

were, then f(T, u) would have a multiple root in the algebraic closure of Fq(u). But

we have already noted that f(T, u) is a separable irreducible polynomial over Fq(u).

Lemma 4.3.2. Suppose f(T, u) ∈ Fq[u, T ] is monic in T of positive T -degree,

irreducible in Fq(u)[T ] and separable over Fq(u). Let K be the splitting field of

f(T, u) over Fq(u). Suppose that a ∈ Fq is not a root of Z(u) := discT f(T, u).

Then f(T, a) is irreducible over Fq precisely when the Frobenius conjugacy class

(K/Fq(u), Pa) coincides with the conjugacy class of n-cycles. Here Pa denotes the

prime of Fq(u) corresponding to the (u− a)-adic valuation.

Proof. Everything is trivial unless n ≥ 2, so we assume that here.

Since a is not a root of Z(u), the polynomial f(T, a) is squarefree. Thus by

Kummer’s theorem, the prime Pa is unramified in each extension obtained by ad-

joining a single root of f(T, u) to Fq(u), and so also in their compositum K. In

particular, (K/Fq(u), Pa) is a well-defined conjugacy class of Gal(K/Fq(u)).
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Let σ be any element of the conjugacy class (K/Fq(u), Pa). Let α be a root of

f(T, u), and let K0 := Fq(u)(α). Then Pa stays prime precisely when

Gal(K/Fq(u)) =
⋃̇n−1

l=0
Gal(K/K0)σl. (4.1)

(Compare with [72, Theorem 2.7].) This, in turn, holds precisely when σ acts an

n-cycle on the roots of f(T, u). Indeed, suppose that σ acts as an n-cycle: then for

any ψ ∈ Gal(K/Fq(u)), there is a unique 0 ≤ l < n for which ψσ−l fixes α, and this

implies (4.1). Conversely, if (4.1) holds then σ 6∈ Gal(K/K0), so that σ must move

α. Thus in the decomposition of σ into disjoint cycles, α must occur in a nontrivial

cycle. If this cycle has length l < n, then both σl and σ0 belong to Gal(K/K0),

and this contradicts that (4.1) is a disjoint union.

By Lemma 4.3.2, to complete the proof of Theorem 4.2.2, it suffices to estimate

the number of a for which the Frobenius of Pa belongs to the conjugacy class of

n-cycles. This is precisely the sort of estimate that comes out of the Chebotarev

density theorem. The following explicit form of that theorem is a consequence of

Weil’s Riemann Hypothesis. (The proof is implicit Fried & Jarden’s treatment of

the Chebotarev density theorem; cf. their proof of [50, Proposition 6.4.8].)

Explicit Chebotarev density theorem for degree one primes. Suppose that

M/Fq(u) is a finite Galois extension having full field of constants FqD . Let C be a

conjugacy class of Gal(M/Fq(u)) every element of which restricts down to the qth

power map on FqD . Let

M :=
{

first degree primes P of Fq(u) unramified in M :
(

M/Fq(u)
P

)
= C

}
.
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Then

∣∣∣∣#M− #C
[M : FqD(u)]

q

∣∣∣∣ ≤ 2
#C

[M : FqD(u)]
(gq1/2 + g + [M : FqD(u)]),

where g denotes the genus of M/FqD .

To take advantage of this result we need an estimate for the genus of K/Fq.

Lemma 4.3.3. Let f(T, u) satisfy the hypotheses of Lemma 4.2.2. Suppose more-

over that the characteristic of Fq is odd. Then the genus of K/Fq is O(nn!m), with

an absolute implied constant.

Proof. Since Fq is separably generated over Fq, the genus of K/Fq coincides with

the genus of of K̄/Fq (see [123, Theorem 8.5.2]). Thus it is enough to estimate the

latter, which we accomplish by means of the Riemann-Hurwitz genus formula.

The extension K̄/Fq(u) is tamely ramified. Indeed, the prime P∞ is assumed

tamely ramified in the hypotheses of Lemma 4.2.2, while in the course of the proof

of that lemma it was shown that all other ramified primes had ramification index

2. (Recall that we are supposing Fq is of odd characteristic.) Therefore

2gK̄ − 2 = [K̄ : Fq(u)](2gFq(u) − 2) +
∑

P ramified

∑

P|P
(e(P/P )− 1)

= n!(−2) +
∑

P|P∞
(e(P/P∞)− 1) +

∑

Pβ ramified

β∈Fq

∑

P|Pβ

(e(P/Pβ)− 1)

≤ −2n! +
∑

P|P∞
e(P/P∞) +

1
2

∑

Pβ ramified

β∈Fq

∑

P|Pβ

e(P/Pβ)

= n!(M/2− 1), (4.2)

where M is the number of β ∈ Fq for which Pβ ramifies. If Pβ ramifies, then by

Kummer’s theorem, the polynomial f(T, β) has a multiple root, so that β is a root
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of discT f(T, u). We showed above that discT f(T, u) is a nonzero polynomial of

degree ≤ (2n− 1)m, so that M ≤ 2nm. The result follows.

Lemma 4.3.4. Let f(T, u) be an absolutely irreducible polynomial over Fq, monic

in T and with degT f(T, u) = n. Suppose that q is prime to 2n, and that both

conditions of Lemma 4.2.2 are satisfied. Then the number of a ∈ Fq for which

f(T, a) is irreducible is

q/n + O(n!mq1/2),

where the O-constant is absolute.

Proof. By Lemmas 4.2.2 and 4.2.3, K/Fq(u) is a geometric Galois extension with

Galois group the full symmetric group on the roots of f(T, u). We apply the explicit

form of the Chebotarev density theorem to the extension K/Fq(u), taking C to be

the (n− 1)!-element conjugacy class consisting of n-cycles.

From that theorem and our estimate for the genus of K/Fq (Lemma 4.3.3), we

see that there are

q/n + O(n!mq1/2) (4.3)

values of a ∈ Fq for which Pa is unramified and for which (M/Fq(u), Pa) = C.
Suppose a is not a root of discT f(T, u); this excludes only O(nm) values of a. Then

by Lemma 4.3.2, any such a for which f(T, a) is irreducible is counted in (4.3).

Conversely, any value of a which is counted in (4.3) either is such that f(T, a) is

irreducible or such that Pa ramifies, the latter being possible again for at most

O(nm) values of a. It follows that the number of a satisfying the conclusion of

Theorem 4.1.1 is given by (4.3) up to an additional error term of O(nm), which is

negligible.

Proof of Theorem 4.1.1. We have already seen that the hypotheses of Theorem 4.1.1

96



imply the hypotheses of Lemma 4.2.2. Moreover, unless n = 1 (in which case

Theorem 4.1.1 is trivial) the hypothesis that the characteristic of Fq is larger than

n implies that Fq is not of characteristic 2. The result is therefore immediate from

Lemma 4.3.4.

4.4 Proof of Theorem 4.1.2

4.4.1 Field-theoretic preliminaries

Theorem on the Newton polygon (see [123, Theorem 12.4.2]). Let K be a field

complete with to the discrete valuation v, and suppose that

f(T ) = anTn + an−1T
n−1 + · · ·+ a2T

2 + a1T + a0 ∈ K[T ], where a0an 6= 0.

Extend v to the splitting field L of f(T ) over K. The lower convex hull of the set

of points {(i, v(ai)) : 1 ≤ i ≤ n, an 6= 0} forms a polygonal chain called the Newton

polygon of f(T ). This polygon consists of a sequence of line segments S1, S2, . . .

of increasing slopes with the following property: If (r, v(ar)) ↔ (s, v(as)) is a line

segment of slope −m occurring in the Newton polygon of f(T ), then f(T ) has exactly

s− r roots α1, . . . , αs−r ∈ L for which

v(α1) = · · · = v(αs−r) = m.

Lemma 4.4.1. Let Fq be a finite field with characteristic p 6∈ S, where S is the

finite set of primes

S := {2, 3, 11, 19, 53, 431, 4434631}. (4.4)

Let

f(T, u) := T 3 + (T + 1)3 + (T 2 + u)3 ∈ Fq[T, u].
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Then f(T, u) satisfies the hypotheses of Lemma 4.2.2. Consequently, both K̄/Fq(u)

and K/Fq(u) are geometric, Galois extensions with Galois group the entire sym-

metric group on the roots of f .

Proof. The polynomial f(T, u) is monic in T of degree 6, and p is coprime to 6 by

hypothesis. So it remains to verify conditions (i) and (ii) of Lemma 4.2.2. We start

with (ii). By the discussion of §4.2.3, it is enough to check that discT f(T, u) is

squarefree in Fq[u]. By explicit computation, we find that

discT f(T, u) = −746496u9 + 1119744u8 − 2099520u7 + 746496u6 + 559872u5

− 1889568u4 + 1154736u3 − 26244u2 − 813564u + 152361. (4.5)

For p 6= 2, 3 (so in particular for p 6∈ S), this is a polynomial of degree 9, with

discriminant

268 · 3105 · 193 · 532 · 4313 · 44346312,

which is nonzero for p 6∈ S. Thus discT f(T, u) is squarefree and we have (ii).

Turning to (i), we have to show that P∞ is tamely ramified in K̄. This is

immediate if p exceeds the T -degree of f(T, u). However, this simple sufficient

condition does not cover the cases when p = 5. Therefore we take a different

approach which works uniformly for all p 6= 2, 3. Consider the Newton polygon for

f(T, u) over the completion F (say) of Fq(u) at P∞. This polygon is shown, for

characteristic 6= 2 or 3, in Figure 4.1. Let L be the splitting field of f(T, u) over F ,

and let v be the extension of the P∞-adic valuation on F to L. From the theorem

on the Newton polygon, we find that all the roots αi (1 ≤ i ≤ 6) of f(T, u) in L

have v(αi) = 1/2.

Let K̄0 be a field obtained by adjoining a root α of f(T, u) to Fq(u). To prove

that P∞ is tamely ramified in K̄, it suffices by Abhyankar’s lemma to show that

98



u(0,-3)

u(2,-2)

u(4,-1)

u(6,0)u(1,0) u(3,0)

©©©©©©©©©©©©©©©

Figure 4.1: The Newton polygon for T 3 + (T + 1)3 + (T 2 + u)3 over the completion
of Fq(u) with respect to P∞, when Fq has characteristic 6= 2, 3.

P∞ is tamely ramified in every choice of K̄0. So suppose that P is a prime of K̄0

that lies above P∞. We can view the completion E of K̄0 at P as an extension

of F of degree e(P/P∞)f(P/P∞) = e(P/P∞) (see [123, Theorem 5.4.8]). (Note

that f(P/P∞) = 1 automatically since Fq is algebraically closed.) Then E = F (α),

as the latter field contains K0 and is already complete (cf. [123, Theorem 5.4.7]).

Consequently, there is an F -isomorphism between E and some subfield F (αi) of L.

Since v(αi) = 1/2, it must be that 2 divides [F (αi) : F ] = [E : F ] = e(P/P∞).

Trivially e(P/P∞) ≤ [K̄ : Fq(u)] = 6, so that e(P/P∞) = 2, 4, or 6. In every case,

p - e(P/P∞).

Lemma 4.4.2. Let g(T, u) = T 2 + u ∈ Fq[T ]. If p 6= 2, then the splitting field of

g(T, u) over Fq(u) is a geometric, Galois extension with Galois group the symmetric

group on the two roots of g. The same holds for the splitting field of g(T, u) over

Fq(u).

Lemma 4.4.2 is straightforward to check directly, but it is amusing to note it
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also follows immediately from our Lemmas 4.2.2 and 4.2.3.

Lemma 4.4.3. Suppose p 6∈ S, where S is the set (4.4). Then the splitting fields

of T 2 + u and f(T, u) = T 3 + (T + 1)3 + (T 2 + u)3 are linearly disjoint over Fq(u).

Proof. Since each of the splitting fields are Galois over Fq(u), it is enough to verify

that their intersection F (say) is Fq(u). This follows from Lemma 4.2.1 once it is

proved that F/Fq(u) is tamely ramified and unramified except possibly at primes

above P∞.

The multiplicativity of ramification indices in towers shows immediately that

F/Fq(u) is tamely ramified, since the splitting field of T 2 + u is itself a tamely

ramified extension of Fq(u).

To prove that F is unramified except at primes above P∞, suppose that Pa

ramifies in F . Then Pa must ramify in Fq(
√−u), forcing a = 0. This forces P0

to ramify in the field obtained by adjoining a single root of f(T, u) to Fq(u). By

Kummer’s criterion, this is only possible if the reduction of f(T, u) modulo P0, viz.

T 3 + (T + 1)3 + T 6, has a multiple root in Fq. But in Fq,

discT (T 3 + (T + 1)3 + T 6) = 36 · 11 · 19 6= 0,

since p 6∈ S.

Lemma 4.4.4. Let Fq be a finite field of characteristic p 6∈ S, and define f(T, u) =

T 3 + (T + 1)3 + (T 2 + u)3. Let K be the splitting field of f(T, u) over Fq(u) and

K̄ = KFq the splitting field of f(T, u) over Fq(u). Let L be the splitting field of

f(T, u)(T 2+u) over Fq(u), and let L̄ = LFq be the corresponding splitting field over

Fq(u). Then L̄/Fq(u) and L/Fq(u) are geometric Galois extensions. Moreover, the
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map

Gal(L/Fq(u)) → Gal(K/Fq(u))×Gal(Fq(
√−u)/Fq(u))

σ 7→ (σ|K , σ|Fq(
√−u))

is an isomorphism.

Proof. The last claim follows immediately upon observing that we have a commu-

tative square

Gal(L̄/Fq(u))
σ 7→(σ|K̄ ,σ|Fq(

√−u))−−−−−−−−−−−−→ Gal(K̄/Fq(u))×Gal(Fq(
√−u)/Fq(u))

σ 7→σ|L
y (τ1,τ2)7→(τ1|K ,τ2|Fq(

√−u))

y

Gal(L/Fq(u))
σ 7→(σ|K ,σ|Fq(

√−u))−−−−−−−−−−−−→ Gal(K/Fq(u))×Gal(Fq(
√−u)/Fq(u))

, (4.6)

in which all the maps except that of the bottom row are known to be isomorphisms.

(The top map is an isomorphism by Lemma 4.4.3; the latter maps are isomorphisms

by counting arguments, since each of the Galois groups has the largest possible size.)

To prove that Fq(u) is the full field of constants of L, we mimic the proof of

Lemma 4.2.3: any α ∈ L ∩ Fq is fixed by every element of Gal(L̄/Fq(u)); by the

left vertical isomorphism above, α is also fixed by Gal(L/Fq(u)), so must belong to

Fq(u). But then α, being algebraic over Fq, is forced to belong to Fq.

Lemma 4.4.5. Let L be as in Lemma 4.4.4, and let gL be the genus of L/Fq. Then

gL ≤ 3241.

Before giving the proof we recall a useful auxiliary result (see [123, Theorem

14.1.3]):

Castelnuovo-Severi inequality. Let F/k be an algebraic function field. Suppose

we are given two subfields F1/k and F2/k of F/k satisfying
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(i) F = F1F2 is the compositum of F1 and F2,

(ii) [F : Fi] = ni and Fi/k has genus gi for i = 1, 2.

Then the genus g of F/k obeys the bound

g ≤ n1g1 + n2g2 + (n1 − 1)(n2 − 1).

Proof of Lemma 4.4.5. Let K be the splitting field of f(T, u) = T 3 + (T + 1)3 +

(T 2 + u)3 over Fq(u). According to equation (4.2) of Lemma 4.3.3, the genus gK of

K/Fq satisfies

2gK − 2 ≤ 6!(M/2− 1),

where M is the number of β ∈ Fq for which Pβ ramifies in K. Any such β is a root

of the nonzero, degree 9 polynomial discT f(T, u), so that M ≤ 9. Hence gK ≤ 1261.

On the other hand, the splitting field of T 2 +u over Fq(u) has genus zero. Since

L is the compositum of K and Fq(
√−u), the Castelnuovo-Severi inequality yields

gL ≤ [L : K]gK + ([L : K]− 1)([L : Fq(
√−u)]− 1)

≤ 2 · 1261 + (2− 1)(6!− 1) = 3241,

as we sought to show.

So far, the results of this section suffice to prove Theorem 4.1.2 for large q,

subject to the restriction p 6∈ S. We would like to weaken this to the requirement

that p 6= 2, 3. The easiest way to accomplish this seems to be to introduce a minor

change in the initial setup and run through the same arguments; we summarize this

process in the next lemma.
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Lemma 4.4.6. Let Fq be a finite field of characteristic p 6∈ S′,where

S′ := {2, 3, 5, 71, 89, 461, 3469}.

Let K ′ be the splitting field of

g(T, u) := T 3 + (T + 1)3 + (T 2 + T + u)3 ∈ Fq(u)[T ]

over Fq(u). Then Gal(K ′/Fq(u)) is the full symmetric group on the roots of g. Let

L′ be the compositum of K ′ and the splitting field Fq(
√

1− 4u) of T 2 + T + u over

Fq(u). Then L′/Fq(u) is a geometric Galois extension. Moreover,

Gal(L′/Fq(u)) → Gal(K ′/Fq(u))×Gal(Fq(
√

1− 4u)/Fq(u))

σ 7→ (σ|K′ , σFq(
√

1−4u))

is an isomorphism. Finally, the genus gL′ of L′/Fq obeys the bound gL′ ≤ 3241.

Proof. For the most part the proofs run parallel to those already given. We begin

by verifying condition (ii) of Lemma 4.2.2. We have

discT g(T, u) = −746496u9 + 3919104u8 − 8678016u7 + 10614240u6

− 7899444u5 + 3698217u4 − 1268460u3 + 616734u2 − 367416u + 111537,

which is squarefree in Fq[u] for p 6= 2, 3, 71, 89, 3469 (and so in particular for all

p 6∈ S′). This implies (ii). Also, since p 6∈ S′, we have p > 6 = degT g(T, u), which

shows that (i) also holds.

So by Lemmas 4.2.2 and 4.2.3, K ′Fq/Fq(u) is a geometric Galois extension with

Galois group the full symmetric group on the roots of g(T, u), and similarly for
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K ′/Fq(u). We now check that K ′Fq is linearly disjoint from Fq(
√

1− 4u). Arguing

as in the proof of Lemma 4.4.3, we observe that the only prime Pa, a ∈ Fq, that

could possibly ramify in both K ′Fq and Fq(
√

1− 4u) is P1/4. But then

discT f(T, 1/4) =
3024621

64
=

38 · 461
26

= 0,

which is impossible since p 6∈ S′. So as before an appeal to Lemma 4.2.1 yields the

desired linear disjointness.

Now arguing as in Lemma 4.4.4 yields that L′/Fq(u) is a geometric Galois

extension and that the given map of Galois groups is an isomorphism. The bound

on the genus of L′ is handled exactly as in Lemma 4.4.5.

4.4.2 Proof of Theorem 4.1.2 for large q

In Chapter 3 we established the following result, which may be considered the kernel

of the substitution method:

Theorem. Let f1(T ), . . . , fr(T ) be irreducible polynomials over Fq, and suppose

that

deg f1(T ) · · · fr(T ) ≤ B.

If

q > max{3, 22r−2B2},

then there is a prime l dividing q − 1 and an element β ∈ Fq for which every

subsitution

T 7→ T lk − β with k = 0, 1, 2, . . .

leaves all of f1, . . . , fr irreducible.

104



Lemma 4.4.7. Let Fq be a finite field with q > 6400. If there is a single a ∈ Fq for

which both T 2 +a and T 3 +(T +1)3 +(T 2 +a)3 are irreducible, then the conclusion

of Theorem 4.1.2 holds for the field Fq. The same is true if there is a single a ∈ Fq

for which both T 2 + T + a and T 3 + (T + 1)3 + (T 2 + T + a)3 are irreducible.

Proof. The proofs of both statements are almost identical, so we treat only the first.

Suppose q > 6400 and that both T 2 +a and T 3 +(T +1)3 +(T 2 +a)3 are irreducible

over Fq. Then

P (T ) := T 3 + (T + 1)3 + (T 2 + a)3 (4.7)

is a representation of the monic irreducible polynomial P as a sum of three cubes

of monic irreducibles, where

deg (T 2 + a) > max{deg T, deg (T + 1)}.

We apply Theorem 4.4.2 to the four polynomials T, T + 1, T 2 + a, and P (T ) to

obtain that for

q > 22·4−2 (1 + 1 + 2 + 6)2 = 6400,

there is a prime l and a β ∈ Fq for which every substitution T 7→ T lk − β preserves

the irreducibility of each term of (4.7). Making these substitutions in 4.7 for k =

0, 1, 2, . . . , we obtain infinitely many irreducible polynomials P (T lk −β) which have

representations of the desired form.

Lemma 4.4.8. Let Fq be a finite field of characteristic p 6= 2, 3. Suppose also that

q ≥ 5× 107. Then the conclusion of Theorem 4.1.2 holds for Fq.

Proof. We prove the result first for p 6∈ S and then for p 6∈ S′. Since S∩S′ = {2, 3},
the lemma follows.
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Suppose p 6∈ S. As before let f(T, u) = T 3 + (T + 1)3 + (T 2 + u)3 and let K be

the splitting field of f(T, u) over Fq(u). Let α ∈ K be a root of f(T, u).

Suppose a ∈ Fq is not a zero of discT f(T, u). From (4.5) we see this excludes

at most 9 values of a. Then by Kummer’s theorem, Pa is unramified and the

factorization of f(T, a) over Fq mirrors the factorization of Pa in the extension

Fq(u)(α). In particular, f(T, a) is irreducible exactly when Pa is inert in Fq(u)(α).

By Lemma 4.3.2, this is equivalent to the Frobenius conjugacy class (K/Fq(u), Pa)

being a 6-cycle in Gal(K/Fq(u)). Similarly, for a 6= 0, the polynomial T 2 + a is

irreducible over Fq precisely when (Fq(
√−u)/Fq(u), Pa) is represented by a 2-cycle

in Gal(Fq(
√−u)/Fq). Putting these facts together and using the isomorphism of

Lemma 4.4.4, we deduce that there is a conjugacy class C of Gal(L/Fq(u)) with

#C
[L : Fq(u)]

=
5!
6!
· 1!
2!

=
1
12

which possesses the property that excepting at most 10 values of a ∈ Fq,

(L/Fq(u), Pa) = C ⇐⇒ both f(T, a) and T 2 + a are irreducible over Fq.

By the explicit version of the Chebotarev density theorem given above and the

estimate for the genus of L given by Lemma 4.4.5, we see that the left-hand equality

holds for at least
q

12
− 2

1
12

(3241q1/2 + 3241 + 1440)− 1

values of a ∈ Fq. (The −1 comes from taking account of the possible contribution

of the term P∞.) This lower bound exceeds 10 for q ≥ 4.3 × 107, and so for these

q there is at least one value of a for which f(T, a) and T 2 + a are simultaneously

irreducible over Fq. The result now follows, when p 6∈ S, from Lemma 4.4.7.
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If p 6∈ S′, then we argue exactly as above but with Lemma 4.4.6 in place of

Lemmas 4.4.4 and 4.4.5.

4.4.3 Mopping up

It is now straightforward to complete the proof of Theorem 4.1.2 with the aid of

a computer algebra system. One checks that for fields Fq with 6400 < q < 5 · 107

(and characteristic 6= 2, 3), there is an a ∈ Fq for which for which T 2 + a and

T 3 + (T + 1)3 + (T 2 + a)3 are simultaneously irreducible. Together with Lemma

4.4.7, this shows that Theorem 4.1.2 holds in the range q > 6400.

The remaining q can be treated individually. One searches for an irreducible

polynomial over Fq either of the form

T 3 + (T + 1)3 + (T 2 + a)3, where also T 2 + a is irreducible,

or of the form

T 3 + (T + 1)3 + (T 2 + T + a)3, where also T 2 + T + a is irreducible.

In either case we have an irreducible P (T ) represented as a sum of three cubes of

monic irreducibles, satisfying the given degree restrictions. Thinking of this as a

‘seed solution,’ we seek an l dividing q−1 and a β ∈ Fq for which the Dickson-Serret

lemma (Lemma 3.2.1) guarantees that each substitution T 7→ T lk − β preserves the

irreducibility of every term in the representation. This strategy turns out to be

successful except in the lone case of the field with 7 elements.

In that case, one begins with the representation

P (T ) := T 3 + (T + 2)3 + (T 2 + 3T + 1)3,
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(which does not belong to either family given above) and uses the Dickson-Serret

lemma to show that each substitution T 7→ T 3k
+ 2 preserves the irreducibility of

all the summands.
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Chapter 5

The Chebotarev density

theorem and Hypothesis H

5.1 Introduction

Having investigated a qualitative finite field version of Hypothesis H in Chapter 3,

we now turn our attention to a quantitative version. Recall that two polynomials

over Fq are said to be associates if one is a unit multiple of another; we say that

several polynomials are nonassociate if no polynomial on the list is a unit multiple

of another.

Conjecture 5.1.1 (A quantitative constant-coefficient Hypothesis H). Suppose that

f1, . . . , fr are nonassociate irreducible one-variable polynomials over Fq with the

degree of the product f1 · · · fr bounded by B. Suppose that there is no prime P of

Fq[T ] for which the map

g(T ) 7→ f1(g(T )) · · · fr(g(T )) mod P
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is identically zero. Then

#{g(T ) : g monic, deg g = n, and f1(g(T )), . . . , fr(g(T )) all prime}

= (1 + oB(1))
S(f1, . . . , fr)∏r

i=1 deg fi

qn

nr
as qn →∞. (5.1)

Here the local factor S(f1, . . . , fr) is defined by

S(f1, . . . , fr) :=
∞∏

m=1

∏

deg P=m
P monic, prime

1− ρ(P )/qm

(1− 1/qm)r
,

where

ρ(P ) := #{A mod P : f1(A) · · · fr(A) ≡ 0 (mod P )}.

It should be noted that the asymptotic relation (5.1) is conjectured to hold as

qn → ∞, so when either q or n tends to infinity. In §5.2 we explain the heuristic

leading us to Conjecture 5.1.1. Two properties of the singular series S(f1, . . . , fr)

are worth extracting from that discussion:

(i) Under the hypotheses of Conjecture 5.1.1, the product defining S(f1, . . . , fr)

converges to a positive constant. In particular, fixing f1, . . . , fr (and so also

q) and letting n tend to infinity, we see that Conjecture 5.1.1 implies the

qualitative Conjecture 3.1.1.

(ii) Putting equation (5.5) together with Lemma 5.2.1 yields the estimate

S(f1, . . . , fr)∏r
i=1 deg fi

= 1 + OB(1/q). (5.2)

This is useful in explaining the form of Corollary 5.1.3 below.

The primary goal of this chapter is to verify Conjecture 5.1.1 when q is much
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larger than n and satisfies gcd(q, 2n) = 1. Actually we prove a more general result,

which we now explain.

First some notational preliminaries: We use λ to denote a partition of the posi-

tive integer n, i.e., λ is a sequence of positive integers (t1, t2, . . . ) with t1 ≥ t2 ≥ . . .

and
∑

ti = n. Alternatively, we may write λ = 〈1α1 , 2α2 , . . . 〉, where αj is the

number of times j occurs in the sequence of summands ti. If d is a positive integer

and λ = (t1, t2, . . . ) is a partition of n, we write d× λ for the partition of dn given

by (dt1, dt2, . . . ).

If f(T ) is a degree-n polynomial over a field, the partition corresponding to the

list of degrees of its irreducible factors is referred to as the cycle type or factorization

type of f(T ). Similarly, the cycle type of a permutation on n letters refers to the

partition 〈1α1 , . . . , nαn〉, where αj is the number of j-cycles in its decomposition into

disjoint cycles. We use the notation T (λ) for the proportion of permutations on n

letters with cycle type λ. If λ = 〈1α1 , 2α2 , . . .〉 is a partition of n, then a classical

formula of Cauchy [25, p. 193] asserts that

T (λ) =
1

1α12α2 · · ·nαnα1! · · ·αn!
.

We can now state our main theorem:

Theorem 5.1.2. Let n be a positive integer and let λ1, . . . , λr be partitions of the

integer n. Let f1(T ), . . . , fr(T ) be nonassociate irreducible polynomials over Fq of

respective degrees d1, . . . , dr, with
∑r

i=1 di ≤ B. The number of univariate monic

polynomials h of degree n for which fi(h(T )) has factorization type di×λi for every

1 ≤ i ≤ r is

qn
r∏

i=1

T (λi) + O((nB)n!Bqn−1/2),

provided gcd(q, 2n) = 1. Here the implied constant is absolute.
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Remark. It is worth explaining why Theorem 5.1.2 is stated in terms of partitions of

the form di× λi and not in terms of arbitrary partitions of din. Suppose that f(T )

is irreducible of degree d. Then if h(T ) is any polynomial over Fq, every irreducible

factor of f(h(T )) has degree divisible by d, so that the cycle type of f(h(T )) must

have the form d× λ. Indeed, if the prime P (T ) divides f(h(T )), then f has a root

in the field Fq[T ]/(P ). Thus the extension of Fq of degree deg P must contain a

copy of the extension of Fq of degree d, which gives the claim.

As a corollary, we obtain the promised result towards Conjecture 5.1.1:

Corollary 5.1.3. Let n be a positive integer. Let f1(T ), . . . , fr(T ) be nonassociate

irreducible polynomials over Fq with the degree of the product f1 · · · fr bounded by

B. The number of univariate monic polynomials g of degree n for which all of

f1(g(T )), . . . , fr(g(T )) are irreducible over Fq is

qn/nr + O((nB)n!Bqn−1/2) (5.3)

provided gcd(q, 2n) = 1.

Proof. Apply Theorem 5.1.2 with each λi = (n). Since there are precisely (n− 1)!

n-cyles in the symmetric group on n letters, each T (λi) = (n − 1)!/n! = 1/n, and

the result follows.

The relationship between Corollary 5.1.3 and Conjecture 5.1.1 is perhaps not so

obvious. To relate the two, we use the estimate (5.2), which shows that the factor in

front of qn/nr in Conjecture 5.1.1 is close to 1 when q is large. In fact, this estimate

implies that Corollary 5.1.3 remains true with qn/nr in (5.3) replaced by

S(f1, . . . , fr)∏r
i=1 deg fi

qn

nr
,
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making evident that Corollary 5.1.3 implies Conjecture 5.1.1 in an appropriate

range. (For example, for fixed B, Conjecture 5.1.1 holds as long as q tends to

infinity faster than any power of nn).

5.2 A heuristic

When q is fixed and n tends to infinity, Conjecture 5.1.1 is totally analogous to the

Bateman-Horn conjecture [8] and is suggested by a completely parallel argument.

In order to explain why we should expect the asymptotic relation (5.1) to hold in the

wider range qn →∞, we need to revisit the heuristic. The following approach leads

to a uniform prediction that looks superficially different from that of Conjecture

5.1.1, but which will be shown identical in Lemma 5.2.1.

Write di for the degree of fi. Fix roots α1, . . . , αr of f1, . . . , fr from an algebraic

closure of Fq. It is not hard to prove (and is a special case of our Lemma 5.5.1 below)

that fi(g(T )) is irreducible over Fq precisely when g(T )−αi is irreducible over Fqdi .

Thus the left hand side of (5.1) counts the number of monic, degree n polynomials

g(T ) in Fq[T ] for which the r-tuple (g(T )−α1, . . . , g(T )−αr) has its ith coordinate

irreducible over Fqdi for each 1 ≤ i ≤ r. A random monic polynomial of degree n

over Fqdi is prime with probability about 1/n. So if our r-tuple behaves randomly

in the appropriate sense, we expect the left hand side of (5.1) to be roughly qn/nr.

A more precise answer requires us to quantify the deviations from randomness.

To each monic prime P of Fq[T ], we assign a correction factor CP , viz. the ratio of

the probability that P is coprime to all the polynomials g(T )−αi compared to the

probability that P is coprime to all the members of a randomly chosen r-tuple of

polynomials with the ith one in Fqdi [T ]. (Note that being coprime to P is the same

as being coprime to every prime of Fqdi [T ] that lies over P .) Since P has coefficients

from Fq, we know that P has a factor in common with g(T )− αi precisely when P
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divides
∏

σ∈Gal(F
qdi

/Fq)

(g(T )− σ(αi)) = fi(g(T )).

It follows that P has a factor in common with some g(T )− αi precisely when g(T )

belongs to one of ρ(P ) residue classes mod P .

On the other hand, a random r-tuple of monic polynomials whose ith component

has coefficients from Fqdi has all its components coprime to P with probability

r∏

i=1

ϕqdi (P )
qdi deg P

.

Suppose deg P = m. Over Fqdi , the prime P splits into (m, di) distinct monic

irreducibles of degree m/(m, di), and hence

ϕqdi (P )
qdi deg P

=
(

1− 1
qdim/(m,di)

)(m,di)

.

We therefore set

CP :=
1− ρ(P )/qm

∏r
i=1

(
1− q−dim/(m,di)

)(m,di)
.

Notice that since the fi are coprime univarate polynomials over Fq, we can write

ρ(P ) =
∑

ρi(P ), where ρi(P ) is the number of incongruent roots of fi modulo P .

Moreover, ρi(P ) is zero unless di divides m, in which case ρi(P ) = di. Thus

CP =




1−∑
1≤i≤r
di|m

di/qm

∏
1≤i≤r
di|m

(1− q−m)di




∏

1≤i≤r
di-m

1
(
1− q−dim/(m,di)

)(m,di)
= 1+OB(q−2m), (5.4)

as both factors above are 1 + OB(q−2m).
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We now set

S′(f1, . . . , fr) :=
∞∏

m=1

∏

deg P=m

CP .

Notice that CP depends on P only through its degree m; thus (5.4), along with

the estimate qm/m + O(qm/2/m) for the number of monic primes of degree m,

together imply that the contribution to the product from degree m primes is 1 +

OB(m−1q−m). It follows that the product is absolutely convergent and that

S′(f1, . . . , fr) = 1 + OB(1/q). (5.5)

Since our local condition guarantees every term in the product is positive, we also

have S′(f1, . . . , fr) > 0.

So our revised guess for the number of monic degree n polynomials g for which

all of f1(g(T )), . . . , fr(g(T )) are irreducible is

S′(f1, . . . , fr)
qn

nr
.

There is perhaps some reason for suspicion here: e.g., we might think that the

product defining S′(f1, . . . , fr) should be restricted to primes of degree bounded in

terms of n. However, since the degree m primes contribute 1 + OB(m−1q−m), as

long as the bound for the degree of P tends to infinity with n, the resulting partial

product is still (1 + oB(1))S′(f1, . . . , fr) as qn →∞.

These considerations suggest the truth of a modified Conjecture 5.1.1, where the

factor S(f1, . . . , fr)/
∏

1≤i≤r di is replaced by S′(f1, . . . , fr). Hence the derivation

will be complete if we can establish the following identity:
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Lemma 5.2.1. With notation as above,

S′(f1, . . . , fr) =
S(f1, . . . , fr)∏

1≤i≤r di
.

Write ζq(s) for the zeta function of the ring Fq[T ], defined for <(s) > 1 by

ζq(s) =
∑

A monic

1
|A|s .

For <(s) > 1, the function ζq(s) admits the Euler product expansion ζq(s) =
∏

P (1−
q−s deg P )−1. Moreover,

ζq(s) =
∞∑

m=0

qm

qms
=

1
1− q1−s

,

which provides a meromorphic continuation to the entire complex plane. Note that

ζq(s) coincides with the usual zeta function of the rational function field Fq(T ) up

to a missing factor from the (1/T )-adic valuation.

Proof of Lemma 5.2.1. Comparing the product definitions of S and S′, we see that

S′(f1, . . . , fr) = S(f1, . . . , fr)
∞∏

m=1

∏

deg P=m

(1− 1/qm)r

∏r
i=1(1− q−dim/(m,di))(m,di)

. (5.6)

Using Q to denote a generic monic prime polynomial over Fqdi , we have

ζqdi (s) =
∏

Q

(
1− 1/qsdi deg Q

)−1

=
∏

P

∏

Q|P
(1− 1/qsdi deg Q)−1 =

∏

P

(1− 1/qsdim/(m,di))−(m,di),
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where as before we write m for the degree of P . Thus for s > 1,

∞∏

m=1

∏

deg P=m

(1− 1/qms)r

∏r
i=1(1− q−sdim/(m,di))(m,di)

=
1

ζq(s)r

r∏

i=1

ζqdi (s)

=
r∏

i=1

1− q1−s

1− qdi(1−s)
=

r∏

i=1

1
1 + q1−s + · · ·+ q(di−1)(1−s)

. (5.7)

So if we know that the double product (5.7) is continuous for s ≥ 1, then taking

the limit in (5.7) as s ↓ 1 shows that the right hand side of (5.6) is precisely

S(f1, . . . , fr)/
∏

1≤i≤r di, as desired.

To prove continuity, it is enough to show that for fixed f1, . . . , fr, the series

∞∑

m=1

log
∏

deg P=m

(1− 1/qms)r

∏r
i=1(1− q−sdim/(m,di))(m,di)

(5.8)

converges uniformly for s ≥ 1. Let am = r −∑
di|m

1≤i≤r

di, so that the term in (5.8)

corresponding to m is

(
qm

m
+ O

(
qm/2

m

))(
− am

qms
+ OB(q−2ms)

)
= − am

mqm(s−1)
+ OB(m−1q−m(s−1/2)).

Note that the partial sums
∑

m≤x am are bounded; indeed,

∑

m≤x

r∑

i=1
di|m

di =
r∑

i=1

di

⌊
x

di

⌋
= rx + OB(1).

The uniform convergence of (5.8) for s ≥ 1 now follows by Abel summation.
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5.3 Preparation for the proof of Theorem 5.1.2

5.3.1 Notation

As in the preceding chapter, the proofs go through the theory of algebraic function

fields and the Chebotarev density theorem.

We fix once and for all an algebraically closed field Ωq of infinite transcendence

degree over Fq and assume for the remainder of the paper that all extensions of Fq

which appear are subfields of Ωq.

Our work also requires variants of the usual polynomial resultant and dis-

criminant (as before denoted res and disc), which we introduce as follows: If

f =
∑n

i=0 aiu
i and g =

∑m
j=0 bju

j are polynomials in u of degrees at most n and m

respectively over a domain R (so that an and bm may vanish), we define

resn,m
u (f, g) := resu




n∑

i=0

Aiu
i,

m∑

j=0

Bju
j




∣∣∣∣∣∣
A0=a0,...,An=an,B0=b0,...,Bm=bm

,

where the right-hand resultant is computed over the ring R[A0, . . . , An, B0, . . . , Bm]

of polynomials obtained by adjoining the indeterminates Ai and Bj to R. Similarly,

if f =
∑n

i=0 aiT
i is a polynomial in T of degree at most n, we define

discn
T (f) := discT

(
n∑

i=0

AiT
i

)∣∣∣∣∣
A0=a0,...,An=an

,

the right-hand discriminant being taken over R[A0, . . . , An]. If n and m represent

the actual degrees of f and g, respectively, then resn,m
u (f, g) = resu(f, g), and simi-

larly for discn
T (f). We work with resn,m

u and discn
T rather than the usual resultant

and discriminant in order to obtain uniform formulas without needing to worry

about “degree-dropping” in intermediate calculations.
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The fundamental property of resn,m
u that we need is that resn,m

u (f, g) is an R[u]-

linear combination of f and g. (This follows from our definitions above and the

analogous result for the usual resultant.) In particular, if R is a field and resn,m
u (f, g)

is a nonzero constant, then f and g have no common roots in R.

We use Sym(S) to denote the symmetric group on the set S.

5.3.2 Further preliminaries for the proof of Theorem 5.1.2

Since the case n = 1 of Theorem 5.1.2 is trivial, we always suppose that n ≥ 2. We

also suppose the following setup:

f1, . . . , fr nonassociate irreducible univariate polynomials over Fq,

d1, . . . , dr degrees of f1, . . . , fr respectively,

θ1, . . . , θr fixed roots of f1, . . . , fr, respectively, from Fq,

θ
(j)
i jth conjugate of θi with respect to Frobenius, i.e., θ

(j)
i := θqj

i .

If h(T ) is a fixed polynomial of degree n ≥ 2 over Fq, we define the function

fields Ki,j/Fq, Li,j/Fq, and Mi/Fq (for 1 ≤ i ≤ r, 1 ≤ j ≤ di) as follows, suppressing

in our notation the dependence on h:

Ki,j field obtained by adjoining a fixed root of h(T )− u− θ
(j)
i to Fqdi (u),

Li,j normal closure of Ki,j over Fqdi (u),

Mi compositum of the fields Li,j for j = 1, 2 . . . , di.

We let D be the least common multiple of d1, . . . , dr and denote with a tilde

the corresponding fields obtained by extending the constant field by FqD . (That

is, we set K̃i,j := Ki,jFqD , L̃i,j := Li,jFqD and M̃i := MiFqD .) Finally, we let M̃
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Figure 5.1: Tower of fields illustrating the inclusion relations between Fq(u),Fqdi (u),
the Ki,j , the Li,j and Mi.

denote the compositum of M̃1, . . . , M̃r. The inclusion relations between these fields

are illustrated in Figures 5.1 and 5.2.

Lemma 5.3.1. Assume that h(T ) is a polynomial of degree n ≥ 2 over Fq which

is not a polynomial in T p, where p is the characteristic of Fq. Then the extensions

Mi/Fq(u) are Galois for each i = 1, 2, . . . , r. The same assertion holds for the

extensions M̃i/Fq(u) and M̃/Fq(u).

Proof. Observe that Mi is the splitting field over Fq(u) of fi(h(T )− u), so that the

first half of the lemma follows immediately once we show that the irreducible factors

of fi(h(T )− u) are separable over Fq(u). Moving to the finite extension Fqdi (u) of

Fq(u) we have

fi(h(T )− u) =
di∏

j=1

(h(T )− u− θ
(j)
i ).

The di factors on the right-hand side are pairwise coprime (in Fq(u)[T ]), so that it

suffices to verify that each factor h(T ) − u − θ
(j)
i has no repeated roots. Any such

repeated root is also a root of h′(T ). But our hypothesis on h ensures that h′ is not

identically zero, so each root of h′(T ) is algebraic over Fq, while h(T )−u− θ
(j)
i has
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Fq(u)

FqD(u)
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Figure 5.2: Field diagram illustrating the inclusion relations between Fq(u),FqD(u),
the K̃i,j , the L̃i,j , M̃i and M̃ . Here moving to a larger field is signified by moving
outward from Fq(u).
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no roots algebraic over Fq.

The second half of the lemma is a consequence of the first. Indeed, since

FqD(u)/Fq(u) is Galois, what we have just proved implies that M̃i = MiFqD =

MiFqD(u) is also Galois over Fq(u), and thus so is the compositum M̃ of the M̃i.

The groups Gal(M̃/Fq(u)) and Gal(Mi/Fq(u)) will play an important role and

so we study them in some detail. Let Si,j denote the full set of roots of h(T )−u−θ
(j)
i

(so that for each i, the set Si,j depends only on j mod di). We begin by observ-

ing that under the hypothesis of Lemma 5.3.1, which ensures that the extensions

appearing below are Galois, we have for each k = 1, 2, . . . , r a commutative diagram

Gal(M̃/Fq(u)) ι1−−−−→ Gal(FqD/Fq)×
∏r

i=1 Sym(∪di
j=1Si,j)

σ 7→σ|Mk

y π

y
Gal(Mk/Fq(u)) ι2−−−−→ Gal(Fqdk /Fq)× Sym(∪dk

j=1Sk,j)

. (5.9)

Here the maps ι1, ι2 are given by

ι1 : σ 7→ (σ|F
qD

, σ|∪d1
j=1S1,j

, . . . , σ|∪dr
j=1Sr,j

),

ι2 : σ 7→ (σ|F
qdk

, σ|∪dk
j=1Sk,j

),

and

π : (τ, σ1, . . . , σr) 7→ (τ |F
qdk

, σk).

Note that ι1 and ι2 are embeddings while π is a surjection.

The remainder of this section is devoted to an explicit description of the images

of ι1 and ι2 under a mild restriction on h. This characterization is obtained under

the following two hypotheses:

discn−1
u discn

T (h(T )− u− θ
(j)
i ) 6= 0 for all 1 ≤ i ≤ r, 1 ≤ j ≤ di, (5.10)
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and

resn−1,n−1
u

(
discn

T (h(T )− u− θ
(j)
i ), discn

T (h(T )− u− θ
(j′)
i′ )

)
6= 0

whenever i, i′, j, j′ are as above and (i, j) 6= (i′, j′). (5.11)

That together (5.10) and (5.11) impose only a mild restriction on h is borne out by

the following lemma, which we prove in §5.4:

Lemma 5.3.2. Let h(T ) range over the polynomials of the form Tn + an−1T
n−1 +

· · · + a1T , with all coefficients ai belonging to Fq. Assume that q is prime to 2n.

Then both of the following hold:

(i) The number of such h for which (5.10) fails is bounded above by

4n2qn−2. (5.12)

(ii) For any fixed pairs of indices (i, j) 6= (i′, j′), the same bound holds for the

number of such h which fail to satisfy (5.11).

Consequently, for all but at most

4n2

(
1 +

(
d1 + · · ·+ dr

2

))
qn−2

values of h as above, both (5.10) and (5.11) hold for all distinct pairs of indices

(i, j) and (i′, j′).

We now present the promised descriptions of the images of ι1 and ι2, beginning

with ι2:
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Lemma 5.3.3. Let n ≥ 2. Assume that the characteristic of Fq is prime to 2n.

Suppose h(T ) has the form

h(T ) = Tn + an−1T
n−1 + · · ·+ a1T, with each ai ∈ Fq,

and h(T ) satisfies both (5.10) and (5.11). Then all of the following hold:

(i) The Li,j are Galois over Fqdi (u) with Galois group Sym(Si,j) for each 1 ≤ i ≤
r, 1 ≤ j ≤ di.

(ii) For every 1 ≤ i ≤ r, 1 ≤ j ≤ di, the field Li,j is linearly disjoint from the

compositum of all other fields Li,j′ with 1 ≤ j′ 6= j ≤ di.

(iii) Fqdi is the full field of constants of Mi/Fqdi .

(iv) The extension Mi/Fqdi (u) is Galois with

Gal(Mi/Fqdi (u)) ∼=
di∏

j=1

Gal(Li,j/Fqdi (u)) ∼=
di∏

j=1

Sym(Si,j),

the first isomorphism being induced by restriction in each component.

(v) Fix 1 ≤ i ≤ r. Let Frob denote the qth power map, so that Frob generates

the group Gal(Fqdi /Fq). The image of ι2 consists of all pairs (Frobk, σ) which

obey the following compatibility condition:

σ(Si,j) ⊂ Si,j+k. (5.13)

A similar lemma characterizes the image of ι1:

Lemma 5.3.4. Let n ≥ 2. Assume that the characteristic of Fq is prime to 2n.
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Suppose h(T ) has the form

h(T ) = Tn + an−1T
n−1 + · · ·+ a1T, with each ai ∈ Fq,

and h(T ) satisfies both (5.10) and (5.11). Then all of the following hold:

(i) The L̃i,j are Galois over FqD(u) with Galois group Sym(Si,j) for each 1 ≤ i ≤
r, 1 ≤ j ≤ di.

(ii) For every 1 ≤ i ≤ r, 1 ≤ j ≤ di, the field L̃i,j is linearly disjoint from the

compositum of all other fields L̃i′,j′ with 1 ≤ i′ ≤ r, 1 ≤ j′ ≤ di′ and (i, j) 6=
(i′, j′).

(iii) FqD is the full field of constants of M̃ .

(iv) We have

Gal(M̃/FqD(u)) ∼=
r∏

i=1

Gal(M̃i/FqD(u))

while for each 1 ≤ i ≤ r,

Gal(M̃i/FqD(u)) ∼=
di∏

j=1

Gal(L̃i,j/FqD(u)) ∼=
di∏

j=1

Sym(Si,j).

Here all isomorphisms are induced by restriction.

(v) The image of ι1 consists of all pairs (Frobk, σ) which obey the compatibility

condition

σ(Si,j) ⊂ Si,j+k for every i = 1, 2, . . . , r.
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5.4 Proofs of Lemmas 5.3.2, 5.3.3, and 5.3.4

5.4.1 Proof of Lemma 5.3.2

The proof of Lemma 5.3.2 rests on the following elementary bound for the number

of affine zeros of a polynomial:

Lemma 5.4.1. Let E/Fq be an arbitrary field extension and let P (T1, . . . , Tm) be

a nonzero polynomial in m variables over E with total degree bounded by d. Then

there are at most dqm−1 solutions to P (x1, . . . , xm) = 0 in Fm
q .

This lemma is well-known when E = Fq (see, e.g., [81, Theorem 6.13]), and the

general case reduces to this one upon writing the coefficients of P with respect to

an Fq-basis of E.

Our computations also require the following evaluation of the discriminants of

certain trinomials:

Lemma 5.4.2. Let R be any integral domain, and let a and b be any elements of

R. Then

discT (Tn + aT + b) = (−1)(
n
2)(nnbn−1 + (−1)n−1(n− 1)n−1an).

This is a routine computation and appears, e.g., as [87, Exercise 4.5.4]. A more

general result is established in [118].

Lemma 5.4.3. Let F be a field of characteristic p relatively prime to 2n. Then

P̂ (T1, . . . , Tn−1) := discn−1
u discn

T (Tn +Tn−1T
n−1 + · · ·+T1T −u) ∈ F [T1, . . . , Tn−1]

(5.14)

is a nonzero polynomial over F with total degree bounded by (2n− 1)(2n− 3).
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Proof. First suppose that p is also relatively prime to (n − 1). Then successive

application of Lemma 5.4.2 shows that

P̂ (1, 0, . . . , 0) = discn−1
u discn

T (Tn + T − u)

= discn−1
u

(
(−1)(

n
2)

(
nn(−u)n−1 + (−1)n−1(n− 1)n−1

))

= discn−1
u (nnun−1 + (n− 1)n−1) = ±(n− 1)(n−1)2nn(n−2),

which is nonzero. We can therefore assume that p divides n − 1. In this case we

consider

P̂ (1, 1, . . . , 1) = discn−1
u discn

T (Tn + Tn−1 + · · ·+ T − u).

To understand the inner discriminant, note that

(T − 1)(Tn + Tn−1 + · · ·+ T − u) = Tn+1 − T − (T − 1)u.

By Lemma 5.4.2, the T -discriminant of the right-hand polynomial is given explicitly

by

(−1)(
n+1

2 ) (
(n + 1)n+1un − nn(u + 1)n+1

)
. (5.15)

We can relate this to the discriminant we are after by using the relations

discT ((T − 1)(Tn + Tn−1 + · · ·+ T − u))

= ± (
(Tn + Tn−1 + · · ·+ T − u)|T=1

)2 discT (Tn + Tn−1 + · · ·+ T − u)

= ±(n− u)2 discT (Tn + Tn−1 + · · ·+ T − u).
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Piecing this all together we obtain

P̂ (1, 1, . . . , 1) = discn−1
u

(
(n + 1)n+1un − nn(u + 1)n+1

(u− n)2

)
.

Let Q(u) denote the polynomial in u appearing in the argument of discu here,

so that Q has degree n − 1 in u. If P̂ (1, 1, . . . , 1) vanishes, then Q has a multiple

root, which is necessarily also a multiple root of (5.15). One computes easily that

unless p divides n + 1, the only common root of (5.15) and its derivative is u = n.

If u = n is a multiple root of Q, then it must be a root of multiplicity at least 4

of (5.15), which forces the second derivative of (5.15) to vanish at u = n. But this

second derivative is given by

(−1)(
n+1

2 ) (
(n + 1)n+1n(n− 1)nn−2 − nn+1(n + 1)(n + 1)n−1

)

= (−1)(
n+1

2 )+1nn−1(n + 1)n.

Since the characteristic p is prime to n, this can only vanish if p divides n + 1. So

we are forced to the conclusion that P̂ (1, . . . , 1) is nonvanishing except possibly if

p divides n + 1. However, p divides n− 1 in the case we are considering, so that p

can divide n + 1 only if p = 2, which is excluded.

To bound the degree of P , observe (from the definition of the discriminant in

terms of the determinant of a (2n−1)× (2n−1) Sylvester matrix) that the inner T -

discriminant on the right of (5.14) is a polynomial in u of degree at most n−1, each

coefficient of which is a polynomial in T1, . . . , Tn−1 of total degree bounded by 2n−1.

These coefficients determine the entries of the (2n− 3)× (2n− 3) determinant used

to compute P̂ , whence P̂ has total degree at most (2n− 1)(2n− 3) in T1, . . . , Tn−1,

as claimed.
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Proof of Lemma 5.3.2(i). Write h(T ) = Tn + an−1T
n−1 + · · ·+ a1T . For every pair

of i and j with 1 ≤ i ≤ r and 1 ≤ j ≤ di, we have

discn−1
u discn

T (h(T )−u− θ
(j)
i ) = discn−1

u discn
T (h(T )−u) = P̂ (a1, . . . , an−1). (5.16)

Indeed, the T -discriminant in the first expression differs from that of the second only

in that u is replaced by u − θ
(j)
i , and such a shift leaves the outer u-discriminant

unaffected. By Lemma 5.4.3, P̂ is a nonzero polynomial of total degree bounded by

(2n− 1)(2n− 3). The bound (5.12) on the number of h which fail to satisfy (5.10)

now follows from Lemma 5.4.1.

Proof of Lemma 5.3.2(ii). We proceed as in the proof of Lemma 5.3.2(i). Write

h(T ) = Tn + an−1T
n−1 + · · · + a1T as usual. Fix pairs (i, j) and (i′, j′) with

(i, j) 6= (i′, j′) and set

P (a1, . . . , an−1) := resn−1,n−1
u

(
discn

T (h(T )− u− θ
(j)
i ), discn

T (h(T )− u− θ
(j′)
i′ )

)
.

Arguing as in Lemma 5.3.2(i), we see that there is some polynomial P̂ (T1, . . . , Tn−1)

over Fq of degree at most (2n− 1)(2n− 2) for which

P (a1, . . . , an−1) = P̂ (a1, . . . , an−1) for all a1, . . . , an−1 ∈ Fq.

Then (5.11) is satisfied (for the fixed pairs (i, j) and (i′, j′)) as long as P̂ is non-

vanishing. This nonvanishing is easily checked: indeed, the constant term of P̂
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is

P̂ (0, . . . , 0) = resn−1,n−1
u (discT (Tn − u− θ

(j)
i ), discT (Tn − u− θ

(j′)
i′ ))

= resn−1,n−1
u (discT (Tn − u), discT (Tn − u + θ

(j)
i − θ

(j′)
i′ ))

= (−1)n+1nn(2n−2)(θ(j)
i − θ

(j′)
i′ )(n−1)2 6= 0.

Lemma 5.4.1 now implies that P̂ has at most (2n−1)(2n−2)qn−2 zeros in Fn−1
q .

5.4.2 Proofs of Lemmas 5.3.3 and 5.3.4

Our fundamental tool is the following criterion of Birch and Swinnerton-Dyer [11]

for certain polynomials to have the full symmetric group as their Galois group.

We state their result in an alternative form attributed by the same authors to

Davenport:

A Criterion of Birch and Swinnerton-Dyer. Let h(T ) be a polynomial of

degree n ≥ 2 with coefficients from a finite field F whose characteristic is prime to

n. Suppose that with u an indeterminate over F , we have

discn−1
u discn

T (h(T )− u) 6= 0. (5.17)

Then the Galois group of h(T )− u over the rational function field F (u) is the full

symmetric group on the n roots of h(T ) − u. Consequently, if E is any algebraic

extension of F , then the Galois group of h(T )−u over E(u) is also the full symmetric

group.

Proof (Hayes [65]). We apply Lemma 4.2.2, taking f(T, u) := h(T ) − u. To verify

its hypotheses, recall from the discussion of §4.2.3 that condition (ii) of that lemma

follows immediately once one knows that discT f(T, u) is squarefree. This, in turn,
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follows at once from (5.17) if discT f(T, u) has degree n − 1 in u. In fact this

last polynomial has leading term ±nnun−1, which one sees easily upon viewing the

discriminant as the determinant of the (2n− 1)× (2n− 1) Sylvester matrix.

Thus it is enough to verify condition (i) of Lemma 4.2.2, that the first-degree

prime P = P∞ of F (u) is tamely ramified in the splitting field L̃ (say) of f(T, u)

over F (u). In fact we show that if P is any prime of L̃ that lies above P , then

e(P/P ) = n.

Since F is algebraically closed, we can write this ramification index as the degree

of an extension of completions, viz.

e(P/P ) = [L̃P : F (u)P ]. (5.18)

Let v be the exponential valuation on F (u) corresponding to P ; then v induces a

valuation on the completion of F (u) at P , and it extends uniquely to a valuation

on L̃P, which (by abuse of notation) we continue to denote by v.

If y is any root of h(T ) − u in L, then v(h(y)) = v(u) = −1. Since v is non-

Archimedean, we easily deduce that v(y) = −1/n, which shows that y has degree

n over F (u)P . Let K be the field obtained by adjoining y to F (u)P . By (5.18), it

now suffices to show that K is all of L̃P. Equivalently, we would like to show that

h(T )− u splits completely over K.

We make a simple change of variables: it is enough to show that the polynomial

y−nh(yT )− y−nu (5.19)

has all its roots in K. The reason for this change of variables is to allow the

application of Hensel’s lemma (p. 88): in the residue field associated to v, which

may be identified with F , the polynomial (5.19) has the shape c1T
n−c2 for constants
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c1, c2 ∈ F and c1 6= 0. Since p does not divide n, this splits completely into linear

factors over F . Hensel’s lemma now implies that (5.19) splits completely into linear

factors over K.

The last claim follows immediately from the observation that the Galois group

of h(T )−u over F (u) injects (via restriction) into the Galois group of h(T )−u over

E(u).

Proof of Lemmas 5.3.3(i) and 5.3.4(i). Suppose that h satisfies conditions (5.10)

and (5.11). Then part (i) of Lemma 5.3.3 is immediate from the criterion of Birch

and Swinnerton-Dyer. Since L̃i,j is the splitting field of h(T ) − u − θ
(j)
i over FqD ,

the same argument also establishes Lemma 5.3.4(i).

Before continuing we extract a result from the proof given above for the Birch

and Swinnerton-Dyer criterion:

Lemma 5.4.4 (Hayes). Let h(T ) be a polynomial of degree n ≥ 2 over the finite

field Fq which satisfies the hypotheses of the Birch and Swinnerton-Dyer criterion

with F = Fq. Let L be the splitting field of h(T ) − u over Fq(u). Let P∞ be the

prime of Fq(u) corresponding to the (1/u)-adic valuation on Fq[1/u], and let P be

any prime of L lying above above P∞. Then e(P |P∞) = n, where e(P |P∞) denotes

the ramification index of P over P∞.

Proof of Lemmas 5.3.3(ii) and 5.3.4(ii). Define the constant field extensions

K̂i,j := Ki,jFq, L̂i,j := Li,jFq, and M̂i := MiFq.

Thus L̂i,j is the splitting field of h(T )−u− θ
(j)
i over Fq. To prove Lemma 5.3.3(ii),

it suffices to show that for each fixed i,

L̂i,j is linearly disjoint from the compositum of L̂i,j′ for 1 ≤ j′ 6= j ≤ di. (5.20)
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Indeed, once (5.20) is known, we may deduce that

Gal(M̂i/Fq(u)) ∼= Gal(L̂i,1/Fq(u))× · · · ×Gal(L̂i,di/Fq(u)).

By the Birch and Swinnerton-Dyer criterion the right-hand Galois groups each have

size n!, so that the left-hand Galois group has size n!di . But the left-hand Galois

group injects (via restriction) into Gal(Mi/Fqdi (u)), and degree counting shows that

this injection must be an isomorphism; thus

[Mi : Fqdi (u)] = [Li,1Li,2 · · ·Li,di
: Fqdi (u)]

= [Li,1 : Fqdi (u)][Li,2 : Fqdi (u)] · · · [Li,di : Fqdi (u)],

which implies Lemma 5.3.3(ii).

To prove (5.20), consider the intersection N of L̂i,j with the compositum of

the fields L̂i,j′ for 1 ≤ j 6= j′ ≤ di. The only primes of Fq(u) that can ramify in

N ramify in both K̂i,j and some K̂i,j′ with 1 ≤ j 6= j′ ≤ di. But by (5.11), the

polynomials

discn
T (h(T )− u− θ

(j)
i ) and discn

T (h(T )− u− θ
(j′)
i ) have no common roots,

and so the only prime that can possibly ramify in both extensions is P∞. By Lemma

5.4.4 and repeated application of Abhyankar’s Lemma (p. 90), P∞ is tamely ramified

in L̂i,j and hence also in N . (Here we again use our hypothesis that q is prime to n.)

Thus N is a finite, tamely ramified geometric extension of Fq(u) unramified except

possibly at primes above the degree 1 prime P∞. It follows that N = Fq(u) (by

Lemma 4.2.1). This proves (5.20) and together with the above argument completes

the proof of Lemma 5.3.3(ii).
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The proof of Lemma 5.3.4(ii) is nearly identical but is based instead on the claim

that

L̂i,j is linearly disjoint from the compositum of L̂i′,j′ for (i, j) 6= (i′, j′); (5.21)

we omit the details.

Proof of Lemma 5.3.3(iii) and 5.3.4(iii). In the course of proving Lemma 5.3.3(ii),

we showed that restriction induces an isomorphism

Gal(M̂i/Fq(u)) ∼= Gal(Mi/Fqdi (u)).

If α ∈ Mi ∩ Fq, then α is fixed by every element of the left-hand Galois group

appearing above, and so must be fixed by all elements of the right-hand Galois

group. But this forces α to lie in the field of rational functions Fqdi (u). Since α

is algebraic over Fq, it must belong to Fqdi . So Fqdi is the full field of constants

of Mi. Lemma 5.3.4(iii) can be proved similarly, using that restriction induces an

isomorphism Gal(M̂i/Fq(u)) ∼= Gal(M̃/FqD(u)).

Proof of Lemmas 5.3.3(iv) and 5.3.4(iv). Immediate from parts (i) and (ii) of Lem-

mas 5.3.3 and 5.3.4.

Proof of Lemma 5.3.3(v) and Lemma 5.3.4(v). Suppose σ ∈ Gal(Mi/Fqdi (u)) sat-

isfies σ|F
qdi

= Frobk. Then σ takes θ
(j)
i to θ

(j+k)
i and so takes every root of

h(T ) − u − θ
(j)
i to a root of h(T ) − u − θ

(j+k)
i . It follows that the image of ι2 is

contained within the set of elements obeying the compatibility condition specified in

Lemma 5.3.3(v). A straightforward counting argument shows that there are din!di

such elements of Gal(Fqdi /Fq)× Sym(∪di
j=1Si,j). On the other hand, we know that

Mi/Fq(u) is Galois of degree [Mi : Fq(u)] = [Mi : Fqdi (u)][Fqdi (u) : Fq(u)] = din!di .
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Since ι2 is injective, it follows that the image of ι2 must coincide with the set

specified in (v).

A similar argument establishes Lemma 5.3.4(v): in that case M̃ is Galois over

Fq(u) of degree Dn!d1+···+dr , and this degree coincides with the number of elements

obeying the compatibility condition of Lemma 5.3.4(v).

5.5 Proof of Theorem 5.1.2

Throughout this section f1(T ), . . . , fr(T ) denote nonassociate irreducible polynomi-

als of respective degrees d1, . . . , dr over Fq and h(T ) = Tn + an−1T
n−1 + · · ·+ a1T

denotes a monic polynomial over Fq of degree n ≥ 2 without constant term satisfy-

ing conditions (5.10) and (5.11).

Lemma 5.5.1. Let g(T ) be a squarefree polynomial of degree n over Fqd which

is coprime to all its conjugates over Fq: i.e., gcd(g(T ), σ(g(T ))) = 1 for every

σ ∈ Gal(Fqd/Fq). If λ is the factorization type of g(T ), then d×λ is the factorization

type of NmF
qd/Fq

(g(T )) :=
∏

σ∈Gal(F
qd/Fq) σ(g(T )).

Proof. Since g(T ) is squarefree, so are all the polynomials σ(g(T )), and as g(T ) is

coprime to its conjugates, NmF
qd/Fq

(g(T )) is also squarefree.

Suppose that Q is a monic prime of Fqd [T ] that divides g(T ), and let P be

the monic prime of Fq[T ] that lies below Q. Let f(Q/P ) be the inertial degree

of Q over P . Since NmF
qd/Fq

(Q) = P f(Q/P ) divides the squarefree polynomial

NmF
qd/Fq

(g(T )), we must have f(Q/P ) = 1 and NmF
qd/Fq

(Q) = P . In particular,

deg P = ddeg Q.

Thus, starting with a factorization of g(T ) exhibiting cycle type λ, takings norms

gives us a corresponding factorization of NmF
qd/Fq

(g(T )) with cycle type d×λ.
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The next result is analogous to Lemma 4.3.2. For a ∈ Fq, we write Pa for the

prime of Fq(u) corresponding to the (u− a)-adic valuation.

Lemma 5.5.2. Assume h(T ) obeys the nondegeneracy conditions (5.10) and (5.11).

If λ1, . . . , λr are arbitrary partitions of n, then the group Gal(M̃/Fq(u)) contains a

conjugacy class C, of size

n!d1+···+dr

r∏

i=1

T (λi),

with the following property: Suppose that a is an element of Fq which is not a zero

of any of the polynomials

discT (h(T )− u− θ
(j)
i ) for 1 ≤ i ≤ r, 1 ≤ j ≤ di. (5.22)

Then fi(h(T ) − a) has factorization type λi for every 1 ≤ i ≤ r exactly when C
coincides with the Frobenius conjugacy class (M̃/Fq(u), Pa).

Proof. Since a is not a root of any of the polynomials (5.22), Pa is unramified in M̃

and the polynomials h(T )−a−θ
(j)
i are squarefree for all i and j. Now fix 1 ≤ i ≤ r.

Applying Lemma 5.5.1 with g(T ) = h(T )− a− θ
(1)
i , we see that

h(T )− a− θ
(1)
i has type λi over Fqdi ⇐⇒ fi(h(T )− a) has type d× λi over Fq.

There is a unique prime Qa of Fqdi (u) that lies over Pa, and for this prime we have

f(Qa/Pa) = di and e(Qa/Pa) = 1. (5.23)

By Kummer’s theorem (p. 92), the factorization of h(T ) − a − θ
(1)
i mirrors the

factorization of Qa in Ki,1. So if λi = (t1, . . . , ts), then fi(h(T ) − a) has type

di× λi if and only if Qa factors in Ki,1 into primes of relative degrees t1, . . . , ts. By

(5.23), this in turn occurs exactly when Pa factors in Ki,1 into primes of degrees
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dit1, . . . , dits.

This last possibility can be recast in terms of the action of Frobenius. Let σ de-

note any element of the Frobenius conjugacy class (Mi/Fq(u), Pa); then necessarily

σ restricts to the qth power map on Fqdi , (5.24)

so that the image of σ under ι2 has the form (Frob, σ′) for some permutation σ′

of ∪di
j=1Si,j (obeying the compatibility condition (5.13) with k = i and l = 1).

Then Pa factors as indicated above if only if σ has cycles of lengths dit1, . . . , dits

when acting by right-multiplication on the right-cosets of H = Gal(Mi/Ki,1) in the

group Gal(Mi/Fq(u)). (Cf. [72, Theorem 2.7].) We claim that this is equivalent

to σ′, considered as a permutation of the ndi-element set ∪di
j=1Si,j , decomposing as

a product of s disjoint cycles of lengths dit1, . . . , dits. To prove this, we exhibit a

bijective length-preserving correspondence between the cycles in the decomposition

of σ′ and the cycles appearing when σ acts by right-multiplication on the right-cosets

of H.

We set this correspondence up as follows. Write Ki,1 = Fqdi (u)(α), where

α ∈ Si,1. Let C ′ be a cycle appearing in the decomposition of σ′, and let β be an

element appearing in C ′. Choose an element τ of of Gal(Mi/Fq(u)) with τ(β) = α.

(The existence of such an element follows from our description of the image of ι2

above.) We define our bijection by sending

C ′ 7→ C, where C is that cycle of the right-action containing Hτ. (5.25)

We must check that this does not depend on the particular choices of τ and β. To

this end, suppose that τ1(β) = τ2(β) = α. Then τ1τ
−1
2 fixes both α and Fq(u), so
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must also fix the entire field

Fq(u)(α) = Fq(u)(h(α), α) = Fq(u)(θ(1)
i )(α) = Fqdi (u)(α) = Ki,1.

Thus τ1τ
−1
2 ∈ Gal(M/Ki,1) = H, and so Hτ1 = Hτ2, proving that our map is

independent of the choice of τ . Now suppose β1 and β2 both appear in the cycle

C ′; then β2 = σj(β1) for some j. If τ(β1) = α, then (τσj)(β2) = α. Thus (5.25)

associates to C ′ both the cycle containing Hτ and the cycle containing Hτσj . But

these coincide, since our action is right-multiplication by σ.

Suppose now that two cycles C ′
1 and C ′

2 are mapped to the same cycle C. Choose

elements β1 and β2 which appear in the cycles C ′
1 and C ′

2 respectively, and choose

τ1 and τ2 from Gal(Mi/Fq(u)) with τ1(β1) = α and τ2(β2) = α. It follows that Hτ1

and Hτ2 appear in the same cycle of our right-action, so that Hτ1 = Hτ2σ
j for

some j. Hence the left-cosets τ−1
1 H and σ−jτ−1

2 H coincide. But elements of the

former coset send α to β1 and elements of the latter send α to σ−j(β2). It follows

that β1 and β2 belong to the same cycle of σ; i.e., C ′
1 = C ′

2. This proves injectivity.

Now we show that the association (5.25) takes cycles C ′ to cycles C of the same

length. Using | · | for the length of a cycle in both cases, we observe that for an

arbitrary integer j,

|C| divides j ⇐⇒ Hτσj = Hτ ⇐⇒ τ−1H = σ−jτ−1H

⇐⇒ τ−1(α) = σ−jτ−1(α) ⇐⇒ β = σ−j(β) ⇐⇒ |C ′| divides j.

This forces |C| = |C ′|.
The surjectivity of our map now follows, as the lengths of the cycles of C and

the lengths of the cycles of C ′ must both sum to n. This completes the proof that

(5.25) defines a bijective, length-preserving map.
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At this point we have reduced the problem to a consideration of those permuta-

tions σ′ of ∪di
j=1Si,j which obey the compatibility condition (5.13) (with k = i and

l = 1) and which decompose into disjoint cycles of lengths dit1, . . . , dits. Such cycles

can be explicitly constructed as follows: Take any permutation of Si,1 of cycle type

λi; there are T (λi)n! of these. This permutation serves as a template for a permu-

tation σ′ with the desired properties: use the given permutation to fill in every dth

element in the cycles of σ′, and fill in the remaining spots arbitrarily, subject only

to the compatibility condition. The latter task can be done in n!di−1 ways, and this

shows that the total number of such σ′ is T (λ)n!di .

Let γ ∈ Gal(M̃/Fq(u)) be an element from the conjugacy class of (M̃/Fq(u), Pa).

Then in order that fi(h(T ) − a) have cycle type di × λi for every i = 1, 2, . . . , r,

it is necessary and sufficient that γ|Mi obey the conditions imposed on σ′ above

for every i. That is, it is necessary and sufficient that γ (identified with its image

under ι1) has the form (Frob, σ1, . . . , σr), where each σi is one of the previously-

constructed n!diT (λi) permutations on ∪di
j=1Si,j . There are n!d1+···+dr

∏r
i=1 T (λi)

possible tuples (Frob, σ1, . . . , σr), and because the σi obey the stated compatibility

conditions, these correspond to distinct, well-defined elements of Gal(M̃/Fq(u)).

Finally, Lemma 5.3.4(i), (ii) shows that

Gal(M̃/Fq(u)) ⊃ Gal(M̃/FqD(u)) =
∏

1≤i≤r
1≤j≤di

Sym(Si,j), (5.26)

where each Sym(Si,j) is thought of as a subgroup of Sym(∪ 1≤i≤r
1≤j≤di

Si,j). From (5.26)

and our construction of the σi, it is easy to convince oneself that the set of elements

C (say) constructed above constitute a single conjugacy class of Gal(M̃/Fq(u)).

To apply the Chebotarev density theorem we require an estimate for the genus

of M̃/FqD . This is a consequence of the following genus estimate due to Cohen (see
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[32, Theorem 1.1]):

Lemma 5.5.3. Let f(T ) be a nonconstant polynomial over Fq which is not a poly-

nomial in T p, and let L be the splitting field of f(T )−u over Fq(u). Then the genus

of L is bounded above by

1
2
(deg f − 3)[L : Fq(u)] + 1.

Corollary 5.5.4. Let f1(T ), . . . , fr(T ) be nonassociate monic irreducible polynomi-

als of respective degrees d1, . . . , dr over Fq and suppose that h(T ) is a polynomial of

degree n ≥ 2 without constant term satisfying conditions (5.10) and (5.11). Then

the genus of M̃/FqD is bounded above by

(d1 + · · ·+ dr)n · n!d1+···+dr .

Proof. Write gN for the genus of a function field N with constant field FqD . Since

L̃i,j is the splitting field of h(T )− u− θ
(j)
i over FqD (for 1 ≤ i ≤ r and 1 ≤ j ≤ di),

Lemma 5.5.3 implies that

g
L̃i,j

≤ 1
2
(n− 3)n! + 1 ≤ 1

2
n · n!.

To continue we enumerate the L̃i,j as L̃(1), . . . , L̃(d1+···+dr), so that M̃ is the com-

positum of the L̃(i) for 1 ≤ i ≤ d1 + · · ·+ dr. By the Castelnuovo-Severi inequality,

we have for any k ≤ d1 + · · ·+ dr that

g
L̃(1)···L̃(k) ≤ [L̃(1) · · · L̃(k) : L̃(k)]g

L̃(k) + [L̃(1) · · · L̃(k) : L̃(1) · · · L̃(k−1)]g
L̃(1)···L̃(k−1)+

([L̃(1) · · · L̃(k) : L̃(k)]− 1)([L̃(1) · · · L̃(k) : L̃(1) · · · L̃(k−1)]− 1);
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thus

g
L̃(1)···L̃(k) ≤ n!k−1 · 1

2
n · n! + n!g

L̃(1)···L̃(k−1) + (n!k−1 − 1)(n!− 1)

≤ 1
2
n · n!k + n!g

L̃(1)···L̃(k−1) + n!k ≤ n · n!k + n!g
L̃(1)···L̃(k−1) .

By induction we deduce that

g
L̃(1)···L̃(k) ≤ kn · n!k.

Taking k = d1 + d2 + · · ·+ dr gives the result.

We can now complete the proof of Theorem 5.1.2 appealing to the explicit form

of the Chebotarev density theorem that appeared in the last chapter (p. 95).

Proof of Theorem 5.1.2. As always we may assume n ≥ 2, since Theorem 5.1.2 is

trivial otherwise. Let X be the number of polynomials h(T ) = Tn + an−1T
n−1 +

· · ·+ a1T ∈ Fq[T ] satisfying both nondegeneracy conditions (5.10) and (5.11).

Suppose h(T ) is one of the polynomials counted by X, and let Nh be the number

of a ∈ Fq with the property that fi(h(T ) − a) has cycle type λi for all 1 ≤ i ≤ r.

For all but at most (n− 1)B values of a, Lemma 5.5.2 asserts that this property is

equivalent to (M̃/Fq(u), Pa) coinciding with the conjugacy class C of that lemma.

Since

|C| = n!d1+···+dr

r∏

i=1

T (λi) and [M̃ : FqD(u)] = n!d1+···+dr ,

the Chebotarev density theorem gives us that

∣∣∣∣∣Nh − q

r∏

i=1

T (λi)

∣∣∣∣∣ ≤
(

2
r∏

i=1

T (λi)

)
(gq1/2 + g + n!d1+···+dr) + (n− 1)B. (5.27)

Since g ≤ Bnn!B (Lemma 5.5.4), the right-hand side here is O((Bn)n!Bqn−1/2).
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Thus the total number of polynomials h̃(T ) for which fi(h̃(T )) has cycle type λi for

all 1 ≤ i ≤ r is

Xq
r∏

i=1

T (λi) + O(X(Bn)n!Bq1/2) + O((qn−1 −X)q).

Making use of the bounds

qn−1 − 4n2qn−2

(
1 +

(
B

2

))
≤ X ≤ qn−1,

we find that this number is

qn
r∏

i=1

T (λi) + O((Bn)n!Bqn−1/2) + O(n2B2qn−1).

The proof is completed by the (easy) verification that the first O-term is dominant

(using n ≥ 2).

142



Chapter 6

Further applications

6.1 Introduction

In this chapter we give several applications of Theorem 5.1.2 to the multiplicative

properties of polynomial specializations.

6.1.1 Prime values of polynomials

The first two applications constitute further results towards a polynomial analogue

of Hypothesis H. In Chapter 3 we showed (Theorem 3.1.3) that if f1(T ), . . . , fr(T ) is

a finite collection of irreducible polynomials over Fq, and if q is large compared to the

degree of the product f1(T ) · · · fr(T ), then the conclusion of Hypothesis H holds for

the given collection. However, our proof produced only a sparse set of substitutions

T 7→ g(T ) leaving all the fi irreducible. A weak consequence of Conjecture 5.1.1 is

that there should be such g(T ) of every sufficiently large degree.

Our first application uses Corollary 5.1.3 to establish that the degrees of these

polynomials g(T ) are “dense” with respect to arithmetic progressions, in the fol-

lowing sense:
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Theorem 6.1.1. Let f1(T ), . . . , fr(T ) be nonassociate irreducibles over Fq with the

degree of f1 · · · fr bounded by B. Let a mod m be an arbitrary infinite arithmetic

progression of integers. If the finite field Fq is sufficiently large, depending just

on m, r, and B, and if q is prime to 2 gcd(a, m), then there are infinitely many

univariate monic polynomials g over Fq with

deg g ≡ a (mod m) and f1(g(T )), . . . , fr(g(T )) all irreducible over Fq.

Theorem 6.1.1 is no doubt true without any restriction on the characteristic of

Fq, but we have not been able to show this.

Tweaking the methods involved in the proof of Theorem 6.1.1 we can also prove

the following result, the first half of which settles a problem posed by Hall [58, p.

140]:

Theorem 6.1.2. Let Fq be any finite field with more than two elements. Then

there are infinitely many monic prime pairs f, f + 1 of odd degree over Fq. The

same holds for the case of even degree.

Even for large q this is not immediate from Theorem 6.1.1, since that theorem

says nothing about prime specializations over fields of characteristic 2.

Theorem 6.1.2 is the twin prime analogue of Kornblum’s result that every co-

prime residue class of polynomials over Fq contains infinitely many monic irre-

ducibles of odd degree, as well as infinitely many of even degree. In a posthumously-

published version of Kornblum’s paper [78], Landau presents a modification of Ko-

rnblum’s argument to the effect that the degrees can be taken from an arbitrary

arithmetic progression. Theorem 6.1.1 can be seen as an effort in the same direction.
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6.1.2 Twin primes and Brun’s constant

We begin by recalling Brun’s classical result [13] towards the twin prime problem:

Theorem A (Brun). The sum of the reciprocals of those primes which are members

of a twin prime pair converges (or is a finite sum); that is,

B :=
(

1
3

+
1
5

)
+

(
1
5

+
1
7

)
+

(
1
11

+
1
13

)
+ · · · < ∞.

While constants like π and e are known to billions of digits, our knowledge

of Brun’s constant B is surprisingly modest. The sharpest known unconditional

bounds are (roughly)

1.830 < B < 2.347.

(Thus we do not know B to even one decimal place!) The lower bound here is due

to Sebah [110], who computed all the twin prime pairs up to 1016 and summed their

reciprocals. The upper bound is due to Crandall and Pomerance ([36, pp. 16-17],

see also [73, Chapter 3]), who bound the sum of the twin prime pairs past 1016 using

an explicit upper estimate of Riesel and Vaughan [102] for the number of twin prime

pairs. Much sharper estimates for Brun’s constant are available if one assumes a

suitable quantitative version of the twin prime conjecture; e.g., it is plausible that

B = 1.902160583121± 4.08× 10−8.

This last estimate is taken from the recent thesis of Klyve [73], which the reader

should consult for references to earlier work.

If Fq is a finite field containing the nonzero element α, we define the Brun
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constant associated to q and α by

Bq,α :=
∑

P,P+α monic primes

1
|P | .

The proof of Theorem A can be adapted to show that Bq,α is finite for every q and

α (cf. [127, Corollary, p. 349] or [70, Theorem 5.5]). Actually we can be far more

precise about the values of Bq,α:

Theorem 6.1.3. If Fq is a finite field with characteristic p > 2, then

Bq,α =
π2

6
+ O(1/p + log log q/ log q), (6.1)

uniformly for α ∈ F×q . Moreover, for every finite field Fq,

1
q − 1

∑

α∈F×q

Bq,α =
π2

6
+ O(q−1/2). (6.2)

Thus Bq,α tends to π2/6 as the characteristic of Fq tends to infinity, for exam-

ple if q tends to infinity through prime values. Moreover, the error term in this

approximation is rather small on average over α once q is large (regardless of the

characteristic). We suspect that Bq,α tends to π2/6, uniformly in α, whenever q

tends to infinity, but we have not so far succeeded in showing this.

6.1.3 The distribution of prime gaps

The following conjecture is a well-known consequence of Cramér’s probabilistic

model (see, e.g., [55] for background):

Conjecture A. Fix λ > 0. Suppose h and N tend to infinity in such a way that
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h ∼ λ log N . Then

lim
N→∞

1
N

#{n ≤ N : π(n + h)− π(n) = k} = e−λ λk

k!

for every fixed integer k = 0, 1, 2, . . . .

Additional support for Conjecture A comes from the work of Gallagher [52], who

shows that it follows from a plausible uniform version of Hardy and Littlewood’s

prime k-tuples conjecture.

Granville (personal communication) has suggested the following polynomial ana-

logue of Conjecture A. For a prime p and an integer a, let a denote the residue class

of a in Z/pZ = Fp. For each prime p and each integer h ≥ 0, define

I(p; h) := {a0 + a1T + · · ·+ ajT
j ∈ Fp[T ] : 0 ≤ a0, . . . , aj < p with

∑
aip

i < h}.
(6.3)

In the notation of Chapter 2 (p. 41), I(p; h) is the set of polynomials A over Fp

with ‖A‖ < h. Let Pk(p;h, n) be the number of polynomials A(T ) of degree n over

Fp for which the translated “interval” A + I(p; h) contains exactly k primes.

Conjecture 6.1.4. Fix λ > 0. Suppose h and n tend to infinity in such a way that

h ∼ λn. Then
1
pn

Pk(p; h, n) → e−λ λk

k!
(as n →∞) (6.4)

for each fixed k = 0, 1, 2, 3, . . . , uniformly in the prime p.

In §6.5.1, we show that, in analogy with Gallagher’s result, this conjecture fol-

lows from a suitable uniform version of the prime k-tuples conjecture. Our main

result towards Conjecture 6.1.4 is the following, which shows that (6.4) holds when-

ever p tends to infinity faster than any power of nn2
, as long as k = o(

√
n):
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Theorem 6.1.5. For each compact set I ⊂ (0,∞), there is a constant C with the

following property: For integers n, h and k with

n ≥ 2, h ≥ 1, 0 ≤ k ≤ h, h/n ∈ I,

we have upon setting λ := h/n,

1
pn

Pk(p;h, n) = e−λ λk

k!

(
1 + OI

(
(k + 1)2

n

))
+ O

(
p−1/2 exp(Cn2 log n)

)
,

where the second O-constant is absolute.

6.1.4 Smooth values of polynomials

To this point, all of our applications have been towards polynomial analogues of

problems in the distribution of primes. On the opposite end of the multiplicative

spectrum one has the smooth numbers, those composed only of small prime factors.

(More precisely, an integer n is called y-smooth if its largest prime factor P (n) is

≤ y.) Dickman has shown [39] that for fixed u, the number of n ≤ x which are

x1/u-smooth is asymptotic to ρ(u)x, where ρ is the (unique) continuous solution of

the differential-delay equation

uρ′(u) = −ρ(u− 1) satisfying the initial condition ρ(u) = 1 for 0 ≤ u ≤ 1.

One could ask, more generally, for an asymptotic formula for the number of x1/u-

smooth values assumed by a polynomial F (T ) on integers 1 ≤ n ≤ x. Denote this

number by Ψ(F ; x, x1/u). Then we have the following conjecture of Martin [85],

which we state in a slightly strengthened form:

Conjecture B (Martin). Let F be an arbitrary but fixed nonzero integer-valued
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polynomial and let d1, . . . , dK be the degrees of the nonassociate irreducible factors

of F . Then for each U > 0, the asymptotic formula

Ψ(F ; x, x1/u) ∼ xρ(d1u) · · · ρ(dKu)

holds as x →∞, uniformly for 0 < u ≤ U .

This can be viewed as a smooth number analogue of Schinzel’s Hypothesis H.

Martin links the two conjectures by showing that a sufficiently uniform quantitative

version of Hypothesis H implies the truth of Conjecture B for every U < (d−1/K)−1,

where d is the maximal degree of an irreducible factor of F and K is the number of

nonassociate irreducible factors of F of degree d. (Note that Conjecture B is trivial

in the narrower range U < d−1.)

The distribution of smooth polynomials mimics the distribution of smooth in-

tegers: e.g., the number of monic polynomials of degree n over Fq all of whose

prime factors have degree ≤ n/u is asymptotically ρ(u)qn (in large ranges of u

and uniformly in q; see, e.g., [21], [91]). This motivates the following analogue of

Conjecture B. For a polynomial F (T ) over Fq, define Ψ(F ;n, m) as the number of

monic, degree n polynomials g(T ) over Fq for which every prime factor of F (g(T ))

has degree bounded by m.

Conjecture 6.1.6. Fix B, U ≥ 1. Let F (T ) be a nonconstant polynomial over Fq

of degree at most B. Let K be the number of distinct monic irreducible factors of

F , and let d1, . . . , dK be the degrees of those factors. Then as n →∞,

Ψ(F ; n, n/u) ∼ qnρ(d1u) · · · ρ(dKu)

uniformly for 0 < u ≤ U and uniformly for all q, F, and K.
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Theorem 5.1.2 allows us to confirm this conjecture when q grows much faster

than n (say when q grows faster than any power of nn) and satisfies gcd(q, 2n) = 1:

Theorem 6.1.7. Fix B, U ≥ 1. Let F (T ) be a nonconstant polynomial over Fq of

degree at most B. Let K be the number of distinct monic irreducible factors of F ,

and let d1, . . . , dK be the degrees of these factors. If n ≥ BU and (q, 2n) = 1, then

Ψ(F ; n, n/u) = qnρ(d1u) · · · ρ(dKu) + OB(uqn/n) + OB(qn−1/2n!2B),

for 0 < u ≤ U .

Without giving details, we remark that minor modifications of our arguments

give analogous results for the number of smooth values of F (g(T )) when g(T ) is

restricted to monic prime values (cf. Martin’s prediction [85, equation (1.8)]).

6.1.5 Smooth values of consecutive integers

The final conjecture we consider can be viewed as a smooth number analogue of the

prime k-tuples conjecture:

Conjecture C. Let 0 ≤ α < β ≤ 1, and let A be the set of integers n ≥ 2 whose

largest prime factor P (n) satisfies nα ≤ P (n) ≤ nβ. Then for every k, one can find

k consecutive integers n + 1, . . . , n + k all of which belong to A.

The origin of this problem lies with Erdős (see, e.g., [45]), who asked for a proof

in the case when k = 2 and [α, β] = [1 − ε, 1]. The case k = 2 was settled in its

entirety by Hildebrand [66] (via the solution of a more general conjecture of Balog).

Moreover, when α = 0, Conjecture C follows (for any β > 0 and every k) from the

results of Balog and Wooley [4]. (All of these theorems in fact can be proved in

stronger, quantitative forms.) Nevertheless, Conjecture C remains open in general.

A partial result when k > 2 is contained in [67]. See also the survey [68].
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A similar problem appears in the work of Erdős and Pomerance [46]; they ask

whether the largest prime factors of n and n + 1 are independent events, in the

sense that the proportion of n ≤ x with P (n) > xα1 and P (n + 1) > xα2 tends

to a(α1)a(α2), where a(t) := 1 − ρ(1/t). This is still unsolved. Even the weaker

assertion that asymptotically half of all positive integers n have P (n) > P (n + 1)

remains open. This last problem goes all the way back to correspondence in the

1930s between Erdős and Turán (see [115, pp. 100-101]).

The results of Balog and Wooley mentioned above have been translated into

the polynomial setting by Masuda and Panario [86]. However, it seems that there

are no results for polynomials in the direction of Conjecture C when α > 0. Our

next theorem deals with this case, and at the same time proves an independence

statement for the largest prime factors of neighboring polynomials.

Write L(A) for the degree of the largest irreducible factor of a polynomial A.

Suppose that I = [α, β] is a compact subinterval of [0, 1]. (Here and in what follows,

intervals are always understood to be of nonzero length, so that α < β.) If α 6= 0,

we define κ(I) := 1/α, otherwise we set κ(I) := 1/β.

Theorem 6.1.8. Let k be a positive integer, and let S be a k-element subset of Fq.

Suppose that for each s ∈ S we are given a compact subinterval Is = [αs, βs] ⊂ [0, 1]

and let C := maxs∈S κ(Is).

(i) The number of monic, degree n polynomials A(T ) ∈ Fq[T ] with

αs deg A(T ) ≤ L(A(T ) + s) ≤ βs deg A(T ) for every s ∈ S (6.5)

is given by

qn
∏

s∈S

(
ρ(β−1

s )− ρ(α−1
s )

)
+ Ok,C(qn/n) + O(n!2kqn−1/2),
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provided that gcd(q, 2n) = 1.

(ii) Suppose that the length of each interval Is is bounded below by ε > 0. If q is

odd and sufficiently large (depending only on k and ε), then there are infinitely

many monic polynomials A(T ) ∈ Fq[T ] for which (6.5) holds.

We emphasize that the estimate in (i) is only nontrivial when q is large compared

to n, since otherwise our bound on the error term exceeds the total number of monic,

degree n polynomials.

To illustrate Theorem 6.1.8, fix α1, α2 ≥ 0. Then applying Theorem 6.1.8 with

I0 = [α1, 1], I1 = [α2, 1], and S = {0, 1} ⊂ Fq, we see that the proportion of degree

n polynomials A(T ) over Fq with

L(A(T )) ≥ α1n and L(A(T ) + 1) ≥ α2n

is asymptotic to a(α1)a(α2), provided n and q tend to infinity with q ≥ n4n (say)

and gcd(q, 2n) = 1. This confirms, in a certain range, the polynomial analogue of

the independence result conjectured by Erdős and Pomerance.

Notation

Throughout this chapter, we reserve the letter P for monic irreducibles.

6.2 Proof of Theorem 6.1.1

We begin with some comments on the relationship between Theorem 3.1.3 and

Theorem 6.1.1. For q large in terms of r and B, Theorem 3.1.3 asserts the existence

of infinitely many irreducibility preserving substitutions T 7→ T lk − β for some

prime l dividing q − 1 and some β ∈ Fq. So we obtain irreducibility-preserving
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substitutions whose degrees are exactly the powers of l. In the proof of Theorem

3.1.3, there is some flexibility in the choice of l, and this could be used to establish

Theorem 6.1.1 in a number of special cases.

In order to prove Theorem 6.1.1 in full, we require two additional ingredients:

(i) the existence of a preliminary irreducibility-preserving substitution T 7→ h(T )

of degree d, for some d belonging to the progression a mod m,

(ii) the existence of some l coprime to m and some β ∈ Fq for which all the sub-

stitutions T 7→ T lk −β preserve the irreducibility of the polynomials fi(h(T )),

where h(T ) is as in (i).

If we can establish (i) and (ii), then Theorem 6.1.1 follows immediately, since h(T lk−
β) has degree from the progression a mod m whenever k is divisible by ϕ(m). The

most difficult part of the proof is obtaining (i), which requires Corollary 5.1.3. By

contrast, the techniques necessary for the proof of (ii) are present already in Chapter

3. However, the details here are slightly different; this is because in proving Theorem

6.1.1 we take l as a divisor of qd − 1 (with d as in (i) above), while in the proof of

Theorem 3.1.3, l is always chosen as a divisor of q − 1.

Now for the details:

Corollary 6.2.1. Let m be a positive integer. Then every integer d > max{2, ϕ(m)}
has the following property: if q is any odd integer ≥ 3, then qd−1 has an odd prime

divisor not dividing m.

Proof. Suppose d > max{2, ϕ(m)}. By Bang’s theorem (p. 76) there is a prime l

for which q has order d in (Z/lZ)×. Since d > 1, we must have l 6= 2. Moreover,

l is necessarily prime to m: for if l divides m, then the order of q in (Z/lZ)× is

a divisor of ϕ(l), hence also a divisor of ϕ(m) and so less than d, a contradiction.

Hence l is an odd prime divisor of qd − 1 which is prime to m.
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We can now establish the following variant of Theorem 3.1.3:

Lemma 6.2.2. Let f1(T ), . . . , fr(T ) be nonassociate irreducible polynomials over

Fq with each fi of degree di > 1 and the degree of f1 · · · fr bounded by B. Suppose

that l is an odd prime dividing qdi − 1 for each i = 1, 2, . . . , r. If

q > (2r−1B − 2r + 1)2,

then there is a β ∈ Fq for which all the polynomials f1(T lk −β), . . . , fr(T lk −β) are

irreducible for each k = 0, 1, 2, 3, . . . .

Proof. Fix roots α1, . . . , αr of f1(T ), . . . , fr(T ), respectively. By Lemma 3.2.1 it

suffices to produce an element β ∈ Fq with the property that αi +β is an lth power

nonresidue in Fq(αi) for every i = 1, 2, . . . , r. Since l divides qdi−1 for each i, there

are multiplicative characters χi of order l on each of the fields Fq(αi). If for every

choice of β, there is an i ∈ {1, 2, . . . , r} for which αi + β is an lth power in Fq(αi),

then the sum

∑

β∈Fq

(1− χ1(α1 + β))(1− χ2(α2 + β)) · · · (1− χr(αr + β))

vanishes. (Note that it is impossible for any of the arguments αi + β inside a

character to vanish, since each αi belongs to a nontrivial extension of Fq.) But by

Lemma 3.4.2, the absolute value of this sum is bounded below by

q −
∑

I⊂{1,2,...,r}
I6=∅

(
−1 +

∑

i∈I
deg fi(T )

)
√

q =

q + (2r − 1)
√

q −
r∑

i=1

di




∑

I⊂{1,2,...,r}
i∈I

1



√

q ≥ q + (2r − 1)
√

q − 2r−1B
√

q,
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which is positive for q as in the hypothesis of the lemma.

Proof of Theorem 6.1.1. Suppose that f1, . . . , fr are irreducible polynomials over

Fq, where Fq is a finite field with characteristic p coprime to 2 gcd(a,m). Let d

be the smallest integer exceeding max{2, ϕ(m)} relatively prime to p and satisfying

d ≡ a (mod m). Since p is prime to gcd(a,m), it follows that p divides at most one

of any two consecutive terms from the progression a mod m, so that d ≤ 3m. In

particular d is bounded solely in terms of m. So by Corollary 5.1.3, as long as q is

sufficiently large (depending just on B and m), there is a polynomial h of degree

d for which all of f1(h(T )), . . . , fr(h(T )) are irreducible over Fq. Using Corollary

6.2.1, choose a prime l dividing qd − 1 which is relatively prime to m. Then l also

divides qdeg fi(h(T )) − 1 for each i = 1, 2, . . . , r. According to Lemma 6.2.2 (applied

to the polynomials f1(h(T )), · · · , fr(h(T ))), if

q > (2r−1dB − 2r + 1)2,

then there is some β ∈ Fq with the property that the polynomials fi(h(T lk − β))

are all irreducible over Fq for k = 0, 1, 2, 3, . . . . Since

deg h(T lk − β) = dlk ≡ alk ≡ a (mod m)

whenever k is a multiple of ϕ(m), the proof of Theorem 6.1.1 is complete.

6.3 Application to a question of Hall

We prove Theorem 6.1.2 in two parts:
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q f q3 − 1 order of f order of f + 1 l

3 T 3 − T + 2 2 · 13 13 26 13
9 T 3 − T + 2 23 · 7 · 13 13 26 13
5 T 3 + 3T + 2 22 · 31 22 · 31 22 · 31 31

17 T 3 + T + 8 24 · 307 22 · 307 22 · 307 307
257 T 3 + T + 15 28 · 61 · 1087 25 · 61 · 1087 22 · 61 · 1087 61

65537 T 3 + T + 18 216 · 37 · P9 215 · 37 · P9 215 · 37 · P9 37

Table 6.1: Monic twin prime pairs of odd degree over small finite fields Fq, where
q = 1 + 2N . We write P9 for the 9-digit prime 116085511.

6.3.1 Part I: Infinitely many twin prime pairs of odd degree

In the case when q−1 has an odd prime divisor, the monic twin prime pairs f, f +1

constructed in the proof of Theorem 3.1.2 already have odd degree, so we may

suppose that q − 1 is a power of 2. As noted in Chapter 3, if q is an odd prime

power for which q − 1 is a power of 2, then either q = 9 or q is a Fermat prime.

Theorem 6.1.1 guarantees the existence of a monic twin prime pair f, f + 1 of

odd degree over all sufficiently large finite fields Fq with q odd. The next lemma is

an explicit version of a slightly weaker result:

Lemma 6.3.1. Suppose q > 200000 is a prime power coprime to 6. Then there are

infinitely many monic twin prime pairs f, f+1 over Fq for which deg f = deg (f + 1)

is odd.

It is worth remarking that no Fermat primes > 200000 are known, and it is

plausible that none exist.

Proof. By Corollary 5.1.3, if q is large enough and prime to 6, then we may choose

a monic prime pair f, f + 1 of degree 3 over Fq. In fact, referring to the estimate

(5.27) (with B = 2 and n = 3), we see that such pairs exist as long as

q

9
− 2

9
(gq1/2 + g + 62)− 2 · 2 > 0, (6.6)
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where g is the genus of an appropriate function field. By Corollary 5.5.4, we have

g ≤ 2 · 3 · 3!2 = 216;

and so (6.6) holds as soon as

1
9
q − 48

√
q − 60 > 0,

which is valid for q ≥ 187703, so certainly for q > 200000. To complete the proof,

choose an odd prime divisor l of q3 − 1 (e.g., any prime divisor of q2 + q + 1) and

apply Lemma 6.2.2 to the pair f, f + 1 (taking B = 6 and r = 2). We obtain that

for q > 81, there is some β ∈ Fq for which both f(T lk − β) and f(T lk − β) + 1 are

simultaneously irreducible for k = 0, 1, 2, 3, . . . . This is an infinite family of monic

twin prime pairs of odd degree.

To finish off this half of Theorem 6.1.2, it remains to consider the cases when

q = 9 or when q is a Fermat prime less than 200000. These small finite fields are

treated by hand. For each such q, Table 6.1 exhibits the first member f of a monic

twin prime pair f, f + 1 of odd degree together with all the information necessary

to verify that the Serret-Dickson Lemma (Lemma 3.2.1) can be applied to both f

and f + 1 with the specified odd prime l.

6.3.2 Part II: Infinitely many twin prime pairs of even degree

We first argue that for q ≥ 4, there is always a monic, quadratic twin prime pair

f, f +1 over Fq. In the proof of this result it is convenient to consider odd and even

q separately.

Lemma 6.3.2. Let Fq be a finite field of odd characteristic with q ≥ 5. Then there
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Table 6.2: Monic twin prime pairs of even degree over some small finite fields.
q f qd − 1 order of f order of f + 1 l

3 T 6 + T 5 + 2T 3 + 2T 2 + 1 23 · 7 · 13 22 · 7 · 13 23 · 7 · 13 7
4 T 2 + T + α 3 · 5 3 · 5 3 · 5 3
5 T 2 + T + 1 23 · 3 3 23 · 3 3
7 T 2 + T + 3 24 · 3 24 · 3 23 · 3 3
8 T 2 + (β + 1)T + β2 + β 32 · 7 32 · 7 32 · 7 7
9 T 2 + (γ + 1)T + γ + 1 24 · 5 24 · 5 24 · 5 5

11 T 2 + 3 23 · 3 · 5 22 · 5 22 · 5 5
13 T 2 + 6 23 · 3 · 7 23 · 3 23 · 3 3
16 T 2 + (δ2 + δ)T + δ 3 · 5 · 17 3 · 5 · 17 3 · 5 · 17 3
17 T 2 + T + 2 25 · 32 24 · 32 25 · 32 3
19 T 2 + 4 23 · 32 · 5 22 · 32 22 · 32 3
23 T 2 + 2 24 · 3 · 11 22 · 11 22 · 11 11
25 T 2 + 4εT + 4ε + 2 24 · 3 · 13 3 · 13 22 · 3 · 13 3
Here α2 + α + 1 = 0, β3 + β + 1 = 0, γ2 + 1 = 0, δ4 + δ + 1 = 0, and ε2 + 2 = 0.

is a pair f, f + 1 of monic irreducible quadratic polynomials over Fq.

Lemma 6.3.2 could be established using Corollary 5.1.3, in analogy with the

proof of Lemma 6.3.1 in Part I. However, the direct approach below leads to better

bounds.

Proof. It suffices to show that there is some pair of consecutive quadratic non-

residues in Fq. Letting χ denote the quadratic character on Fq, the number

of such pairs is 1
4 of the sum

∑
(1 − χ(α))(1 − χ(α + 1)), the sum being taken

over α 6= 0,−1 from Fq. Now a straightforward calculation using the evaluation
∑

α∈Fq
χ(α)χ(α + 1) = −1 (cf. [10, Theorem 2.1.2]) results in a count of

1
4

(q − 3 + χ(1) + χ(−1)) =
1
4

(q − 2 + χ(−1))

such pairs, which is positive for q > 3.

Lemma 6.3.3. Let Fq be a finite field of characteristic 2 with q ≥ 4. Then there

is a pair f, f + 1 of monic quadratic polynomials both of which are irreducible over
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Fq.

Proof. For any fixed γ ∈ Fq, the map ψ : Fq → Fq defined by ψ(β) := β2 +γβ is an

endomorphism of the underlying additive group of Fq. We choose γ so that γ 6= 0

and the image of ψ contains 1 (and so contains all of F2). This is possible as soon

as Fq is a nontrivial extension of F2; merely choose any β ∈ Fq \ F2 and define γ

so that β2 + γβ = 1.

We claim that with this choice of γ, there is a pair f, f +1 of irreducibles where

f has the form T 2 +γT + δ. A polynomial of this form is irreducible if and only if δ

is not in the image of ψ. But by our choice of γ, the element δ is missing from the

image of ψ if and only if the same is true for δ + 1. So the lemma follows provided

that ψ is not onto. Since ψ is a map from Fq to itself, if ψ were onto it would also

be injective. But ψ(γ) = ψ(0) = 0.

Lemma 6.3.4. Let Fq be a finite field with q > 25. Then there are infinitely many

monic twin prime pairs f, f + 1 of even degree over Fq.

Proof. Lemmas 6.3.2 and 6.3.3 show that for q ≥ 4 there is a monic twin prime pair

f, f +1 of degree 2 over Fq. Since q > 3, it is impossible for both q− 1 and q +1 to

be powers of 2, and so there must be an odd prime divisor l of q2− 1. Lemma 6.2.2

(with r = 2 and B = 4) implies that for q > 25, there is some β ∈ Fq for which both

f(T lk − β) and f(T lk − β) + 1 are simultaneously irreducible for k = 0, 1, 2, 3, . . . .

Since these twin prime pairs have even degree, the lemma follows.

To complete the proof of Theorem 6.1.2 it suffices to consider those finite fields

with at most 25 elements, and these are treated in Table 6.2.
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6.4 Brun’s constant: Proof of Theorem 6.1.3

For α ∈ F×q , let π2(q; n, α) denote the number of monic primes P of degree n over

Fq for which P + α is also prime.

Lemma 6.4.1. Let n be a positive integer. If α ∈ F×q and (q, 2n) = 1, then

π2(q; n, α) =
qn

n2
+ O(qn−1/2nn!2). (6.7)

Moreover,
∑

α∈F×q

π2(q;n, α) =
qn+1

n2

(
1 + O(n2/q)

)
. (6.8)

Proof. Estimate (6.7) follows immediately from Corollary 5.1.3 if we take f1(T ) = T

and f2(T ) = T + α. To prove (6.8), note that the left hand side of (6.8) can be

viewed as counting the number of not necessarily monic prime pairs f, f + 1 of

degree n over Fq. (In fact, the term corresponding to α here counts the number of

such pairs with leading coefficient α−1.) In this guise the estimate (6.8) is contained

in Theorem 2.4.2.

Proof of Theorem 6.1.3. We have

Bq,α =
∞∑

n=1

1
qn

π2(q;n, α). (6.9)

We split the sum (6.9) at a number A with 0 < A < p/2. Then (q, 2n) = 1 for every

n ≤ A, so that (6.7) yields

Bq,α =
∑

n≤A

1
n2

+ O


q−1/2

∑

n≤A

nn!2


 + O

(∑

n>A

q−nπ2(q; n, α)

)
.

The first O-term is ¿ q−1/2A2A. To estimate the latter O-term, we use the bound
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(valid uniformly over all q, n, and α)

π2(q; n, α) ¿ qn

n2
, (6.10)

which is a special case of the estimate (2.8) from Chapter 2. This shows that the

second O-term is ¿ ∑
n>A n−2 ¿ 1/A. Hence

Bq,α =
π2

6
+ O(1/A + q−1/2A2A),

say. Now take A = min{1
3p, 1

6 log q/ log log q} to obtain (6.1).

Turning to (6.2), we observe that for any A > 0,

1
q − 1

∑

α∈F×q

Bq,α =
1

q − 1

∑

n≤A

1
qn

∑

α∈F×q

π2(q; n, α) + O


 1

q − 1

∑

n>A

∑

α∈F×q

1
n2


 .

(Note that we have once again applied (6.10).) The error term here is O(1/A).

Using (6.8) to estimate the inner sum, we obtain a main term of

q

q − 1

∑

n≤A

1
n2

(
1 + O

(
n2

q

))
=

q

q − 1

∑

n≤A

1
n2

+ O

(
A

q

)

=
π2

6
+ O(1/A + A/q).

Taking A = q1/2 yields (6.2).
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6.5 The distribution of prime gaps

6.5.1 Gallagher’s theorem for polynomials over finite prime fields

For D = (D1, . . . , Dr) an r-tuple of distinct polynomials over Fq, define

SD =
∏

P

|P |r−1(|P | − ρD(P ))
(|P | − 1)r

,

where ρD(P ) is the number of residue classes modulo P occupied by D1, . . . , Dr.

Let πD(n; q) be the number of monic polynomials A of degree n for which all of

A+D1, . . . , A+Dr are irreducible. Then the usual heuristics offered in favor of the

Hardy-Littlewood conjectures suggest that

πD(n; q) = (SD + o(1))
qn

nr
(n →∞). (6.11)

In fact these heuristics suggest that this relation should hold not merely when D is

fixed and n → ∞, but also whenever qn → ∞, uniformly in D, provided only that

every Di has degree less than n. This suggests the plausibility of the hypothesis in

the following theorem, which is an analogue of Gallagher’s principal result in [52]:

Theorem 6.5.1. Fix λ > 0, and suppose that h and n tend to infinity with h ∼ λn.

Then (6.4) holds uniformly in p, under the following hypothesis:

(A) For each fixed r, (6.11) holds as n tends to infinity, uniformly in p, and

uniformly for D1, . . . , Dr ∈ I(p; h) with the Di distinct and S(D1,...,Dr) 6= 0.

As in Gallagher’s paper, the theorem follows from a suitable estimate for the

average value of SD.
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Lemma 6.5.2. Fix r ≥ 1. Under hypothesis (A) of Theorem 6.5.1, we have

∑

D1,...,Dr∈I(p;h)
distinct

SD ∼ hr (h →∞),

uniformly in p.

Suppose now that this lemma is proved. Fix k ≥ 0, and let Mk(λ) be the

kth moment of the Poisson distribution with parameter λ. Then as n → ∞, the

argument of [52, pp. 5-6] shows that

1
pn

∑

A(T )∈Fp[T ]
A(T ) monic, degree n

|{P ∈ A + I(p; h) : P prime}|k → Mk(λ),

where the convergence is uniform in p. Theorem 6.5.1 then follows by an application

of the method of moments.

Thus to prove Theorem 6.5.1 it remains only to prove Lemma 6.5.2.

Lemma 6.5.3. Let M be a nonzero polynomial over Fp. If |M | ≤ h, then the

number of elements of I(p; h) which lie in a given residue class modulo M is h/|M |+
O(1), where the implied constant here is absolute.

Proof. Write h in base p, so that h = h0 + h1p + · · · + hkp
k with each 0 ≤ hi < p

and hk ≥ 1. Represent the given residue class as A mod M , where deg A < deg M .

Then |M | ≤ h implies that j := deg M ≤ k. Assume (with no loss in generality)

that M is monic, and write

M = T j + mj−1T
j−1 + · · ·+ m1T + m0.

We wish to count the number of B ∈ Fp[T ] for which A + MB belongs to I(p; h).
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Any such B can be written in the form

B = bk−jT
k−j + bk−j−1T

k−j−1 + · · ·+ b0,

and then (writing A =
∑

aiT
i),

A + MB = bk−jT
k + (bk−jmj−1 + bk−j−1 + ak−1)T k−1 + · · ·+ a0 + b0m0.

Looking at the leading coefficient of A+MB, we see that A+MB belongs to I(p; h)

whenever bk−j is any of 0, 1, . . . , hk − 1 (regardless of the values of the other bi).

There are hkp
k−j such choices of B. All other choices of B with A + MB ∈ I(p; h)

have bk−j = hk. For these B, the condition A + MB ∈ I(p; h) restricts the next-to-

leading coefficient of B: if

bk−jmj−1 + bk−j−1 + ak−1 = 0, 1, 2, . . . , or hk−1 − 1, (6.12)

then automatically A + MB belongs to I(p; h). This gives rise to an additional

hk−1p
k−j−1 permissible values of B. Any B not counted so far for which A + MB

belongs to I(p; h) has both bk−j = hk and the left hand side of (6.12) equal to hk−1.

Continuing this process, we find

N := hkp
k−j + hk−1p

k−j−1 + · · ·+ hj = bh/|M |c

values of B which guarantee that A + MB belongs to I(p; h). Moreover, there is at

most one other value of B for which A + MB belongs to I(p; h), namely that B for

which

|A + MB − (hkT
k + hk−1T

k−1 + · · ·+ hjT
j)| < pj .
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If A + MB lies outside I(p; h) for this final value of B, then the quantity to be

enumerated is N , otherwise it is N +1. In either case the stated estimate holds.

Proof of Lemma 6.5.2 (sketch). Define ∆ :=
∏

1≤i<j≤r(Di − Dj). Write the P -th

factor of SD in the form

1 +
|P |r − ρD(P )|P |r−1 − (|P | − 1)r

(|P | − 1)r
= 1 + a(P, ρD(P )).

For monic, squarefree Q define aD(Q) :=
∏

P |Q a(P, ρD(P )). Then (in analogy with

[52, eq. (7)]) we find that

aD(P ) ¿





(|P | − 1)−2 when ρD(P ) = r,

(|P | − 1)−1 when ρD(P ) < r,

these two cases occurring respectively when P does not or does divide ∆. Here the

implied constant, say C, depends only on r. It follows from these estimates that we

have an absolutely convergent series expansion

SD =
∑

Q

aD(Q).

For the tail of this expansion, we have

∑

|Q|>x

|aD(Q)| ≤
∑

|Q|>x

µ2(Q)Cω(Q)

ϕ(Q)2
ϕ((Q,∆))

=
∑

A|∆
A monic

µ2(A)Cω(A)

ϕ(A)

∑

|B|>x/|A|
(B,∆)=1
B monic

µ2(B)Cω(B)

ϕ(B)2
, (6.13)

where in the last line we have written Q = AB for monic polynomials A and B
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satisfying A | ∆ and (B, ∆) = 1. In [52], the analogous double sum is

¿r,ε x−1(xh)ε; (6.14)

we proceed to establish that this estimate is also valid for (6.13). Observe that

∑

|B|≤x
B monic

µ2(B)Cω(B)

ϕ(B)2
|B| ≤

∏

|P |≤x

(
1 +

C|P |
(|P | − 1)2

)

≤
∏

|P |≤x

(
1 +

4C

|P |
)
≤ exp


4C

∑

|P |≤x

1
|P |


 .

The number of prime polynomials P of degree n over Fp is bounded above by pn/n,

and this implies that

exp


4C

∑

|P |≤x

1
|P |


 ≤ exp


4C

∑

1≤n≤ log x
log p

1
n


 ¿ (log x)4C .

Partial summation now shows that the inner sum in (6.13) is ¿ |A|x−1 log4C x, so

that (6.13) is

¿ (
x−1 log4C x

) ∑

A|∆
µ2(A)Cω(A) |A|

ϕ(A)
≤ (

x−1 log4C x
) ∏

P |∆
(1 + 2C)

≤ (x−1 log4C x)|∆|ε
∏

P∈Fp[T ]

|P |<(1+2C)1/ε

(1 + 2C)|P |−ε ¿ε (x−1 log4C x)hε(r
2), (6.15)

for any ε > 0. (Note that the last product over P is finite for each fixed p and

empty for p > (1 + 2C)1/ε, and so is ¿ε 1.) To obtain (6.14), we replace ε in (6.15)

with εr−2 (say). From this point the proof proceeds exactly as in [52], save that the

“lattice point argument” of [52, p. 7] now requires an appeal to Lemma 6.5.3.
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Remark. The restriction to prime fields Fp was introduced to ensure a canonical

embedding from [0, p−1] into Fp. This restriction is in some sense merely cosmetic.

More precisely, suppose that for each q we have fixed a bijection a 7→ a between

{0, 1, . . . , q − 1} and Fq. Define I(q;h) as in (6.3) with p replaced by q. Then the

proofs of this section show that Theorem 6.5.1 remains valid with p replaced by q

throughout.

6.5.2 Proof of Theorem 6.1.5

Proof. We may assume that p > max{h, n}, for otherwise the theorem is trivial.

Thus I(p; h) is a subset of the constant polynomials over Fp, and Corollary 5.1.3

can be employed to count the occurrence of prime r-tuples A+D1, . . . , A+Dr with

Di ∈ I(p;h).

Fix one of the
(
h
k

)
subsets S ⊂ I(p; h) with k elements. We first count the

number of monic, degree-n polynomials A for which A + s is prime for all s ∈ S

and reducible for all s ∈ I(p;h) \ S. By the principle of inclusion-exclusion, this is

given by

∑

T⊇S
T⊆I(p;h)

(−1)|T |−|S|#{A : every element of A + T is irreducible}.

According to Corollary 5.1.3,

#{A : every element of A + T is irreducible} =
pn

n|T |
+ O((hn)n!hpn−1/2).

We insert this estimate above, and sum over the
(
h
k

)
k-element subsets S of
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I(p;h) to find that

Pk(p;h, n) =
(

h

k

)(
pn

nk
−

(
h− k

1

)
pn

nk+1
+ · · ·+ (−1)h−k pn

nh

)

+ O

((
h

k

)
2h−k(hn)n!hpn−1/2

)
.

The error term here is

¿ 22h(nh)nnhpn−1/2 ¿ exp(Cn2 log n)pn−1/2.

for a constant C depending on I, and the main term is

(
h

k

)
pn

nk

(
1− 1

n

)h−k

.

The theorem follows upon inserting into this expression for the main term the

estimates

(
h

k

)
=

hk

k!

(
1− 1

h

)(
1− 2

h

)
· · ·

(
1− k − 1

h

)

=
hk

k!

(
1 + O

(
k2

h

))
=

hk

k!

(
1 + OI

(
k2

n

))
,

and

(
1− 1

n

)h−k

=
(

1 + OI

(
k

n

))(
1− 1

n

)h

= exp(−h/n)
(

1 + OI

(
k

n

))(
1 + OI

(
1
n

))

= exp(−h/n)
(

1 + OI

(
k + 1

n

))
,

once we recall that we are writing λ for h/n.
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6.6 Smooth values of polynomials: Proof of Theorem

6.1.7

For a permutation σ on a finite set, let L(σ) denote the length of the longest cycle

in the decomposition of σ into disjoint cycles. The following result is extracted from

the thesis of X. Gourdon (cf. [54, Chapitre VII, Théorème 1]).

Lemma 6.6.1 (Gourdon). Let n be a positive integer and suppose m > 0. Then

the proportion of permutations σ on n letters with L(σ) ≤ m is ρ(n/m) + O(1/m).

Thus, by the results mentioned in the introduction just before Conjecture 6.1.6,

the proportion of permutations on n letters with largest cycle length ≤ n/u is close

to the proportion of degree n polynomials over a finite field with largest prime factor

of degree ≤ n/u. (The idea that the decomposition of random permutations should

mimic the decomposition of random arithmetic structures seems to appear first in

Knuth and Trabb Pardo’s study [76] of the rth largest prime factor of a random

integer.)

Remarks.

(i) In the original theorem of Gourdon, m is restricted to integral values in the

interval [2, n]. However, the restriction to integral values is inessential; for any

real m with 2 ≤ m ≤ n,

ρ(n/m)− ρ(n/bmc) =
∫ n/bmc

n/m

ρ(u− 1)
u

du ¿ log
m

bmc ¿
1
m

.

Moreover, for m < 2 or m > n, Lemma 6.6.1 is trivial.

(ii) By a simple inductive argument, Omar et al. obtain Lemma 6.6.1 under

the additional hypothesis that m ≥ εn for an arbitrary fixed ε > 0 (see [90,
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Theorem 1]). This result gives Theorem 6.1.7 with its first error term term

replaced with the less uniform bound OB,U (uqn/n). However, it suffices to

establish Theorem 6.1.8(i) as stated.

Proof of Theorem 6.1.7. Let P1, . . . , PK be the distinct monic irreducible factors of

F , numbered so that deg Pi = di. Then F (h(T )) has all its prime factors of degree

≤ n/u precisely when the same is true for each of the polynomials Pi(h(T )). For

1 ≤ i ≤ K, let λi run over the cycle types of permutations on n letters corresponding

to permutations σ with L(σ) ≤ n
diu

. By Theorem 5.1.2, we have

Ψ(F ; n, n/u) =
∑

λ1,...,λK

qn
K∏

i=1

T (λi) + OB


 ∑

λ1,...,λK

nn!Bqn−1/2


 .

Since the number of possibilities for each λi is (crudely) bounded above by 2n, the

error here is

¿B 2nKnn!Bqn−1/2 ≤ 22nBn!Bqn−1/2 ¿B n!2Bqn−1/2.

Using Lemma 6.6.1, we see that the main term here is

qn
K∏

i=1


∑

λi

T (λi)


 = qn

K∏

i=1

(ρ(diu) + O(diu/n))

= qnρ(d1u) · · · ρ(dKu) + OB(uqn/n).

Combining these two estimates completes the proof of Theorem 6.1.7.
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6.7 Smoothness of neighboring polynomials: Proof of

Theorem 6.1.8

Proof of Theorem 6.1.8(i). We may assume n ≥ 2, since the estimate is trivial for

n = 1 (or for any absolutely bounded n). By Lemma 6.6.1, the proportion of

permutations σ on n letters for which

αn ≤ L(σ) ≤ βn (6.16)

is given by

ρ(β−1)− ρ(α−1) + O(κ/n),

where κ = κ([α, β]), provided we adopt the convention that ρ(0−1) = 0. (Recall

that if I = [α, β], then κ(I) = 1/α if α 6= 0 and κ(I) = 1/β otherwise.) For

each s ∈ S, let λs run over the cycle types of permutations satisfying (6.16) with

[α, β] = [αs, βs]. Proceeding as in the proof of Theorem 6.1.7, we find that the

number of polynomials A(T ) satisfying the conclusion of part (i) is

qn
∏

s∈S


∑

λs

T (λs)


 + O


 ∑

λ1,...,λk

(nk)n!kqn−1/2


 .

The error term here is

¿ 2nk(nk)n!kqn−1/2 ¿ n!2kqn−1/2.

Moreover, since κ([αs, βs]) ≤ C for each s, the main term here is

qn
∏

s∈S

(
ρ(β−1

s )− ρ(α−1
s ) + O(C/n)

)
= qn

∏

s∈S

(ρ(β−1
s )− ρ(α−1

s )) + Ok,C(qn/n).
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Combining these estimates finishes the proof.

Proof of Theorem 6.1.8(ii). Let n be the least positive integer which is prime to q

and exceeds 2ε−1; then n = Oε(1). For each s ∈ S, choose a b1
2(αs + βs)nc-cycle σs

from the permutations on {1, 2, . . . , n}. Since n ≥ 2ε−1 ≥ 2(βs − αs)−1, we have

αsn ≤ L(σs) ≤ βsn

for each s ∈ S. Let λs be the cycle type of σs. By Theorem 5.1.2 (applied to the

k linear polynomials fs(T ) = T + s), if q is chosen large enough (depending on k

and ε), then we can find a monic, degree n polynomial A(T ) for which A(T )+ s has

cycle type λs for all s ∈ S. For this choice of A(T ), we have

αsn ≤ L(A(T ) + s) ≤ βsn

for all s ∈ S. We have thus constructed a polynomial satisfying (6.5).

If q is large, we can use this polynomial A(T ) to construct an infinite sequence

of solutions to (6.5): For each s ∈ S, let Ps(T ) be a monic prime of maximal

degree dividing A(T ) + s. Then the degree of
∏

s∈S Ps(T ) is Ok,ε(1), and so by

Theorem 3.1.3, if q is large enough (again depending only on k and ε) one can find

a prime l and a β ∈ Fq for which all the polynomials Ps(T lk − β) are irreducible

for every k ≥ 0. It is now easy to check that all the polynomials A(T lk − β), with

k = 0, 1, 2, 3, . . . , have the desired property.
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Chapter 7

Remarks on the polynomial

Goldbach problem

7.1 Introduction

Up to this point we have focused on problems of Hypothesis H type, the quintessen-

tial example being the twin prime conjecture. There is another class of problems

which Hardy and Littlewood [59, p. 34] call ‘conjugate’ to these, the most famous

of which is Goldbach’s conjecture that every even n > 2 can be expressed as a sum

of two primes. This conjecture remains open, but there has been a great deal of ex-

citing progress, much of which finds its genesis in the already-cited paper of Hardy

and Littlewood. There the circle method is used to derive, under the Riemann

Hypothesis for Dirichlet L-functions, an asymptotic formula for the number of rep-

resentations of an odd integer as a sum of three primes. (This formula was later

proved unconditionally by Vinogradov [124].) The circle method does not appear to

resolve the usual binary Goldbach problem (even assuming Riemann hypotheses),

but it does provide a heuristic derivation of a plausible asymptotic formula for the
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number of representations of an even integer as a sum of two primes.

In this chapter we focus our energies on a polynomial analogue of this latter

formula. Specifically, we examine the following conjecture: Let α, β be nonzero

elements of Fq, and let γ := α + β. Let n be a positive integer. If γ 6= 0, we

suppose that A is a polynomial of degree n over Fq with leading coefficient γ;

otherwise we suppose A is a nonzero polynomial of degree < n over Fq. We let

R(A) = Rα,β,n,Fq(A) denote the number of pairs of degree-n monic primes P1, P2

over Fq for which αP1 + βP2 = A.

Conjecture 7.1.1. Let A be a polynomial of degree n over Fq, assumed divisible

by T (T + 1) in the case when q = 2. Then (with notation as above)

R(A) = (1 + o(1))S(A)
qn

n2
as qn →∞,

where

S(A) :=
∏

P |A

(
1 +

1
|P | − 1

) ∏

P -A

(
1− 1

(|P | − 1)2

)
.

Remarks. (i) It will be useful to observe that for A as above, S(A) is bounded

below by an absolute positive constant. To see this, notice that for every field

Fq and every A as above, we have

S(A) ≥
∏

|P |>2

(
1− 1

(|P | − 1)2

)
.

We show that the product here is bounded below by a positive constant,

independent of q. Let us first check that the product is positive. For this it is

enough to show that
∑

P (|P | − 1)−2 is convergent. In fact,

∑

P

1
(|P | − 1)2

≤
∑

P

4
|P |2 ≤

∑

d≥1

4
q2d

qd

d
< 4

∑

d≥1

1
qd

=
4

q − 1
. (7.1)
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This estimate shows moreover that for q ≥ 9,

∏

|P |>2

(
1− 1

(|P | − 1)2

)
≥ 1−

∑

P

1
(|P | − 1)2

≥ 1− 4
q − 1

≥ 1
2
. (7.2)

The claim follows.

(ii) When γ = 0, the quantity R(A) counts the number of twin prime pairs

{P, P + A} where P has degree n and leading coefficient α. In Chapter 2,

we considered a polynomial analogue of the twin prime conjecture; our pre-

diction (2.6) there follows from Conjecture 7.1.1 upon summing over α.

Conjecture 7.1.1 appears difficult, but Hayes has successfully attacked the cor-

responding ternary problem [64]:

Polynomial three primes theorem. Let A be a polynomial of degree n over Fq.

Suppose α, β, γ are nonzero elements of Fq for which α+β+γ agrees with the leading

coefficient of A. If q = 2, suppose also that gcd(A, T (T + 1)) = 1. The number of

ordered triples of monic irreducible polynomials P1, P2, P3 over Fq of degree n with

αP1 + βP2 + γP3 = A

is

S(3)(A)
q2n

n2
+ O

(
q(7n+1)/4

)
.

Here

S(3)(A) :=
∏

P |A

(
1− 1

(|P | − 1)2

) ∏

P -A

(
1 +

1
(|P | − 1)3

)

and the implied constant is absolute. Moreover, for A as above, S(3)(A) is bounded

below by an absolute positive constant.

This paper of Hayes is of additional interest in that it marks the first time the
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circle method was developed and applied in the polynomial setting.

Our first result in this chapter is an estimate for the ‘exceptional set’ in Con-

jecture 7.1.1, i.e., for the number of A which do not admit a representation in the

desired form. In the rational setting, such a result goes back again to Hardy and

Littlewood. In [60], they show (again assuming the Riemann Hypothesis for Dirich-

let L-functions) that the number of even n ≤ x not representable as a sum of two

primes is is O(x1/2+ε) for each ε > 0. We prove an unconditional polynomial ana-

logue of this result by using Hayes’s version of the circle method; the details are

based on the paper of Hardy and Littlewood but with some nods to the monograph

of Vaughan [122, Chapter 3]. (In the rational setting, the best unconditional result

is due to Pintz, who shows the Hardy-Littlewood result holds with ε = 1/6; see the

announcement and discussion in [93].)

To simplify the statement of our result, we introduce some psychologically useful

terminology. Call a polynomial A ∈ Fq[T ] even if A is divisible by every prime

of absolute value 2 over Fq and odd if A is divisible by none of the primes of

absolute value 2. Then Hayes’s three primes theorem is about ‘odd’ polynomials

and our Goldbach analogue (Conjecture 7.1.1) is about even polynomials. However,

it is important to keep in mind that not everything is completely analogous to the

rational case; e.g., if q 6= 2, all polynomials A over Fq are both even and odd.

Theorem 7.1.2. Let α, β be nonzero elements of Fq, and let γ := α + β. Suppose

first that γ 6= 0. Then the number of even polynomials of degree n and leading

coefficient γ that cannot be written in the form αP1 + βP2 for prime polynomials

P1, P2 is

¿ q(n+1)/2n3.

If γ = 0, then the same bound holds for the number of even polynomials of degree

< n that cannot be represented in this form. Here the implied constant is absolute.
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Actually we prove a stronger result, which shows that most polynomials have

approximately the correct number of representations:

Theorem 7.1.3. Let α, β be nonzero elements of Fq, and let R(A) be defined as

above. Then
∑′

A

∣∣∣∣R(A)−S(A)
qn

n2

∣∣∣∣
2

¿ q(5n+1)/2n−1. (7.3)

Here the ′ indicates that the sum is taken over degree n polynomials with leading

coefficient γ in the case γ 6= 0, but over all nonzero polynomials of degree < n when

γ = 0.

Remark. Let us check that Theorem 7.1.3 implies Theorem 7.1.2. Suppose A is an

even polynomial of degree n and leading coefficient γ for which R(A) = 0; then A

contributes S(A)2q2n/n4 À q2n/n4 to the sum (7.3), using that S(A) À 1. So the

number of such A must be

¿ q(5n+1)/2n−1

q2n/n4
= q(n+1)/2n3,

which is the assertion of Theorem 7.1.2.

Our second result shows that Conjecture 7.1.1 holds in a certain range of q and

n, and should be viewed as analogous to Corollary 5.1.3.

Theorem 7.1.4. Let α, β be nonzero elements of Fq. If α + β 6= 0, let A be a

polynomial of degree n over Fq with leading coefficient α + β, otherwise let A be a

nonzero polynomial of degree < n. Then

R(A) =
qn

n2
+ O((n− 1)!n!qn−1/2),

where the implied constant is absolute.
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Remark. Thus for pairs q, n with gcd(q, 2n) = 1 and q/(n!4n2) tending to infinity,

we have R(A) ∼ qn/n2. It is easy to see that in this range of q and n, one has

S(A) ∼ 1, so that Theorem 7.1.4 agrees with Conjecture 7.1.1. Indeed, whenever

q > 2, we have (cf. (7.2))

1− 4
q − 1

< S(A) <
∏

P |A

(
1 +

1
|P | − 1

)
≤ exp


∑

P |A

1
|P | − 1


 ≤ exp

(
2n

q

)
,

and both sides of this inequality tend to 1 once q/n tends to infinity.

Note that Theorem 7.1.4 implies that the exceptional set considered in Theorem

7.1.2 is empty when q > Cn!4n2, for an appropriate choice of constant C.

7.2 The exceptional set in the polynomial Goldbach

problem

Notation and Conventions

The proof of Theorems 7.1.2 and 7.1.3 go through the circle method as developed

by Hayes [64]. We remind the reader of the basic setup.

We write Fq(T )∞ for the completion of Fq(T ) at the prime associated to the

(1/T )-adic valuation. It is usual to identify this with the field of finite-tailed Laurent

series in 1/T :

Fq(T )∞ = Fq((1/T )) =

{
n∑

i=−∞
aiT

i : ai ∈ Fq, n ∈ Z

}
.

We let | · | denote the induced absolute value on Fq(T )∞, so that (with the above

identification) ∣∣∣∣∣
n∑

i=−∞
aiT

i

∣∣∣∣∣ = qn if an 6= 0.
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The unit interval U is defined as

U :=

{∑

i<0

aiT
i : ai ∈ Fq

}
.

Then U is a compact abelian group; we use ν to denote the Haar measure on

U , normalized so that ν(U) = 1. For notational simplicity, we always abbreviate
∫

f(θ) dν(θ) to
∫

f(θ) dθ.

For θ ∈ U and integers r ≥ 1, we define

B(θ, r) = {η ∈ U : |η − θ| < q−r}.

Then the ν-measure of B(θ, r) is q−r (see [64, Corollary 3.2]).

We write e : Fq(T )∞ → S1 for the map defined by

e

(
n∑

i=−∞
aiT

i

)
= exp

(
2πi

p
Tr(a−1)

)
,

where the trace is from Fq to its prime field Fp.

Throughout we reserve the letter P for monic irreducible elements of Fq[T ].

7.2.1 The fundamental approximation

Let n be a positive integer. To study additive problems concerning degree-n primes,

one is led to investigate the behavior of the function f : U → C defined by

f(θ) :=
∑

deg P=n

e(Pθ),
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where the sum is over monic irreducibles of degree n. We introduce the decompo-

sition

U =
⋃

deg H≤n/2
H monic

⋃

deg G<deg H
gcd(G,H)=1

IG/H ,

where IG/H =
{

η ∈ U : |η −G/H| < 1
qdeg Hqbn/2c

}
.

(Thus IG/H = B(G/H, bn/2c + deg H).) The sets IG/H , with G and H as above,

form a disjoint open cover of U ([64, Theorem 4.3]). We define U1 (the ‘major arcs’)

as the union of those intervals IG/H with deg H ≤ n/4, and we take U2 := U \ U1

(the ‘minor arcs’).

The function f can be well-approximated on each IG/H by a simpler function g.

For θ ∈ IG/H , set

g(θ) :=





µ(H)
ϕ(H)

qn

n e (Tn(θ −G/H)) if |θ −G/H| < 1/qn,

0 otherwise.

The following fundamental estimate is proved by Hayes as a consequence of Weil’s

Riemann Hypothesis (see [64, Theorem 5.3, Lemma 7.1]):

Lemma 7.2.1. For all θ ∈ U , we have |f(θ)− g(θ)| < 2q(3n+1)/4.

7.2.2 Two lemmas on arithmetic functions

A complex-valued function f , defined on the semigroup M of monic polynomials

over Fq, is said to be multiplicative if f(AB) = f(A)f(B) whenever A and B are

relatively prime.

We require basic estimates for certain sums of multiplicative functions. For our

purposes the following crude lemma suffices:
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Lemma 7.2.2. If G is a nonnegative multiplicative function, then

∑

deg A≤d
A monic

G(A) ¿ qd
∏

deg P≤d

(
1 +

|G(P )− 1|
|P | +

|G(P 2)−G(P )|
|P |2 + . . .

)
,

where the implied constant is absolute.

Proof. Define a new function g : M → C so that G(A) =
∑

D|A
D monic

g(D). Then g

is multiplicative; in fact, g(A) =
∑

D|A
D monic

µ(D)G(A/D). In particular, g(P k) =

G(P k)−G(P k−1). Hence

∑

deg A≤d
A monic

G(A) =
∑

deg A≤d
A monic

∑

D|A
D monic

g(D) ≤ (qd + qd−1 + · · ·+ qdeg D)
∑

deg D≤d
D monic

|g(D)|
|D|

≤ 2qd
∏

deg P≤d

(
1 +

|G(P )− 1|
|P | +

|G(P 2)−G(P )|
|P |2 + . . .

)
,

which gives the result.

Lemma 7.2.3. For every real i ≥ 1, we have

∑

deg A=d
A monic

1
ϕ(A)i

= O(q(1−i)d),

where the implied constant depends only on i.

Proof. Define a multiplicative function G on M by setting

G(A) :=
( |A|

ϕ(A)

)i

=
∏

P |A

(
1− 1

|P |
)−i

.
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Since |A| = qd when deg A = d, to prove the lemma it is enough to show that

∑

deg A=d
A monic

G(A) = O(qd). (7.4)

For each monic prime P we have |G(P ) − 1| ¿i 1/|P |. Moreover, since G(A)

depends only on the primes dividing A, every difference G(P k) − G(P k−1) with

k > 1 vanishes. So 7.2.2 shows that

∑

deg A=d
A monic

G(A) ¿ qd
∏

deg P≤d

(
1 + O

(
1
|P |2

))
= qd exp

(
O

(∑

P

1
|P |2

))
.

Now (7.4) follows since
∑ |P |−2 is absolutely bounded (cf. (7.1)).

7.2.3 Proof of Theorem 7.1.3

For distinct polynomials A, the functions e(Aθ) define orthonormal elements of

L2(U) (see [64, Theorem 3.5]). Thus

∫

U
f(αθ)f(βθ)e(−Aθ) dθ =

∑

P1,P2

∫

U
e((αP1 + βP2)θ)e(−Aθ) dθ = R(A).

We decompose R(A) = R1(A) + R2(A), where in R1 the integration is taken over

U1 and in R2 the integration is taken over U2. Then

∑′

A

∣∣∣∣R(A)−S(A)
qn

n2

∣∣∣∣
2

¿
∑′

A

|R2(A)|2 +
∑′

A

∣∣∣∣R1(A)−S(A)
qn

n2

∣∣∣∣
2

. (7.5)

Lemma 7.2.4. We have

∫

U
|f(θ)|2 dθ ≤ qn/n and

∫

U
|g(θ)|2 dθ ¿ qn/n.
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Proof. The first estimate is almost immediate: We have

∫

U
|f(θ)|2 dθ =

∑

P1,P2

∫

U
e(θ(P1 − P2)) dθ =

∑

P1

1 = π(q;n) ≤ qn

n
.

For the second, we observe that

∫

U
|g(θ)|2 dθ =

∑

deg H≤n/2
H monic

∑

deg G<deg H
(G,H)=1

∫

B(G/H,n)

(
µ(H)
ϕ(H)

)2 q2n

n2
dθ

≤ qn

n2

∑

deg H≤n/2
H monic

(
µ(H)
ϕ(H)

)2 ∑

deg G<deg H
(G,H)=1

1 =
qn

n2

∑

deg H≤n/2
H monic, squarefree

1
ϕ(H)

,

and that the final sum here is ¿ n by Lemma 7.2.3.

Now recall the following elementary result from linear algebra:

Lemma 7.2.5 (Bessel’s inequality, finite version). Let e1, . . . , en be a finite col-

lection of orthonormal vectors in a complex inner product space V . Then for any

x ∈ V ,
n∑

k=1

|〈x, ek〉|2 ≤ ‖x‖2.

Lemma 7.2.6. We have
∑′

A
|R2(A)|2 ¿ q(5n+1)/2n−1.

Proof. We view R2(A) as the A-th Fourier coefficient of the function f(αθ)f(βθ)1U2 ,

where 1U2 is the indicator function of the set U2. So by Bessel’s inequality, with the

functions e(Aθ) playing the role of the ei, we see that

∑′

A

|R2(A)|2 ≤
∫

U2

|f(αθ)f(βθ)|2 dθ,
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which, in turn, is bounded by

(∫

U2

|f(αθ)|4 dθ

)1/2 (∫

U2

|f(βθ)|4 dθ

)1/2

by an application of Cauchy-Schwarz. Since multiplication by an element of F×q

preserves the ν-measure of Borel subsets of U , a change of variables reveals that

both the integrals appearing above coincide with
∫
U2
|f(θ)|4 dθ. Now

∫

U2

|f(θ)|4 dθ ¿
∫

U2

|g(θ)|4 dθ +
∫

U2

|f(θ)− g(θ)|4 dθ.

By Lemmas 7.2.1 and 7.2.4, the second integral is

¿ sup |f(θ)− g(θ)|2
∫

U2

(|f(θ)|2 + |g(θ)|2) dθ

¿ q(3n+1)/2 (qn/n + qn/n) ¿ q(5n+1)/2n−1.

For the first integral we have (applying Corollary 7.2.3)

∫

U2

|g(θ)|4 dθ =
q4n

n4

∑

n/4<deg H≤n/2
H monic

(
µ(H)
ϕ(H)

)4 ∑

deg G<deg H
(G,H)=1

∫

B(G/H,n)
1 dθ

=
q3n

n4

∑

n/4<deg H≤n/2
H monic, squarefree

1
ϕ(H)3

¿ q3n

n4

∑

n/4<r≤n/2

1
q2r

¿ q5n/2

n4
.

The result follows.

For H a monic polynomial over Fq and A any element of Fq[T ], define cH(A)

by

cH(A) :=
∑

G mod H
(G,H)=1

e(AG/H).
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(Here G runs over a reduced residue system modulo H, which will usually be chosen

as the set of polynomials of degree < deg H and coprime to H.) Then cH(A) is

a polynomial analogue of the usual Ramanujan sum. It is multiplicative in H (for

fixed A) and satisfies

cH(A) =
ϕ(H)µ(H/(H, A))

ϕ(H/(H,A))
. (7.6)

(Compare [64, Theorem 6.1].)

Lemma 7.2.7. We have

R1(A) = S′(A)
qn

n2
+ E(A),

where

S′(A) :=
∑

deg H≤n/4
H monic

(
µ(H)
ϕ(H)

)2

cH(A)

and

E(A) :=
∫

U1

(f(αθ)f(βθ)− g(αθ)g(βθ))e(−Aθ) dθ.

Proof. We have

R1(A) =
∫

U1

g(αθ)g(βθ)e(−Aθ) dθ +
∫

U1

(f(αθ)f(βθ)− g(αθ)g(βθ))e(−Aθ) dθ

=
∫

U1

g(αθ)g(βθ)e(−Aθ) dθ + E(A),

and we need to show that the remaining integral is S′(A)qn/n2. Inserting the

definition of g, we can rewrite this integral as

q2n

n2

∑

deg H≤n/4
H monic

(
µ(H)
ϕ(H)

)2 ∑

deg G<deg H
(G,H)=1

∫

B(G/H,n)
e((α + β)Tn(θ −G/H))e(−Aθ) dθ
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Write e(−Aθ) = e(−AG/H)e(−A(θ − G/H)) and make the change of variables

θ 7→ θ + G/H, so that the integration takes place over B(0, n). This transforms the

expression into

q2n

n2

∑

deg H≤n/4
H monic

(
µ(H)
ϕ(H)

)2 ∑

deg G<deg H
(G,H)=1

e(−AG/H)
∫

B(0,n)
e(((α + β)Tn −A)θ) dθ.

By the choice of A, the polynomial (α + β)Tn −A has degree < n; it follows that

|((α + β)Tn −A)θ| < q−1 for each θ ∈ B(0, n).

Recalling the definition of e(·), we see that the integrand here is identically 1. Since

the measure of B(0, n) is q−n, the above simplifies to

qn

n2

∑

deg H≤n/4
H monic

(
µ(H)
ϕ(H)

)2 ∑

deg G<deg H
(G,H)=1

e(−AG/H).

But the last sum here is exactly cH(−A) = cH(A).

Lemma 7.2.8. We have
∑′

A
|S(A)−S′(A)|2 ¿ qn/2n3.

Proof. Since cH(A) is multiplicative in H, we have

∑

H monic

(
µ(H)
ϕ(H)

)2

cH(A) =
∏

P

(
1 +

1
(|P | − 1)2

cP (A)
)

= S(A).

(The factorization here is justified by the absolute convergence of the left-hand sum,
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which follows from (7.6).) Hence

∣∣S(A)−S′(A)
∣∣ =

∑

deg H>n/4
H monic

(
µ(H)
ϕ(H)

)2 ϕ(H)µ(H/(H, A))
ϕ(H/(H, A))

=
∑

D|A
D squarefree, monic

∑

deg H>n/4
H monic

D|H, (H/D,A)=1

µ(H)2

ϕ(H)
µ(H/D)
ϕ(H/D)

=
∑

D|A
D monic, squarefree

1
ϕ(D)

∑

deg E>n/4−deg D
E monic, (E,A)=1

µ(E)
ϕ(E)2

.

Appealing to Lemma 7.2.3, this last double sum is

¿ q−n/4
∑

D|A
D monic, squarefree

|D|
ϕ(D)

.

Thus

∣∣S(A)−S′(A)
∣∣2 ¿ q−n/2K(A), where K(A) :=




∑

D|A
D monic, squarefree

|D|
ϕ(D)




2

.

Applying Lemma 7.2.2,

∑′

A

K(A) ≤ qn
∏

deg P≤n

(
1 +

|K(P )− 1|
|P |

)
. (7.7)

Now
K(P )− 1

|P | =
2

|P | − 1
+

|P |
(|P | − 1)2

=
3
|P | + O

(
1
|P |2

)
,
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and so the product on the right-hand side of (7.7) is

exp


 ∑

deg P≤n

3
|P | + O(1)


 ¿ exp


∑

r≤n

3
qr

qr

r


 = exp(3 log n + O(1)) ¿ n3.

Piecing it all together,
∑′

A
|S(A)−S′(A)|2 ¿ q−n/2qnn3 = qn/2n3, as desired.

Lemma 7.2.9. We have
∑′

A
|E(A)|2 ¿ q(5n+1)/2n−1.

Proof. By another application of Bessel’s inequality,

∑′

A

|E(A)|2 ≤
∫

U1

|f(αθ)f(βθ)− g(αθ)g(βθ)|2 dθ.

Since

|f(αθ)f(βθ)− g(αθ)g(βθ)|2 ¿ |f(αθ)− g(αθ)|2|f(βθ)|2 + |f(βθ)− g(βθ)|2|g(αθ)|2,

we have by Lemmas 7.2.1 and 7.2.4,

∫

U1

|f(αθ)f(βθ)− g(αθ)g(βθ)|2 ¿ sup |f − g|2
(∫

U
|f(βθ)|2 +

∫

U
|g(αθ)|2

)

¿ q(3n+1)/2

(∫

U
|f(θ)|2 +

∫

U
|g(θ)|2

)
¿ q(3n+1)/2qnn−1 = q(5n+1)/2n−1,

as desired.

Lemma 7.2.10. We have
∑′

A
|R1(A)−S(A)qn/n2|2 ¿ q(5n+1)/2n−1.

188



Proof. Observe that

∑′

A

∣∣∣∣R1(A)−S(A)
qn

n2

∣∣∣∣
2

¿
∑′

A

∣∣∣∣R1(A)−S′(A)
qn

n2

∣∣∣∣
2

+
∑′

A

∣∣∣∣S′(A)
qn

n2
−S(A)

qn

n2

∣∣∣∣
2

=
∑′

A

|E(A)|2 +
q2n

n4

∑′

A

|S(A)−S′(A)|2.

By Lemmas 7.2.8 and 7.2.9, this is

¿ q(5n+1)/2n−1 +
q2n

n4
qn/2n3 ¿ q(5n+1)/2n−1,

as desired.

Theorem 7.1.3 follows immediately upon combining (7.5) with the results of

Lemmas 7.2.6 and 7.2.10.

7.3 Proof of Theorem 7.1.4

We apply the explicit form of the Chebotarev density theorem as explained in detail

in Chapter 4. We assume throughout that n ≥ 2, since Theorem 7.1.4 is trivial

otherwise.

Recall that gcd(q, 2n) = 1 and that

A(T ) = γTn + an−1T
n−1 + · · ·+ a1T + a0

with ai ∈ Fq. Here γ = α + β, and we might have γ = 0.

Lemma 7.3.1. For all but O(n2qn−2) choices of (h1, . . . , hn−1) ∈ Fn−1
q , all of the
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following hold with

H(T ) := αTn + hn−1T
n−1 + · · ·+ h1T. (7.8)

(i) If K1 is the splitting field of H(T )−u over Fq(u) and K2 the splitting field of

H(T )− A(T ) − u over Fq(u), then K1/Fq(u) and K2/Fq(u) are Galois with

Galois groups the full symmetric group on n letters.

(ii) Let L be the compositum of K1 and K2. Then L/Fq(u) is a geometric Galois

extension. Moreover, the map

Gal(L/Fq(u)) → Gal(K1/Fq(u))×Gal(K2/Fq(u))

σ 7→ (σ|K1 , σ|K2)

is an isomorphism.

(iii) The genus of L is O(nn!2).

Here all implied constants are absolute.

Proof. We claim that (i)-(iii) all hold if we assume that

discn−1
u discn

T (H(T )− u) 6= 0, (7.9)

discn−1
u discn

T (H(T )−A(T )− u) 6= 0, (7.10)

resn−1,n−1
u (discn

T (H(T )− u), discn
T (H(T )−A(T )− u)) 6= 0. (7.11)

Let us first show that (7.9)-(7.11) exclude O(n2qn−2) choices of (h1, . . . , hn−1) ∈
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Fn−1
q . Define polynomials Y (u1, . . . , un−1, u) and Z(u1, . . . , un−1) by setting

Y (u1, . . . , un−1, u) := discn
T (Tn + un−1T

n−1 + · · ·+ u1T − u),

Z(u1, . . . , un−1) := discn−1
u discn

T (Tn + un−1T
n−1 + · · ·+ u1T − u).

Lemma 5.4.3 asserts that Z is a nonzero polynomial of degree at most (2n−1)(2n−
3); hence Z(h1, . . . , hn−1) = 0 for at most 4n2qn−2 choices of (h1, . . . , hn−1) ∈ Fn−1

q .

Now observe that

discn−1
u discn

T (H(T )− u) = discn−1
u discn

T (αTn + hn−1T
n−1 + · · ·+ h1T − u)

= discn−1
u α2n−2Y (h1α

−1, . . . , hn−1α
−1, uα−1)

= α(2n−2)(2n−4) discn−1
u Y (h1α

−1, . . . , hn−1α
−1, uα−1).

But

discn−1
u Y (h1α

−1, . . . , hn−1α
−1, uα−1)

= α−(n−1)(n−2) discn−1
u Y (h1α

−1, . . . , hn−1α
−1, u)

= α−(n−1)(n−2)Z(h1α
−1, . . . , hn−1α

−1).

It follows that (7.9) holds for all but O(n2qn−2) choices of h1, . . . , hn−1. A similar

computation shows that

discn−1
u discn

T (H(T )−A(T )− u)

= discn−1
u discn

T (−βTn + (hn−1 − an−1)Tn + · · ·+ (h1 − a1)T − a0 − u)

= β3(n−1)(n−2)Z((a1 − h1)β−1, . . . , (an−1 − hn−1)β−1),

which implies that (7.10) also holds for all but O(n2qn−2) choices of h1, . . . , hn−1.
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Condition (7.11) requires more care. The left hand side of (7.11) defines a

polynomial in h1, . . . , hn−1 of total degree at most 4n2 over Fq. Indeed, viewing the

inner T -discriminants as determinants of (2n−1)×(2n−1) Sylvester matrices, we see

each argument of the u-resultant has total degree at most (2n− 1) in T1, . . . , Tn−1.

Now view the resultant as the determinant of a (2n−2)× (2n−2) Sylvester matrix

to bound the degree by (2n − 1)(2n − 2) ≤ 4n2. So the desired bound on the

number of exceptions to (7.11) will follow from Lemma 5.4.1 once we check that

this polynomial is not identically zero.

Suppose for the sake of contradiction that it is identically zero; then for every

field F containing Fq and every choice of h1, . . . , hn−1 ∈ F , the polynomials

discn
T (αTn + hn−1T

n−1 + · · ·+ h1T − u) (7.12)

and

discn
T (−βTn + (hn−1 − an−1)Tn + · · ·+ (h1 − a1)T − a0 − u) (7.13)

share a root from the algebraic closure of F . With v ∈ F to be chosen, define

hi = α
(
n
i

)
vi (for 1 ≤ i < n). With this choice of the hi,

αTn + hn−1T
n−1 + · · ·+ h1T − u = α(T + v)n − (u + αvn),

which forces the discriminant (7.12) to vanish only at u = −αvn. Thus (7.13) must

also vanish at u = −αvn; in other words, we must have

discn
T (α(T + v)n −A(T )) = 0. (7.14)

We show that this fails if we choose F = Fq(v), where v is transcendental over
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Fq. Let m be the largest divisor of n with the property that A(T ) is an mth power

in Fq[T ]; say A(T ) = Ã(T )m. Let α1/m denote a fixed mth root of α from Fq. Then

we can write

A(T )− α(T + v)n =
∏

ζm=1

(
Ã(T )− ζα1/m(T + v)n/m

)
. (7.15)

The m factors in the right-hand product are all coprime: By considering the differ-

ence of any two, we see that −v is the only possible common root over the algebraic

closure of F ; but none of these factors can vanish at −v since v is transcendental

over Fq.

Moreover, each of these factors is irreducible in F [T ] = Fq(v)[T ]. To see this,

note that by Gauss’s lemma, it is enough to verify irreducibility in Fq[v][T ] =

Fq[T ][v]. Now there is an automorphism of Fq[T ][v] fixing Fq[T ] and sending v 7→
v−T ; this implies that Ã(T )−ζα1/m(T +v)n/m is irreducible in Fq[T ][v] if and only

if the same is true for Ã(T ) − ζα1/mvn/m. We finally appeal to Capelli’s theorem

(Theorem 1.3.11): the choice of m guarantees that this polynomial is irreducible

over Fq(T ) and, being primitive in T , also over Fq[T ].

Since each of these m irreducibles has degree prime to q, they are all separable

over F . Moreover, since the m factors are relatively prime, it follows that their

product A(T )−α(T +v)n also has distinct roots in the algebraic closure of F . This

contradicts (7.14).

It remains to prove that conditions (7.9)-(7.11) imply (i)-(iii). Let K̄1 = FqK1

be the splitting field of H(T )− u over Fq(u) and K̄2 = FqK2 be the splitting field

of H(T ) − A(T ) − u over Fq(u). From (7.9) and (7.10), we deduce by means of

the Birch and Swinnerton-Dyer criterion (p. 130) that K̄1/Fq(u) and K̄2/Fq(u)

are Galois with the full symmetric group on n letters as their Galois group, and
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similarly for K1/Fq(u) and K2/Fq(u). In particular, we have (i).

To obtain (ii), we first show that K̄1 and K̄2 are linearly disjoint over Fq(u).

Notice that (7.11) together with Kummer’s theorem (p. 92) implies that the only

prime of Fq(u) that can possibly ramify in K̄1 ∩ K̄2 is P∞. Moreover, from Lemma

5.4.4 and our assumption that gcd(q, 2n) = 1, we see that P∞ is tamely ramified in

both K̄1 and K̄2, and so certainly in their intersection. Lemma 4.2.1 now implies

that K̄1 and K̄2 intersect precisely in Fq(u), giving the stated linear disjointness.

The proof of part (ii) now follows the proof of Lemma 4.4.4: we have a commutative

square

Gal(L̄/Fq(u))
σ 7→(σ|K̄1

,σ|K̄2
)−−−−−−−−−−→ Gal(K̄1/Fq(u))×Gal(K̄2/Fq(u))

σ 7→σ|L
y (τ1,τ2)7→(τ1|K1

,τ2|K2
)

y

Gal(L/Fq(u))
σ 7→(σ|K1

,σ|K2
)−−−−−−−−−−→ Gal(K1/Fq(u))×Gal(K2/Fq(u))

, (7.16)

where each map except the one we are interested in is known to be an isomorphism.

So that map must be an isomorphism as well. Moreover, if α ∈ L is algebraic

over Fq, then the left vertical isomorphism forces α to be fixed by every element of

Gal(L/Fq(u)). So α ∈ Fq ∩ Fq(u) = Fq. Thus L/Fq(u) is geometric.

Lemma 5.5.3 gives a bound of O(nn!) for the genus of both K̄1 and K̄2; feeding

these bounds into the Castelnuovo-Severi inequality (p. 101) shows that the genus of

K̄1K̄2 = L̄ is O(nn!2). Since L and L̄ = FqL have the same genus, (iii) follows.

Proof of Theorem 7.1.4. For each polynomial H(T ) of the form (7.8), we count the

number of a ∈ Fq for which both H(T ) − a and H(T ) − A(T ) − a are irreducible.

Each such a gives rise to a decomposition

A(T ) = (H(T )− a) + (A(T )−H(T ) + a)
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of A(T ) as a sum of degree-n irreducibles with respective leading coefficients α and

β. Conversely, each such decomposition comes from a unique H(T ) and a.

Suppose H(T ) has the shape (7.8) and is such that (i)-(iii) of Lemma 7.3.1 hold.

Suppose moreover that

discT (H(T )− a) 6= 0 and discT (H(T )−A(T )− a) 6= 0;

each of these conditions specifies that a lie outside the zero-set of a degree (n− 1)-

polynomial, and so together they exclude at most 2n− 2 values of a ∈ Fq. Lemma

4.3.2 shows that for these a, the polynomials H(T ) − a and H(T ) − A(T ) − a

are simultaneously irreducible if and only if (K1/Fq(u), Pa) and (K2/Fq(u), Pa)

both correspond to the conjugacy class of n-cycles in the symmetric group on n

letters. From part (ii) of Lemma 7.3.1, we see this is equivalent to requiring that

the Frobenius (L/Fq(u), Pa) coincide with a conjugacy class of size (n − 1)!2 in

Gal(L/Fq(u)). So by the explicit form of the Chebotarev density theorem given in

Chapter 4 (p. 95), the number of a for which H(T )− a and H(T )− A(T )− a are

simultaneously irreducible is

q
(n− 1)!2

n!2
+ O

(
1
n2

nn!2q1/2

)
+ O(n) =

q

n2
+ O(n!(n− 1)!q1/2).

Let X be the number of polynomials H(T ) of the form (7.8) for which the

conclusions (i)-(iii) of Lemma 7.3.1 hold, so that

qn−1 − Cn2qn−2 ≤ X ≤ qn−1

for some absolute constant C. Taking into account all possible values of H, we find
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that

R(A) = X
q

n2
+ O(Xn!(n− 1)!q1/2) + O((qn−1 −X)q)

=
qn

n2
+ O(qn−1) + O(n!(n− 1)!qn−1/2) + O(n2qn−1)

=
qn

n2
+ O(n!(n− 1)!qn−1/2),

as was to be proved.
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les dénominateurs sont “nombres premiers jumeaux” est convergente ou finie,

Bull. Sci. Math 43 (1919), 100–104, 124–128.

[14] V. Buniakovsky, Sur les diviseurs numeriques invariables des fonctions ra-

tionnelles entieres, Mem. Acad. Sci. St. Petersburg 6 (1857), 305–329.

[15] M. Car, Le problème de Goldbach pour l’anneau des polynômes sur un corps
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[78] H. Kornblum, Über die Primfunktionen in einer arithmetischen Progression,

Math. Zeitschrift 5 (1919), 100–111.

[79] S. Lang, Algebra, third ed., Graduate Texts in Mathematics, vol. 211,

Springer-Verlag, New York, 2002.

[80] D. N. Lenskoi, On the arithmetic of polynomials over a finite field, Volz. Mat.

Sb. 4 (1966), 155–159.

[81] R. Lidl and H. Niederreiter, Finite fields, second ed., Encyclopedia of Mathe-

matics and its Applications, vol. 20, Cambridge University Press, Cambridge,

1997, With a foreword by P. M. Cohn.

[82] Y.-R. Liu, A generalization of the Turán theorem and its applications, and A

generalization of the Erdös-Kac theorem and its applications, Canad. Math.

Bull. 47 (2004), no. 4, 573–606.

[83] Y.-R. Liu and T. D. Wooley, Waring’s problem in function fields,

preprint available electronically from the second author’s website:

http://www.maths.bristol.ac.uk/∼matdw/wpfqt290507.pdf, 2008.

[84] H. Maier, Primes in short intervals, Michigan Math. J. 32 (1985), no. 2,

221–225.

[85] G. Martin, An asymptotic formula for the number of smooth values of a poly-

nomial, J. Number Theory 93 (2002), no. 2, 108–182.

205



[86] A. Masuda and D. Panario, Sequences of consecutive smooth polynomials over

a finite field, Proc. Amer. Math. Soc. 135 (2007), no. 5, 1271–1277 (elec-

tronic).

[87] M. R. Murty and J. Esmonde, Problems in algebraic number theory, second

ed., Graduate Texts in Mathematics, vol. 190, Springer-Verlag, New York,

2005.

[88] T. Nicely, Counts of twin prime pairs and Brun’s constant to 5e15, Available

at http://www.trnicely.net/twins/tabpi2.html.
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