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Abstract

Let E/Q be an elliptic curve with complex multiplication. We study the average size

of τ(#E(Fp)) as p varies over primes of good ordinary reduction. We work out in detail

the case of E : y2 = x3 − x, where we prove that∑
p≤x

p≡1 (mod 4)

τ(#E(Fp)) ∼

(
5π

16

∏
p>2

p4 − χ(p)

p2(p2 − 1)

)
x, as x→∞.

Here χ is the nontrivial Dirichlet character modulo 4. The proof uses number field ana-

logues of the Brun–Titchmarsh and Bombieri–Vinogradov theorems, along with a theo-

rem of Wirsing on mean values of nonnegative multiplicative functions.

Now suppose that E/Q is a non-CM elliptic curve. We conjecture that the sum of

τ(#E(Fp)), taken over p ≤ x of good reduction, is ∼ cEx for some cE > 0, and we

give a heuristic argument suggesting the precise value of cE . Assuming the Generalized

Riemann Hypothesis for Dedekind zeta functions, we prove that this sum is �E x. The

proof uses combinatorial ideas of Erdős.

1. Introduction

Let {Np} be a sequence of positive integers indexed by a cofinite subset of the prime

numbers. By a Titchmarsh divisor problem, we mean the task of estimating
∑
p≤x τ(Np),

as x → ∞, where τ is the usual number-of-divisors function. The prototypical example

was studied by Titchmarsh in 1930 [33], who took Np = p−a for some fixed integer a. He

succeeded in proving an asymptotic formula for
∑
a<p≤x τ(p−a), as x→∞, conditional

on the Generalized Riemann Hypothesis. Roughly 30 years later, Linnik [26] gave an

unconditional proof of Titchmarsh’s formula by the dispersion method. Nowadays, one

can prove Titchmarsh’s formula by a relatively straightforward application of the Brun–

Titchmarsh and Bombieri–Vinogradov theorems; see, for instance, [20, pp. 110–112].

Akbary and Ghioca studied the following geometric Titchmarsh divisor problem. Let

E/Q be an elliptic curve. (They work in the context of abelian varieties, but we will

restrict our discussion here to the elliptic curve case.) If p is a prime of good reduction,

then E(Fp) ∼= Z/dpZ⊕ Z/epZ for uniquely determined natural numbers dp and ep with
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dp dividing ep. What is the average size of τ(dp)? In [2], Akbary and Ghioca showed that

if GRH holds or if E has CM, then∑
p≤x

p of good reduction

τ(dp) ∼ cE · π(x), as x→∞,

for a certain constant cE > 0. Thus, τ(dp) has a well-defined, finite mean value. This is

consistent with known results asserting that dp itself is usually very small, such as Duke’s

theorem that for any function ξ(p) tending to infinity, dp < ξ(p) for asymptotically 100%

of primes p [7, Theorem 1.1]. (Once again, if E does not have CM, then GRH is assumed

here.) Results analogous to those of Akbary and Ghioca, but for arithmetic functions of

dp other than τ , have been given by Felix and Murty [14], under the same hypotheses.

Quite recently, Akbary and Felix [1] have shown unconditionally that mean value results

of this kind hold on average over elliptic curves defined by equations whose coefficients

lie in a suitable box.

In this paper, we study τ(dpep). In other words, we investigate the average number of

divisors of #E(Fp).

In the case when E has CM, we obtain an asymptotic formula without any unproved

hypotheses. The method is most intelligible if the details are carried out for a single

representative example. This is the content of our first theorem.

Theorem 1·1. Let E be the elliptic curve E : y2 = x3 − x. As x→∞,∑∗

p≤x

τ(#E(Fp)) ∼

(
5π

16

∏
p>2

p4 − χ(p)

p2(p2 − 1)

)
x.

Here χ denotes the nontrivial Dirichlet character modulo 4. The ∗ on the sum indicates

that p is restricted to primes of good ordinary reduction for E, i.e, p ≡ 1 (mod 4).

Remarks.

(i) If E/Q is a CM elliptic curve, then a prime p of good reduction is supersingular

precisely when it remains inert or ramifies in the CM field. This criterion is due

to Deuring; see, e.g., [24, Theorem 12, p. 182]. Remaining inert or ramifying in

the CM field is, by quadratic reciprocity, a congruence condition on p. Moreover,

for each supersingular prime p ≥ 5, one has #E(Fp) = p+ 1. Putting these facts

together, one can determine the average order of τ(#E(Fp)) along supersingular

primes by the same methods used to solve the classical Titchmarsh divisor prob-

lem. Thus, it is natural to restrict the sum to primes p of good ordinary reduction,

as we have done above.

(ii) While Theorem 1·1 is stated for a single elliptic curve, we emphasize that its

method of proof can be adapted to any elliptic curve E/Q with CM. We discuss

this briefly in §4.

It seems very plausible that a statement similar to Theorem 1·1 should hold for curves

without complex multiplication.

Conjecture 1·2. Let E be a non-CM elliptic curve over Q. There is a constant

cE > 0 with
∑∗
p≤x τ(#E(Fp)) ∼ cEx, as x → ∞. Here

∑∗
means that the sum is

restricted to primes of good reduction.

In fact, we will give a heuristic argument in favor of Conjecture 1·2 that allows us to
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predict the value of cE . Since the description of cE is a little complicated, we defer a full

discussion of Conjecture 1·2 to the final section of the paper. Even assuming GRH, we

do not have sharp enough estimates to establish Conjecture 1·2. However, on GRH we

can at least obtain the correct order of magnitude for the sum in question.

Theorem 1·3. Assume GRH for Dedekind zeta functions. Let E/Q be a non-CM

elliptic curve. Then ∑∗

p≤x

τ(#E(Fp)) �E x

for all x > x0(E).

Note that there is no reason in Conjecture 1·2 or Theorem 1·3 to further restrict the

sum to primes of ordinary reduction. In fact, in the non-CM case it is known that the

count of supersingular primes p ≤ x is OE(x3/4) (a result of Elkies, Kaneko, and Ram

Murty [10]), so that such a restriction would have a negligible impact on the size of the

sum.

The proof of Theorem 1·3 uses a method introduced by Erdős [12] to study the partial

sums of τ(F (n)), where F is a fixed irreducible polynomial with integer coefficients.

Erdős’s method has proved fruitful in many contexts, a particularly prominent example

being the work of Shiu on Brun–Titchmarsh results for multiplicative functions [30].

Notation. The letters p and q are reserved for (positive, rational) primes. Let K be

an algebraic number field with ring of integers ZK . The fraktur letter p always denotes

a nonzero prime ideal of ZK , while π always denotes a prime element of ZK . For each

nonzero ideal a of ZK , we put ‖a‖ = #ZK/a (the norm of a) and Φ(a) = #(ZK/a)× (the

analogue of the Euler function). If α is a nonzero element of ZK , we write ‖α‖ and Φ(α)

for the corresponding functions evaluated at the principal ideal (α). When K = Q, we

write ϕ instead of Φ. We use the notation 1∗ for the indicator function of the condition *;

for example, 1d|n is 1 if d divides n and 0 otherwise. We write [a, b] for the least common

multiple of the integers a and b.

2. Preliminaries for the proof of Theorem 1·1
2·1. Mean values

The proof makes essential use of a celebrated result of Wirsing [34, Satz 1] concerning

mean values of nonnegative multiplicative functions.

Proposition 2·1. Let f be a nonnegative multiplicative function. Suppose that for a

certain constant κ > 0, we have∑
p≤x

f(p) = (κ+ o(1))
x

log x
, as x→∞.

Suppose constants λ1 ≥ 0 and λ2 ∈ [0, 2) have the property that for all primes p and all

integers k ≥ 2, we have f(pk) ≤ λ1λ
k
2 . Then as x→∞,∑

n≤x

f(n) ∼ x

log x
· e
−γκ

Γ(κ)

∏
p≤x

(
1 +

f(p)

p
+
f(p2)

p2
+ . . .

)
.

Here γ is the Euler–Mascheroni constant and Γ(·) is the usual gamma function.
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2·2. The distribution of primes in imaginary quadratic fields

In addition, the proof of Theorem 1·1 requires some input from the algebro-analytic

theory of numbers. We begin by stating Huxley’s number field analogue of the Bombieri–

Vinogradov theorem. This necessitates a brief review of the concept of strict equivalence

of ideals. (For more details, see [5, Chapter 3].) For each nonzero ideal m of ZK , set

I(m) = {fractional ideals a ⊂ K : ordp(a) = 0 for all p | m},

P+
m = {(α) : α ∈ K is totally positive, ordp(α− 1) ≥ ordp(m) for all p | m}.

The quotient I(m)/P+
m is called the strict ray class group for m. Fractional ideals a, b ∈

I(m) are called equivalent modulo m if they represent the same class in the strict ray class

group. The strict ray class number is h(m) := #I(m)/P+
m . It is known [5, Proposition

2.1, p. 50] that

h(m) =
h · 2r1Φ(m)

[U : Um]
, (2·1)

where h is the class number of K, r1 is the number of real embeddings of K, U is the

unit group of ZK , and

Um := {λ ∈ U : λ is totally positive, λ ≡ 1 (mod m)}.

We now have the background to state Huxley’s analogue of the Bombieri–Vinogradov

theorem. If a ∈ I(m), we write

π(x;m, a) = #{p : ‖p‖ ≤ x, p is equivalent to a modulo m}.

Proposition 2·2. For each A > 0, one can choose B > 0 so that∑
‖m‖≤x1/2(log x)−B

h(m)

Φ(m)
max

a
max
y≤x

∣∣∣∣π(y;m, a)− Li(y)

h(m)

∣∣∣∣� x

(log x)A
.

Here the first maximum is over a ∈ I(m). The implied constant depends on A and K.

Proposition 2·2 is essentially Theorem 1 of [21]. Huxley’s statement is in terms of the

(ZK-analogue of the) von Mangoldt function; our statement follows from his by partial

summation.

We now specialize Proposition 2·2 to the case when K is an imaginary quadratic field

of class number 1, where it assumes a form entirely analogous to the classical Bombieri–

Vinogradov theorem. If µ, α ∈ ZK , write

π(x;µ, α) = #{π ∈ ZK : ‖π‖ ≤ x, π ≡ α (mod µ)}.

Lemma 2·3. Let K be an imaginary quadratic field of class number 1. For every A > 0,

there is a B > 0 so that∑
‖µ‖≤x1/2(log x)−B

max
α: gcd(α,µ)=1

max
y≤x

∣∣∣∣π(y;µ, α)−#U Li(y)

Φ(µ)

∣∣∣∣� x

(log x)A
.

Again, the implied constant may depend on A and K.

Proof. We begin by noting that since K has no real embeddings, all elements of K

are totally positive, and so the total positivity conditions in the above definitions are

automatically satisfied. Suppose that α and µ are coprime. If p is a prime ideal, then p
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is equivalent to (α) modulo (µ) precisely when p = (π) for some prime π ≡ α (mod µ).

If any such π exists, then the number of such π is exactly #U(µ). Hence, π(y;µ, α) =

#U(µ) · π(y; (µ), (α)). Since h = 1 and r1 = 0, (2·1) shows that h((µ)) = Φ(µ)
#U(µ)

#U .

Thus, ∣∣∣∣π(y;µ, α)−#U Li(y)

Φ(µ)

∣∣∣∣ = #U h((µ))

Φ(µ)
·
∣∣∣∣π(y; (µ), (α))− Li(y)

h((µ))

∣∣∣∣ .
Now as µ runs over the nonzero elements of ZK of norm not exceeding x, the ideal (µ)

runs over the nonzero ideals of ZK not exceeding x, each hit precisely #U times. Since

#U ≤ 6, our lemma follows from Proposition 2·2.

We also need a Brun–Titchmarsh type estimate for number fields. The following is due

to Hinz and Lodemann; see [18, Theorem 4].

Proposition 2·4. Let K be a number field. If ‖m‖ < x and a ∈ I(m), then

π(x;m, a) ≤ 2
x

h(m) log(x/‖m‖)

(
1 +O

(
log log(3x/‖m‖)

log(x/‖m‖)

))
,

where the implied constant depends on K.

For our purposes, the following slightly crude consequence is sufficient.

Lemma 2·5. Let K be an imaginary quadratic field of class number 1. If ‖µ‖ ≤ x and

gcd(α, µ) = 1, then

π(x;µ, α)� x

Φ(µ) log(x/‖µ‖)
,

where the implied constant depends on K.

Lemma 2·5 can be deduced from Proposition 2·4 in a way similar to how we deduced

Lemma 2·3 from Proposition 2·2. We omit the details.

3. Proof of Theorem 1·1
3·1. Setup

Throughout this section, we fix K = Q(i). The essential fact used in the proof of

Theorem 1·1 is that for each prime p ≡ 1 (mod 4), the size of E(Fp) is determined by

the following recipe (see [23, Table 2] or [31]): Write p = ππ̄ in Z[i], where π is chosen

so that π ≡ 1 (mod (1 + i)3). (This condition is sometimes referred to by saying that π

is primary.) These conditions determine π uniquely up to complex conjugation. Then

#E(Fp) = p+ 1− (π + π̄)

= (π − 1)(π − 1).

Since #E(Fp) ≤ (
√
p+ 1)2 ≤ 4x, it follows that∑

p≤x
p≡1 (mod 4)

∑
d|#E(Fp)

1 =
1

2

∑
d≤4x

∑′

‖π‖≤x
π≡1 (mod (1+i)3)

d|(π−1)(π−1)

1,

where the ′ on the sum indicates that we restrict to primes π lying over rational primes

p ≡ 1 (mod 4). Hence, we are led to investigate the number of primes π with ‖π‖ ≤ x

and with ‖π − 1‖ possessing a given natural number divisor d.



6 Paul Pollack

3·2. Integer divisors of ‖π − 1‖
We begin with an elementary lemma concerning factorizations of Gaussian integers.

Lemma 3·1. Let k be a positive integer. As functions on the set of nonzero α ∈ Z[i],

(i) 12k|αᾱ = 1(1+i)k|α,

(ii) If q ≡ 3 (mod 4) is prime, then 1qk|αᾱ = 1qdk/2e|α.

(iii) If q ≡ 1 (mod 4) is prime and q = ππ̄, then

1qk|αᾱ =

k∑
i=0

1πiπ̄k−i|α −
k∑
i=1

1πiπ̄k+1−i|α.

Proof. Claims (i) and (ii) are immediate from unique factorization in Z[i], after recall-

ing that (2) = (1 + i)2 and that (q) is a prime ideal for each prime q ≡ 3 (mod 4). Claim

(iii) requires more thought. Suppose that q ≡ 1 (mod 4), and let

A+ = {πiπ̄k−i : i = 0, . . . , k} and A− = {πiπ̄k+1−i : i = 1, . . . , k}.

If qk - αᾱ, then α is not divisible by any element of A+ or A−. To complete the proof of

(iii), it suffices to show that if qk | αᾱ, then α is divisible by precisely one more element of

A+ than of A−. Choose v1 and v2 with πv1 π̄v2 ‖ α. Since qk | αᾱ, we see that v1 +v2 ≥ k.

In order that the element πiπ̄k−i of A+ divide α, it is necessary and sufficient that

max{0, k − v2} ≤ i ≤ min{k, v1}.

Thus, the number of divisors of α from A+ is precisely

min{k, v1} −max{0, k − v2}+ 1. (3·1)

Similarly, in order for the element πiπ̄k+1−i ofA− to divide α, it is necessary and sufficient

that

max{1, k + 1− v2} ≤ i ≤ min{k, v1}.

The number of values of i for which this occurs is

min{k, v1} −max{1, k + 1− v2}+ 1 = min{k, v1} −max{0, k − v2}. (3·2)

Comparing (3·1) and (3·2) completes the proof.

For each d, one can factor 1d|n as
∏
qvq‖d 1qvq |n. This simple observation yields the

following important extension of Lemma 3·1. We omit the straightforward proof.

Lemma 3·2. Let d be a natural number with prime factorization d =
∏
q q

vq . For each

prime q ≡ 1 (mod 4) that divides d, write q = πqπ̄q, and put

A+(q) = {πiqπ̄vq−iq : i = 0, . . . , vq},
A−(q) = {πiqπ̄vq+1−i

q : i = 1, . . . , vq}.

Consider all formal products

δ = (1 + i)v2
∏
q|d

q≡3 (mod 4)

qdvq/2e
∏
q|d

q≡1 (mod 4)

δq, where δq ∈ A+(q) ∪ A−(q).

To each of these, associate the formal sign

sgn(δ) := (−1)#{q : δq∈A−(q)}.
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If the δ are considered as elements of Z[i] rather than as formal products, then all of the

δ are distinct. Thus, the set A(d) of these δ satisfies

#A(d) =
∏
q|d

q≡1 (mod 4)

(2vq + 1).

Moreover, as functions on nonzero α ∈ Z[i],

1d|αᾱ =
∑

δ∈A(d)

sgn(δ) · 1δ|α.

The following estimate, which is a Bombieri–Vinogradov result for integer divisors of

‖π − 1‖, plays a critical role in our later analysis.

Lemma 3·3. For every A > 0, there is a B = B(A) > 0 so that

∑
d≤x1/2(log x)−B

∑
δ∈A(d)

∣∣∣∣π(x; δ, 1)− 4
Li(x)

Φ(δ)

∣∣∣∣� x

(log x)A
. (3·3)

Here the implied constant may depend on A.

Lemma 3·3 is a close cousin of [6, Proposition 17]. However, that result only allows

the sum on d to go up to x1/4(log x)−B , which would not suffice for us.

Proof. We may assume without loss of generality that A ≥ 4. Let A0 = 2A + 9, and

choose B0 so that ∑
‖µ‖≤x1/2(log x)−B0

max
gcd(α,µ)=1

∣∣∣∣π(x;µ, α)− 4
Li(x)

Φ(µ)

∣∣∣∣� x

(log x)A0
. (3·4)

Lemma 2·3 ensures that this is possible. We will show that Lemma 3·3 holds with B =

B0 + 2A.

Observe that by construction, d divides ‖δ‖ for each δ ∈ A(d), so that ‖δ‖ ≥ d. We

will say δ ∈ A(d) is good for d if ‖δ‖ ≤ d(log x)2A and bad for d otherwise.

If d ≤ x1/2(log x)−B and δ is good for d, then ‖δ‖ ≤ x1/2(log x)−B0 . Consequently, the

contribution from good δ to the left-hand side of (3·3) is at most

∑
‖δ‖≤x1/2(log x)−B0

τ(‖δ‖)
∣∣∣∣π(x; δ, 1)− 4

Li(x)

Φ(δ)

∣∣∣∣ .
By counting all nonunits ≡ 1 (mod µ) and not only primes, we see that π(y;µ, 1) �
y/‖µ‖ for all choices of y > 0 and nonzero µ ∈ Z[i]. Thus,∣∣∣∣π(x; δ, 1)− 4

Li(x)

Φ(δ)

∣∣∣∣� x

Φ(δ)
.
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Using this trivial bound along with (3·4) and Cauchy–Schwarz, we find that

∑
‖δ‖≤x1/2(log x)−B0

τ(‖δ‖)
∣∣∣∣π(x; δ, 1)− 4

Li(x)

Φ(δ)

∣∣∣∣
�

∑
‖δ‖�x1/2(log x)−B0

τ(‖δ‖)
(

x

Φ(δ)

)1/2 ∣∣∣∣π(x; δ, 1)− 4
Li(x)

Φ(δ)

∣∣∣∣1/2

�
(
x

∑
‖δ‖≤x1/2(log x)−B0

τ(‖δ‖)2

Φ(δ)

)1/2(
x

(log x)A0

)1/2

.

Now Φ(δ) � ‖δ‖/ log log x. (This is analogous to a well-known result on the minimal

order of the Euler function — cf. the more precise [22, Theorem 328, p. 352] — and may

be proved in the same way.) Hence,∑
‖δ‖≤x1/2(log x)−B0

τ(‖δ‖)2

Φ(δ)
� log log x

∑
m≤x1/2(log x)−B0

τ(m)2

m

∑
‖δ‖=m

1

� log log x
∑

m≤x1/2(log x)−B0

τ(m)3

m

� log log x
∏

p≤x1/2

(
1 +

τ(p)3

p
+
τ(p2)3

p2
+ . . .

)
� (log x)9.

In going from the first line to the second, we used that the number of elements of Z[i]

of norm m is 4
∑
d|m χ(d) ≤ 4τ(m), where χ is the nontrivial character modulo 4 [22,

Theorem 278, p. 314]. Collecting our estimates, we see that the “good case” makes a

contribution of � x/(log x)(A0−9)/2 = x/(log x)A. This is acceptable for us.

For each of the remaining terms on the left-hand side of (3·3), we have ‖δ‖ ≥ d(log x)2A.

Now using the trivial bound π(x; δ, 1)� x/‖δ‖ noted previously, we find that each inner

summand in (3·3) is

� x

Φ(δ)
� x log log x

‖δ‖
≤ x log log x

d(log x)2A
.

Moreover, for each d, Lemma 3·2 implies that #A(d) ≤ τ(d2). Thus, the bad terms make

a contribution of

� x log log x

(log x)2A

∑
d≤x1/2(log x)−B

τ(d2)

d
� x log log x

(log x)2A−3
� x

(log x)2A−4
.

Here the sum on d has been bounded by an Euler product. Since 2A − 4 ≥ A, this last

upper bound is O(x/(log x)A) and so is also acceptable for us.

3·3. Exploiting symmetry

As in the usual Titchmarsh divisor problem, we can exploit the symmetry of the

divisors of n around
√
n. Namely, we have

τ(#E(Fp)) = 2
∑

d|#E(Fp)

d≤
√

#E(Fp)

1− 1#E(Fp) is a square.
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Hence, ∑
p≤x

p≡1 (mod 4)

τ(#E(Fp)) = 2
∑
p≤x

p≡1 (mod 4)

∑
d|#E(Fp)

d≤
√

#E(Fp)

1 +O

(
x

log x

)

= 2
∑

d≤2
√
x

∑
p≤x

p≡1 (mod 4)
d|#E(Fp)

#E(Fp)≥d2

1 +O

(
x

log x

)
. (3·5)

Since we are shooting for an asymptotic formula whose main term is proportional to x,

the error term in (3·5) is negligible. We now transform the main term.

Lemma 3·4. Fix B ≥ 2. Then∑
d≤2
√
x

∑
p≤x

p≡1 (mod 4)
d|#E(Fp)

#E(Fp)≥d2

1 =
∑

d≤x1/2(log x)−B

∑
p≤x

p≡1 (mod 4)
d|#E(Fp)

1 +O

(
x

log log x

log x

)
.

The implied constant may depend on B.

Proof. It suffices to show that∑
d≤x1/2(log x)−B

∑
p≤x

p≡1 (mod 4)
d|#E(Fp)

d2>#E(Fp)

1� x
log log x

log x
(3·6)

and ∑
x1/2(log x)−B<d≤2

√
x

∑
p≤x

p≡1 (mod 4)
d|#E(Fp)

1� x
log log x

log x
. (3·7)

We take (3·6) first. If d2 > #E(Fp), then p < (d+ 1)2 ≤ 4d2. Recalling Lemma 3·2, we

see that the left-hand side of (3·6) is

�
∑

d≤x1/2(log x)−B

∑
p<4x(log x)−2B

p≡1 (mod 4)
d|#E(Fp)

1 ≤
∑

d≤x1/2(log x)−B

∑
‖π‖<4x(log x)−2B

d|(π−1)(π−1)

1

≤
∑

d≤x1/2(log x)−B

∑
δ∈A(d)

sgn(δ) · π(4x(log x)−2B ; δ, 1).

We have d ≤ ‖δ‖ ≤ d2 for all δ ∈ A(d). Using π(y; δ, 1) � y/‖δ‖ ≤ y/d with y :=

4x(log x)−2B along with the upper bound #A(d) ≤ τ(d2), we conclude that the left-

hand side of (3·6) is

� x

(log x)2B

∑
d≤x1/2(log x)−B

τ(d2)

d
� x

(log x)2B−3
.

Since B ≥ 2, this is O(x/ log x), which proves (3·6).
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The proof of (3·7) is more delicate. First, observe that the left-hand side of (3·7) is

bounded above by ∑
x1/2(log x)−B<d≤2

√
x

∑
δ∈A(d)

sgn(δ) · π(x; δ, 1).

To proceed, we again divide the δ ∈ A(d) into two classes. This time, we say δ is good

for d if ‖δ‖ ≤ d(log x)4 and bad otherwise. Using π(x; δ, 1)� x/‖δ‖ and #A(d) ≤ τ(d2),

we see that the bad δ make a contribution to the double sum that is

� x

(log x)4

∑
d≤2
√
x

τ(d2)

d
� x

log x
,

which is acceptable. On the other hand, if δ is good for d, then ‖δ‖ ≤ 2
√
x(log x)4 � x2/3.

Lemma 2·5 then implies that π(x; δ, 1)� x
Φ(δ) log x . Consequently, the good δ contribute

� x

log x

∑
x1/2(log x)−B<d≤2

√
x

∑
δ∈A(d)

1

Φ(δ)
. (3·8)

Put

g(d) :=
∑

δ∈A(d)

1

Φ(δ)
.

Then g is multiplicative,

g(2k) =
1

Φ((1 + i)k)
=

1

2k−1
,

g(qk) =
1

Φ(qdk/2e)
=

1

q2dk/2e(1− 1/q2)
for primes q ≡ 3 (mod 4),

and for primes q ≡ 1 (mod 4), we have

g(qk) =

k∑
i=0

1

Φ(πiπ̄k−i)
+

k∑
i=1

1

Φ(πiπ̄k+1−i)

=
2

qk(1− 1/q)
+

k − 1

qk(1− 1/q)2
+

k

qk+1(1− 1/q)2
.

Let G(d) = dg(d). Note that when q ≡ 1 (mod 4), we have G(q) = 2+O(1/q), while when

q ≡ 3 (mod 4), we have G(q) = O(1/q). Moreover, it is straightforward to check that

G(qk) ≤ λ1λ
k
2 for certain constants λ1 ≥ 0 and λ2 ∈ [0, 2). So from the prime number

theorem for progressions, the hypotheses of Proposition 2·1 hold for G with κ = 1. From

the resulting asymptotic formula,∑
d≤y

G(d)� y

log y

∏
q≤y

(
1 + g(q) + g(q2) + . . .

)
,

for all y ≥ 2 (say). The Euler product factor corresponding to q = 2 on the right-hand

side has the value 3. For primes q ≡ 3 (mod 4), the Euler factor is 1 + O(1/q2), while

for q ≡ 1 (mod 4), this factor is 1 + 2/q+O(1/q2). Consequently, the product is � log y

and
∑
d≤y G(d)� y. By partial summation,∑
x1/2(log x)−B<d≤2

√
x

∑
δ∈A(d)

1

Φ(δ)
=

∑
x1/2(log x)−B<d≤2

√
x

G(d)

d
� log log x.



A Titchmarsh divisor problem for elliptic curves 11

Inserting this estimate back into (3·8), we see that the good δ contribute O(x log log x
log x ).

This completes the proof of (3·7).

3·4. Completion of the proof of Theorem 1·1
In view of (3·5) and Lemma 3·4, it suffices to show that for some fixed B ≥ 2, we have

∑
d≤x1/2(log x)−B

∑
p≤x

p≡1 (mod 4)
d|#E(Fp)

1 ∼

(
5π

32

∏
p>2

p4 − χ(p)

p2(p2 − 1)

)
x, as x→∞. (3·9)

Choose B0 so that the estimate (3·3) of Lemma 3·3 holds when A = 1. We prove (3·9)

with B = max{2, 1 +B0}.
Recall our notation

∑′
for a sum restricted to primes of Z[i] that lie above rational

primes p ≡ 1 (mod 4). We have

∑
d≤x1/2(log x)−B

∑
p≤x

p≡1 (mod 4)
d|#E(Fp)

1 =
1

2

∑
d≤x1/2(log x)−B

∑′

‖π‖≤x
π≡1 (mod (1+i)3)

d|(π−1)(π−1)

1

=
1

2

∑
d≤x1/2(log x)−B

( ∑
‖π‖≤x

π≡1 (mod (1+i)3)

d|(π−1)(π−1)

1 +O(x1/2)

)

=
1

2

∑
d≤x1/2(log x)−B

∑
‖π‖≤x

π≡1 (mod (1+i)3)

d|(π−1)(π−1)

1 +O

(
x

(log x)2

)
.

The requirement that π ≡ 1 (mod (1+ i)3) is equivalent to 8 | (π−1)(π − 1). Thus, from

Lemma 3·2,

1

2

∑
d≤x1/2(log x)−B

∑
‖π‖≤x

π≡1 (mod (1+i)3)

d|(π−1)(π−1)

1 =
1

2

∑
d≤x1/2(log x)−B

∑
δ∈A([8,d])

sgn(δ)π(x; δ, 1)

= 2 · Li(x)
∑

d≤x1/2(log x)−B

∑
δ∈A([8,d])

sgn(δ)

Φ(δ)
+O

(
x

log x

)
.

(3·10)

We have used (3·3) to move from the first line to the second, noting that [8, d] ≤ 8d ≤
x(log x)−B0 (for large x) and that each value of [8, d] appears for only O(1) values of d.

Define a multiplicative function g by setting

g(m) :=
∑

δ∈A(m)

sgn(δ)

Φ(δ)
.
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(This differs from our earlier definition of g in that the sgn factor is still present.) Then

g(2k) =
1

Φ((1 + i)k)
=

1

2k−1
,

g(qk) =
1

Φ(qdk/2e)
=

1

q2dk/2e(1− 1/q2)
for primes q ≡ 3 (mod 4),

and on primes q ≡ 1 (mod 4),

g(qk) =

k∑
i=0

1

Φ(πiπ̄k−i)
−

k∑
i=1

1

Φ(πiπ̄k+1−i)

=
2

qk(1− 1/q)
+

k − 1

qk(1− 1/q)2
− k

qk+1(1− 1/q)2
.

Now let

G(d) = d · g([8, d])

g(8)
.

Then G is multiplicative with G(2) = 2, G(q) = O(1/q) for primes q ≡ 3 (mod 4), and

G(q) = 2 +O(1/q) for primes q ≡ 1 (mod 4). Hence,∑
p≤x

G(p) = Li(x) +O(x exp(−c
√

log x)), (3·11)

by the prime number theorem for arithmetic progressions. This shows that the first

hypothesis of Proposition 2·1 holds for G with κ = 1, and it is straightforward to check

that the mild condition there on prime powers is also satisfied. Hence, as y →∞,

∑
d≤y

G(d) ∼ e−γ y

log y

∏
q≤y

(
1 +

∞∑
k=1

g([8, qk])

g(8)

)
.

For the prime q = 2,

1 +

∞∑
k=1

g([8, 2k])

g(8)
= 4 +

∞∑
k=4

1/2k−1

1/4
= 5.

For primes q ≡ 3 (mod 4),

1 +

∞∑
k=1

g([8, qk])

g(8)
= 1 +

∞∑
k=1

1

q2dk/2e(1− 1/q2)

= 1 + 2

∞∑
`=1

1

q2`(1− 1/q2)
= 1 + 2

q2

(q2 − 1)2
=

q4 + 1

(q2 − 1)2
.

For primes q ≡ 1 (mod 4),

1 +

∞∑
k=1

g([8, qk])

g(8)
= 1 +

∞∑
k=1

(
2

qk(1− 1/q)
+

k − 1

qk(1− 1/q)2
− k

qk+1(1− 1/q)2

)

= 1 +

∞∑
k=1

2

qk(1− 1/q)
= 1 +

2q

(q − 1)2
=

q2 + 1

(q − 1)2
.

Combining these expressions with Mertens’ formula
∏
q≤y(1− 1/q) ∼ e−γ/ log y, we find
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that ∑
d≤y

G(d) ∼
(

5

2

∏
q≤y

q≡3 (mod 4)

q4 + 1

q(q2 − 1)(q + 1)

∏
q≤y

q≡1 (mod 4)

q2 + 1

q(q − 1)

)
y.

With χ the nontrivial character modulo 4, we have

L(1, χ) =
∏

q≡3 (mod 4)

(1 + 1/q)−1
∏

q≡1 (mod 4)

(1− 1/q)−1,

and so the coefficient of y can be rewritten as

5

2
L(1, χ)

∏
q≤y

q≡3 (mod 4)

q4 + 1

q2(q2 − 1)

∏
q≤y

q≡1 (mod 4)

q2 + 1

q2
.

The products over y now converge (absolutely) as y → ∞ and so are equal to the

corresponding infinite products, up to factors of 1 + o(1). Noting that L(1, χ) = π
4 and

that the Euler factors can be expressed uniformly as q4−χ(q)
q2(q2−1) , we conclude that

∑
d≤y

G(d) ∼

(
5π

8

∏
q>2

q4 − χ(q)

q2(q2 − 1)

)
y, (3·12)

as y →∞. By partial summation,∑
d≤y

g([8, d])

g(8)
=
∑
d≤y

G(d)

d
∼

(
5π

8

∏
q>2

q4 − χ(q)

q2(q2 − 1)

)
log y.

Thus, as x→∞,

2 · Li(x)
∑

d≤x1/2(log x)−B

∑
δ∈A([8,d])

sgn(δ)

Φ(δ)
= 2g(8) · Li(x)

∑
d≤x1/2(log x)−B

g([8, d])

g(8)

∼ Li(x)

2

(
5π

8

∏
q>2

q4 − χ(q)

q2(q2 − 1)

)
log(x1/2(log x)−B)

∼

(
5π

32

∏
q>2

q4 − χ(q)

q2(q2 − 1)

)
x. (3·13)

Inserting this estimate into (3·10) completes the proof of (3·9) and so also the proof of

Theorem 1·1.

Remark. Proposition 2·1 (Wirsing’s fundamental result) does not include an error

estimate, and so as it stands our proof of Theorem 1·1 also does not give any bound

on the error. However, there are variants of Wirsing’s theorem that incorporate error

estimates. One such result is Moree and Cazaran’s Theorem 6 in [27], which has the

following useful consequence: If one replaces the first hypothesis of Proposition 2·1 with

the stronger assumption that
∑
p≤x f(p) = κ · Li(x) +OA(x/(log x)A) for every A, then∑

n≤x f(n) has an asymptotic expansion of the form∑
n≤x

f(n) = c1x(log x)κ−1 + c2x(log x)κ−2 + c3x(log x)κ−3 + . . . .

(Here “asymptotic expansion” means that stopping the series at ckx(log x)κ−k results in
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an error that is O(x(log x)κ−k−1).) In view of (3·11), we can apply the Moree–Cazaran

result to estimate
∑
d≤y G(d). It follows that the asymptotic formula (3·12) holds as an

equality up to an error of O(y/ log y). Following this through, we conclude that (3·13)

holds as an equality up to a factor of 1 + O( log log x
log x ). Glancing back through the proof,

we see that the final error in Theorem 1·1 is of size O(x log log x
log x ).

4. Generalization to other CM elliptic curves

Let E/Q be an elliptic curve with complex multiplication by an order O in the imag-

inary quadratic field K. There is a canonical, Q-rational isogeny E 7→ E′, where E′/Q

has CM by the maximal order ZK (see, for instance, [3, Proposition 25]). So for all large

primes p, the curves E and E′ are Fp-rationally isogenous and so #E(Fp) = #E′(Fp).

Thus, if our goal is to show the existence of an asymptotic formula of the sort given

in Theorem 1·1, we can (and do) assume that E has CM by ZK . Note that since E is

defined over Q, the field K is necessarily one of the nine imaginary quadratic fields of

class number 1.

For all large primes p of ordinary reduction, it is known that #E(Fp) = ‖π − 1‖ for

some π ∈ ZK above p. However, in the general case, making a correct choice of π is not

as simple as for E : y2 = x3 − x, where it sufficed to take π ≡ 1 (mod (1 + i)3). While

the general situation is complicated, it is now well understood. The introduction to [31]

has a lucid discussion of this problem, while Table 2 of [23] presents explicit formulas

for #E(Fp) whenever E/Q has CM by a maximal order ZK . To take a representative

example, suppose that K = Q(
√
−7). Then E has a Weierstrass equation of the form

y2 = x3 − 5 · 7 · g
2

16
x− 72 g

3

32

for an integer g. Let p be a sufficiently large prime of good ordinary reduction and write

p = ππ̄, where π = u+ v
√
−7 ∈ ZK . From [23, Table 2], we find that #E(Fp) = ‖π− 1‖

precisely when (
g

p

)(
4u

7

)
= 1. (4·1)

By Gauss’s law of quadratic reciprocity, whether or not (4·1) holds is determined by the

class of π mod 28g in ZK , since that class determines both p mod 4g and 4u mod 7 in Z.

Hence, the analogue of our earlier requirement that π ≡ 1 (mod (1+i)3) is that π belong

to a certain finite list of coprime residue classes modulo 28g. These congruence conditions

can be incorporated into our method at the cost of unpleasant but unimportant technical

complications.

The situation is analogous in all of the remaining cases, in the sense that one can always

specify a finite list of (necessary and sufficient) congruence conditions that replace the

criterion π ≡ 1 (mod (1 + i)3). Once again, the precise conditions can be worked out

from Table 2 of [23]. In the case when K = Q(
√
−2), the congruence conditions are

given explicitly in [31, Theorem 2.7] (due to Rajwade [28]). When K = Q(
√
−1) or

K = Q(
√
−3), to work out these conditions one must appeal not only to quadratic

reciprocity (as in the preceding paragraph) but to reciprocity laws for the quartic and

sextic residue symbols, respectively. A convenient reference for higher reciprocity laws is

[11, pp. 71–79]; that paper’s Lemma 28 is particularly relevant.

The upshot of all of this is that whenever E has CM,
∑∗
p≤x τ(#E(Fp)) ∼ cEx for

some cE > 0, where the ∗ indicates a restriction to primes of good ordinary reduction.
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5. An order-of-magnitude result for elliptic curves without complex multiplication

5·1. Lower bound

The lower bound half of Theorem 1·3 is an easy consequence of the following estimate

of David and Wu (see [8, Theorem 12(a)]).

Proposition 5·1 (conditional on GRH). Let E/Q be a fixed elliptic curve without

complex multiplication and with conductor NE. There is a positive integer ME (depending

only on E) so that the following holds: For each squarefree integer d coprime to ME, the

number of primes p ≤ x of good reduction for which d | #E(Fp) is∏
q|d

q2 − 2

(q − 1)(q2 − 1)

Li(x) +O(d3x1/2 log(d ·NEx)). (5·1)

For the rest of §5,
∑∗

denotes a restriction to primes of good reduction. Implied

constants may depend on E without further mention.

Proof of the lower bound in Theorem 1·3 Observe that∑∗

p≤x

τ(#E(Fp)) =
∑
d

∑∗

p≤x
d|#E(Fp)

1 ≥
∑

d≤x1/10

gcd(d,ME)=1

µ2(d)
∑∗

p≤x
d|#E(Fp)

1.

We use (5·1) to evaluate the inner sum. This gives rise to an error of size O(x9/10 log x)

and a main term of

Li(x)
∑

d≤x1/10

gcd(d,ME)=1

µ2(d)
∏
q|d

q2 − 2

(q − 1)(q2 − 1)
.

Let g(d) := µ2(d)·1gcd(d,ME)=1·
∏
q|d

q2−2
(q−1)(q2−1) , so that G(d) := dg(d) satisfies the condi-

tions of Wirsing’s theorem with κ = 1. Applying that theorem and partial summation (in

a manner seen already in the proof of Theorem 1·1), we find that
∑
d≤x1/10 g(d)� log x

for large x. Hence, the main term here is � x.

5·2. Upper bound

We require standard upper bounds on counts of smooth numbers. Recall that a positive

integer n is said to be y-smooth (or y-friable) if no prime dividing n exceeds y. We write

Ψ(x, y) for the count of y-smooth numbers n ≤ x.

Proposition 5·2. Suppose that x ≥ y ≥ 2.

(i) If u := log x
log y is sufficiently large (i.e., larger than a certain absolute constant) and

y ≥ (log x)2, then Ψ(x, y) ≤ x exp(− 1
2u log u).

(ii) Suppose A > 1 is fixed and put y = (log x)A. Then

Ψ(x, y) = x1− 1
A+o(1), as x→∞.

Both results are discussed in Granville’s survey article [17]; for (i), see his eq. (1.12), and

for (ii), see his (1.14).

The required information about elliptic curves is contained in the following upper

estimate, also due to David and Wu [9, Theorem 2.3(iii)].

Proposition 5·3 (conditional on GRH). Let E/Q be a fixed elliptic curve without
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complex multiplication. Uniformly for positive integers d ≤ x1/5/ log x, the number of

p ≤ x of good reduction for which d | #E(Fp) is

� Li(x)

ϕ(d)
. (5·2)

(In accordance with our convention, the implied constant here may depend on E.)

Proof of the upper bound in Theorem 1·3 Given a prime p ≤ x of good reduction, let

us write

#E(Fp) = (p1 · · · pj)(pj+1 · · · pJ),

where p1 ≤ p2 ≤ · · · ≤ pJ and j is the largest index with p1 · · · pj ≤ x1/6.

Suppose p is such that J − j ≤ 12. Then

τ(#E(Fp)) ≤ τ(p1 · · · pj)τ(pj+1) · · · τ(pJ)

≤ 212τ(p1 · · · pj) ≤ 212
∑

d|#E(Fp)

d≤x1/6

1.

(In the first step, we used the easy-to-check fact that τ is submultiplicative: τ(ab) ≤
τ(a)τ(b) for every pair of positive integers a and b.) Using (5·2), the sum of τ(#E(Fp))

over these p is

�
∑

d≤x1/6

∑∗

p≤x
d|#E(Fp)

1� Li(x)
∑

d≤x1/6

1

ϕ(d)
� x,

since the final sum on d is � log x (by the now-familiar method of bounding sums by

Euler products).

For the rest of the proof, we shall suppose that J − j > 12. Then pj+1 < x1/12;

otherwise, #E(Fp) ≥ pj+1 · · · pJ ≥ x13/12, contradicting that #E(Fp) ≤ 2x. (We assume

here, as throughout the proof, that x is large.) The maximality of j now implies that

p1 · · · pj > x1/6/pj+1 > x1/12.

Since pj < x1/12, one can choose an integer r ≥ 12 so that

x
1
r+1 ≤ pj < x

1
r .

The plan for the remainder of the proof is to estimate the contribution from each possible

value of r and then to sum on r.

Since pj+1 ≥ x
1
r+1 , we must have J − j ≤ r + 1; otherwise, pj+1 · · · pJ ≥ pJx ≥

2x > #E(Fp), which is absurd. Thus, τ(pj+1 · · · pJ) ≤ 2r+1. An alternative upper bound

is provided by the maximal order of the divisor function, which guarantees that every

n ≤ 2x has at most exp(log x/ log log x) divisors (see [22, Theorem 317, p. 345]). Putting

these two facts together,

τ(pj+1 · · · pJ) ≤ min{2r+1, exp(log x/ log log x)} =: Mr.
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Thus,

τ(#E(Fp)) ≤ τ(pj+1 · · · pJ)τ(p1 · · · pj) ≤Mrτ(p1 · · · pj)

≤ 2Mr

∑
d|p1···pj
d≥√p1···pj

1 ≤ 2Mr

∑
d|#E(Fp)

x1/24<d≤x1/6

q|d⇒q≤x1/r

1.

We now sum on p (keeping (5·2) in mind) and then on r. We find that the sum of

τ(#E(Fp)) over the remaining values of p is

� Li(x)
∑

12≤r≤ log x
log 2

Mr

∑
x1/24<d≤x1/6

q|d⇒q≤x1/r

1

ϕ(d)
. (5·3)

Note that we have restricted r in order to have x1/r ≥ 2.

To continue, we investigate the contribution to (5·3) from various ranges of r. First

suppose r is very large, meaning that x1/r ≤ (log x)2. In this case, for all t with x1/24 ≤
t ≤ x1/6, we have x1/r ≤ (log t)5/2, and so Ψ(t, x1/r) ≤ t2/3 (say), from Proposition

5·2(ii). Using the lower estimate ϕ(d)� d/ log log x along with partial summation,

∑
x1/24<d≤x1/6

q|d⇒q≤x1/r

1

ϕ(d)
� log2 x

(
Ψ(x1/6, x1/r)

x1/6
+

∫ x1/6

x1/24

Ψ(t, x1/r)

t2
dt

)
� log2 x · x−1/72.

Using Mr ≤ exp(log x/ log log x) in (5·3), we see that these r contribute

� Li(x) · exp(log x/ log log x) · log x · (log2 x · x−1/72)� x0.99.

Suppose now that x1/r ≥ (log x)2. Then also x1/r ≥ (log t)2 whenever x1/24 ≤ t ≤ x1/6.

Moreover, for t in this range we have log t
log (x1/r)

≥ 1
24r. Assuming that r exceeds a certain

absolute constant, Proposition 5·2(i) shows that Ψ(t, x1/r) ≤ t exp(− 1
50r log r). Applying

partial summation gives ∑
x1/24<d≤x1/6

q|d⇒q≤x1/r

1

d
� exp(− 1

50
r log r) log x.

To obtain a corresponding upper bound on the sum of 1
ϕ(d) , we apply Cauchy–Schwarz:

∑
x1/24<d≤x1/6

q|d⇒q≤x1/r

1

ϕ(d)
�

( ∑
x1/24<d≤x1/6

q|d⇒q≤x1/r

1

d

)1/2( ∑
d≤x1/6

d

ϕ(d)2

)1/2

.

We already estimated the first right-hand sum, while the second right-hand sum is �∏
q≤x1/6(1 + q/ϕ(q2) + . . . )� log x. Consequently,∑

x1/24<d≤x1/6

q|d⇒q≤x1/r

1

ϕ(d)
� exp(− 1

100
r log r) log x.

Inserting this estimate back into (5·3) and using Mr � 2r, we see that this range of r



18 Paul Pollack

contributes

� Li(x) · log x ·
∑
r

2r exp(− 1

100
r log r)� x,

since the sum on r is O(1).

It remains to consider absolutely bounded values of r. But these can be handled triv-

ially. The sum on d in (5·3) is always O(log x), and so each individual r contributes only

O(x). So the contribution from absolutely bounded r is also O(x).

Remarks.

(i) Wolke has shown how Erdős’s method can be applied to estimate the average

of the divisor function (and similar functions) along general sequences satisfying

standard sieve hypotheses [35]. Although his upper bound result [35, Satz 1] is

stated in a form that precludes a direct application in our context, its proof has

much in common with the arguments presented above.

(ii) Erdős’s method, in an incarnation very similar to that presented above, can be

used to improve a recent result of Gun and Murty [16]. Assume GRH for Artin

L-series. Let f be a cusp form for Γ0(N) of even weight k ≥ 2 that is a normalized

eigenform for the Hecke operators. Assume that f does not have complex multi-

plication. Write f(z) =
∑
n≥1 an exp(2πinz), and suppose that each an ∈ Z. Gun

and Murty proved that for x > x0(f),

x�f

∑
p≤x
a(p)6=0

τ(a(p))�f x(log x)Of (1).

They used a majorant for the divisor function appearing in [13]. If Erdős’s method

is used in its stead, one gets an upper bound of �f x, and thus the correct order

of magnitude for the sum.

6. Heuristic arguments

We set up for the proof of Conjecture 1·2 by studying certain matrix counts modulo

n. Let

NC(n) = #{g ∈ GL2(Z/nZ) : det(g) + 1− tr(g) = 0}.

By the Chinese remainder theorem, NC(n) is multiplicative in n, and so to determine

NC(n) in general it suffices to study the case when n = qk is a prime power.

Let NC(r;n) be defined in the same way as NC(n) but with the additional restriction

that det g = r. The next result is a special case of a theorem of Castryck and Hubrechts

[4].

Proposition 6·1. Let q be a prime, and let k be a positive integer. For every integer

r coprime to q,

NC(r; qk) =

{
q2k + q2k−1 if (r − 1)2 6≡ 0 (mod qk),

q2k + q2k−1 − qb(3k−1)/2c otherwise.

Proof. This follows from the formulas for Ψ(∆) in [4] upon choosing ∆ = (r− 1)2; see

[4, p. 234] for these formulas in the case of odd q (there denoted `) and [4, p. 237] for

the case q = 2.
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Corollary 6·2. For each positive integer k,

NC(qk) = q3k − q3k−2 − q2k−1.

Proof. We sum NC(r; qk) over a complete set of invertible residue classes r mod qk.

Since (r − 1)2 ≡ 0 (mod qk) precisely when r ≡ 1 (mod qdk/2e), the number of such r

mod qk is qbk/2c. Hence,

NC(qk) =
∑
r

NC(r; qk) = (q2k+q2k−1)(ϕ(qk)−qbk/2c)+(q2k+q2k−1−qb(3k−1)/2c)qbk/2c.

This simplifies, after straightforward computations, to the formula of the corollary.

Derivation of Conjecture 1·2 Fix a non-CM elliptic curve E/Q. For each integer d,

let Ld = Q(E[d]) be the field obtained by adjoining the coordinates of the d-torsion

points over Q. Since E[d](Q) ∼= Z/dZ ⊕ Z/dZ, the action of G(d) := Gal(Ld/Q) on

E[d](Q) induces (upon choosing a basis for the d-torsion) an injective homomorphism

ρd : G(d) ↪→ GL2(Z/dZ). A remarkable theorem of Serre [29] asserts the existence of a

natural number ME with the following properties:

• If (d,ME) = 1, then ρd is an isomorphism,

• If (d1,ME) = (d1, d2) = 1, then G(d1d2) ∼= G(d1)×G(d2),

• If ME | d, then G(d) ⊂ GL2(Z/dZ) is the full inverse image of the set G(ME) ⊂
GL2(Z/MEZ) under the projection map.

Suppose that p is a prime not dividing d ·NE , where NE is the conductor of E. Then

d | #E(Fp) precisely when some (and hence, every) Frobenius element g of p, viewed as

an element of GL2(Z/dZ), satisfies

det(g) + 1− tr(g) ≡ 0 (mod d). (6·1)

Let C(d) consist of those g ∈ G(d) satisfying (6·1). The Chebotarev density theorem now

implies that if d is bounded by a suitably slow-growing function of x, then the number

of primes p ≤ x for which d | #E(Fp) is ≈ π(x)#C(d)
#G(d) . Indeed, this is how David and Wu

established (5·1) and (5·2). To derive Conjecture 1·2, we pretend that this approximation

is valid for d up to size ≈ x, at least on average. By exploiting symmetry (in a way similar

to that seen in the proof of Theorem 1·1), we could relax this assumption to the range

d / x1/2 by a slightly more complex argument. Since even that limited range is beyond

the limits of current technology, and since this would not affect our conclusion, we do

not bother with this.

Write d = d1d2, where every prime dividing d1 divides ME and where gcd(d2,ME) = 1.

Appealing again to Serre’s results, we see that

#C(d)

#G(d)
=

#C(d1)

#G(d1)
· NC(d2)

#GL2(Z/d2Z)
.

If p ≤ x and x is sufficiently large, then #E(Fp) ≤ 2x. The prediction of the last
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paragraph leads to the guess that∑∗

p≤x

τ(#E(Fp))
?∼ π(x)

∑
d1d2≤2x

q|d1⇒q|ME

gcd(d2,ME)=1

#C(d1)

#G(d1)
· NC(d2)

#GL2(Z/d2Z)

= π(x)
∑
d1≤2x

q|d1⇒q|ME

#C(d1)

#G(d1)

∑
d2≤2x/d1

gcd(d2,ME)=1

NC(d2)

#GL2(Z/d2Z)
.

For the moment, we focus attention on the sum on d2. Let f be the multiplicative

function n 7→ NC(n)
GL2(Z/nZ)1(n,ME)=1. Corollary 6·2 gives us an exact expression for NC(qk).

Moreover, it is elementary to compute that

#GL2(Z/qkZ) = q4(k−1) ·#GL2(Z/qZ) = q4(k−1)q(q − 1)2(q + 1). (6·2)

One can use these expressions to check that the function F (n) := nf(n) satisfies the

hypotheses of Proposition 2·1 with κ = 1. Applying Wirsing’s theorem, Mertens’ theorem,

and partial summation as in the proof of Theorem 1·1 — specifically the computation

there of the mean value of g([8, d])/g(8) — we conclude that as y →∞,

∑
n≤y

f(n) ∼

∏
q≤y

(
1− 1

q

)(
1 + f(q) + f(q2) + . . .

) log y

∼ ϕ(ME)

ME

∏
q≤y
q-ME

((
1− 1

q

)(
1 +

∞∑
k=1

NC(qk)

#GL2(Z/qkZ)

))
log y. (6·3)

To handle the sum on k, we use the evaluation of NC(qk) from Corollary 6·2 together

with (6·2). After summing the geometric series that appear and simplifying, we find that

1 +

∞∑
k=1

NC(qk)

#GL2(Z/qkZ)
=

q5 − q3 − 1

(q2 − 1)2(q − 1)
,

so that (
1− 1

q

)(
1 +

∞∑
k=1

NC(qk)

#GL2(Z/qkZ)

)
= 1 +

q3 − q − 1

(q2 − 1)2q
.

Since this expression is always nonzero and has the form 1 + O(1/q2), the product over

q in (6·3) tends, as y →∞, to the positive limit

cE,Euler :=
∏
q

(
1 +

q3 − q − 1

(q2 − 1)2q

)
.

Thus,
∑
n≤y f(n) ∼ ϕ(ME)

ME
cE,Euler · log y, as y →∞.

Ignoring the error in the above approximation of
∑
n≤y f(n), we are led to expect that∑

d1≤2x

∑
d1≤2x

q|d1⇒q|ME

#C(d1)

#G(d1)

∑
d2≤2x/d1

gcd(d2,ME)=1

NC(d2)

#GL2(Z/d2Z)

∼ ϕ(ME)

ME
cE,Euler

∑
d1≤2x

q|d1⇒q|ME

#C(d1)

#G(d1)
log

2x

d1
,
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as x→∞. (In fact, this part of the argument could easily be made rigorous.) Now David

and Wu have shown that for every d1 supported on the primes dividing ME , one has

#C(d1)/#G(d1)� 1/ϕ(d1), where the constant may depend on E (see [9, Lemma 2.2]).

Hence,

cE,bad :=
∑
d1≥1

q|d1⇒q|ME

#C(d1)

#G(d1)
<∞.

(Indeed, the sum defining cE,bad is �
∏
q|ME

(
∑∞
k=0 ϕ(qk)−1).) Clearly, cE,bad > 0, since

d1 = 1 already contributes 1 to the sum. By partial summation,∑
d1≤2x

q|d1⇒q|ME

#C(d1)

#G(d1)
log

2x

d1
∼ cE,bad log x.

Putting the pieces back together, we are left with the conjecture that∑∗

p≤x

τ(#E(Fp))
?∼ ϕ(ME)

ME
cE,badcE,Euler · (π(x) log x),

which is equivalent to Conjecture 1·2 with cE = ϕ(ME)
ME

cE,badcE,Euler.

Remark. We conclude the paper by describing a double average variant of Conjecture

1·2. Define

cEuler =
∏
q

(
1 +

q3 − q − 1

(q2 − 1)2q

)
.

It seems plausible that the average value of τ(#E(Fp)), taken over all p ≤ x and curves

E mod p, is ∼ cEuler log x, as x→∞.

Let us be more precise. By
∑†
E/Fp

, we agree to mean a sum over isomorphism classes

of elliptic curves E mod p, where the terms corresponding to the class of E are weighted

by the factor 1
#AutFp (E) . If p > 3, then there are precisely p−1

#AutFp (E) short Weierstrass

equations over Fp defining curves isomorphic to E. Thus, our convention on
∑†
E/Fp

corre-

sponds to assigning each short Weierstrass equation equal weight. (The cases when p = 2

and p = 3 may be ignored for our purposes, since they make a vanishing contribution

once we average over p.)

Gekeler [15, Corollary 5.2] has determined the ‘probability’ that a random elliptic

curve over a prime finite field has order divisible by a fixed natural number d:∑
p≤x

∑†

E/Fp
1d|#E(Fp)∑

p≤x

∑†

E/Fp
1

→ g(d) (as x→∞), (6·4)

where

g(d) :=
1

d

∏
qk‖d

q3 − q − q2−k

(q2 − 1)(q − 1)
.

For each p ≤ 2x and each curve E/Fp, we have τ(#E(Fp)) =
∑
d≤2x 1d|E(Fp). Comparing
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with (6·4) suggests that perhaps∑
p≤x

∑†

E/Fp
τ(#E(Fp))∑

p≤x

∑†

E/Fp
1

?∼
∑
d≤2x

g(d) (as x→∞). (6·5)

The function d 7→ d · g(d) satisfies the conditions of Proposition 2·1 with κ = 1, and a

now-familiar argument shows that∑
d≤2x

g(d) ∼
∏
q≤2x

(
1− 1

q

)(
1 + g(q) + g(q2) + . . .

)
log x,

as x→∞. A direct computation shows that(
1− 1

q

)(
1 + g(q) + g(q2) + . . .

)
=

(
1− 1

q

)(
1 +

∞∑
k=1

1

qk
q3 − q − q2−k

(q2 − 1)(q − 1)

)
=

(
1− 1

q

)(
q5 − q3 − 1

(q2 − 1)2 · (q − 1)

)
= 1 +

q3 − q − 1

(q2 − 1)2q
,

which is the qth factor in cEuler. Thus, the right-hand side of (6·5) is ∼ cEuler log x.

Gekeler’s arguments rely on earlier work of Howe [19], who obtained his results from a

detailed study of modular curves (extending an approach of Lenstra [25]). Unfortunately,

the error terms in Howe’s work are too large to rigorously justify the conjecture of the last

paragraph. Nevertheless, the similarity between cEuler and cE,Euler is rather encouraging,

given that Conjecture 1·2 was suggested by an entirely distinct line of reasoning.
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