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A POLYNOMIAL ANALOGUE OF THE TWIN PRIME
CONJECTURE

PAUL POLLACK

Abstract. We consider the problem of counting the number of (not neces-

sarily monic) ‘twin prime pairs’ P, P + M ∈ Fq [T ] of degree n, where M is
a polynomial of degree < n. We formulate an asymptotic prediction for the

number of such pairs as qn →∞ and then prove an explicit estimate confirm-

ing the conjecture in those cases where q is large compared with n2. When
M has degree n− 1, our theorem implies the validity of a result conditionally

proved by Hayes in 1963. When M has degree zero, our theorem refines a

result of Effinger, Hicks & Mullen.

1. Introduction

1.1. A uniform conjecture. Let M be a nonzero polynomial over a finite field
Fq, and let R(n;M, q) denote the number of ‘twin prime pairs’ P, P +M , where P
runs over the irreducible polynomials of degree n. Reasoning in analogy with the
usual heuristic arguments offered for configurations of rational primes (compare,
e.g., with [11, pp. 409-411]), we are led to expect that for n > degM ,

(1) R(n;M, q) ≈ R0(n;M, q),

where

R0(n;M, q) := (q − 1)
qn

n2

∏
Q|M

(
1− 1
|Q|

)−1 ∏
Q-M

(
1− 2
|Q|

)(
1− 1
|Q|

)−2

.

(For a nonzero polynomial N ∈ Fq[T ], we denote by |N | the number of elements
in the ring Fq[T ]/(N), that is, |N | = qdegN .) Here and below Q denotes a generic
monic irreducible over Fq. The factor of q − 1 in front stems from the fact that P
is not restricted to monic values.

There are various ways one might attempt to make the approximation (1) precise;
perhaps the most obvious is to fix q and M , and to read (1) as an asymptotic
estimate as n tends to infinity. Various special cases of such a conjecture were
proposed by Effinger, Hicks & Mullen (see [3]). Little is known in this direction;
in fact it was only recently that Hall [4, p. 140] showed the existence of infinitely
many twin prime pairs P, P + M over Fq in the special case when M is constant
(and q > 3), but his clever proof yields very weak lower bounds on the number of
such pairs. For a discussion of Hall’s results and some generalizations, see [8].

A different approach is suggested by another result from the same paper of
Effinger, Hicks & Mullen. A special case of these authors’ Proposition 1 (op. cit.)
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is that for M a nonzero constant polynomial, one has R(n;M, q) > 0 for q ≥ 2n.
This suggests that R(n;M, q) may be more amenable to study as a function of
multiple parameters. Once in this frame of mind, it is easy to formulate a more
uniform conjecture, justified by the same classical heuristic alluded to above:

Conjecture 1. Let M be a nonzero polynomial of degree < n over Fq. Then

R(n;M, q) = (1 + o(1))R0(n;M, q) as qn →∞,
uniformly in M . In other words: For every ε > 0, there is a constant B = B(ε)
with the property that whenever M is a nonzero polynomial over Fq of degree < n
and qn > B, we have

|R(n;M, q)−R0(n;M, q)| < εR0(n;M, q).

The purpose of this note is to prove an explicit estimate for R(n;M, q) which
confirms Conjecture 1 whenever q/n2 tends to infinity (uniformly in the choice of
M ∈ Fq[T ] of degree < n).

1.2. Statement of the main result. Considering again the right hand side of the
approximation (1), we observe that each factor in the second product is 1+O(|Q|−2).
From this one may deduce that

R0(n;M, q) = (1 +O(1/q))
qn+1

n2

∏
Q|M

(
1− 1
|Q|

)−1

.

In particular, Conjecture 1 would imply that as q →∞, we have

(2) R(n;M, q) = (1 + o(1))
qn+1

n2

∏
Q|M

(
1− 1
|Q|

)−1

,

uniformly in n and M (with 0 ≤ degM < n).
We can now state our main result. We write φ(M) for the number of units in

the ring Fq[T ]/(M); note that
∏
Q|M (1− 1/|Q|)−1 = |M |/φ(M).

Theorem 1. Let k ≥ 0 and n ≥ 2 be integers with 0 ≤ k < n. Let M be a
polynomial of degree k over Fq. Then

−q
n

n
− 4

|M |
φ(M)

qn/p+1

n2
≤ R(n;M, q)− |M |

φ(M)
qn+1

n2
≤ qn − qn

n
+ 2

qn/p

n
,

where p is the least prime divisor of n.

In the omitted case k = 0 and n = 1, it is easy to see that one has the exact
expression R(n;M, q) = q2 − q.

Remark. As a consequence of Theorem 1, we see that

1 +O(n/q) ≤ R(n;M, q)
(|M |/φ(M))qn+1/n2

≤ 1 +O(n2/q).

Thus if qn tends to infinity in such a way that n2/q tends to zero, we have the
asymptotic for R(n;M, q) predicted by (2), while the lower bound aspect of this
asymptotic holds already if n/q tends to zero. These estimates can be compared
with the uniform upper bound

(3) R(n;M, q) ≤ 8
|M |
φ(M)

qn+1

n2
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which follows from an application of Selberg’s upper-bound sieve, as developed in
the polynomial setting by Webb (see [13]). Full details of the proof of (3) are
supplied in the appendix.

When k = n−1, a weaker version of Theorem 1 was stated by Hayes [5, Theorem
2]. However, the proof of his lower bound on R(n;M, q) contained a gap [6], and
he salvaged his main result only under additional hypotheses. Our argument for
the upper bound in Theorem 1 closely follows Hayes. Our proof of the lower bound
rests on a simple averaging argument applied to the well-known formula for the
number of prime polynomials of a given degree.

Finally, we remark that if we let P run over only monic primes, then we still
believe the analogue of Conjecture 1, but obtaining an analogue of Theorem 1 ap-
pears substantially more difficult. A somewhat weaker result in the case of constant
polynomials M is contained in the main theorem of [9].

Notation. We use p to denote the least prime factor of the integer n. (Thus p is
not necessarily the characteristic of Fq.) We write π(n; q) for the number of monic
primes of degree n over Fq; for future use we record here the well-known estimates

(4)
qn

n
− 2

qn/p

n
≤ π(n; q) =

1
n

∑
d|n

µ(d)qn/d ≤ qn

n
.

All sums and products indexed by Q are to be taken only over monic primes Q.

2. An explicit formula for primes in certain residue classes

Let M be the (multiplicative) monoid of monic polynomials over Fq. If l ≥ 0
and M ∈ M, we define a relation Rl,M on M by saying that A ≡ B (mod Rl,M )
if and only if A and B have the same first l next-to-leading coefficients and A ≡ B
(mod M). Then Rl,M is a congruence relation on M, i.e., an equivalence relation
satisfying

A ≡ B mod Rl,M ⇒ AC ≡ BC mod Rl,M for all A,B,C ∈M.

Thus there is a well-defined quotient monoid M/Rl,M . It can be shown that an
element of M is invertible modulo Rl,M if and only if it is coprime to M . The
units of this monoid form an abelian group of size qlφ(M), which we denote by
(M/Rl,M )× (cf. [7, Theorem 8.6]).

Now fix l ≥ 0 and M ∈ M. Let χ be a character of (M/Rl,M )×, and lift χ
to a function on M (defining χ to vanish at elements of M that are nonunits of
M/Rl,M ). For u ∈ C with |u| < 1/q, define

(5) L(u, χ) :=
∏
Q

(1− χ(Q)udegQ)−1.

If χ is nontrivial, then L(u, χ) is a polynomial in u, and for some integer a(χ) ≤
l + degM , we have a factorization

(6) L(u, χ) =
a(χ)∏
i=1

(1− βi(χ)u),

where from Weil’s Riemann Hypothesis and the work of Rhin [10, Chapter 2] we
know that |βi(χ)| ≤ q1/2 for 1 ≤ i ≤ a(χ). (Cf. the proof of [2, Theorem 5.7].)
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From the Euler product representation (5), we deduce

u
L′(u, χ)
L(u, χ)

=
∑
Q

degQ
χ(Q)udegQ

1− χ(Q)udegQ

=
∞∑
N=1

uN
∑

degQj=N

χ(Qj) degQ,

while from (6), we have

u
L′(u, χ)
L(u, χ)

= −
a(χ)∑
i=1

βi(χ)u
1− βi(χ)u

= −
∞∑
N=1

uN

a(χ)∑
i=1

βi(χ)N

 .

Comparing coefficients in these two expansions, we conclude that∑
degQj=N

χ(Qj) degQ = −
a(χ)∑
i=1

βi(χ)N .

On the other hand, if χ = χ0, then

L(u, χ) =
1

1− qu
∏
Q|M

(1− udegQ) =
1

1− qu

a(χ0)∏
i=1

(1− βi(χ0)u),

for certain roots of unity βi(χ0) (say), the number of which, say a(χ0), is exactly∑
Q|M degQ ≤ degM . Proceeding as above we find

∑
degQj=N

χ0(Qj) degQ = qN −
a(χ0)∑
i=1

βi(χ0)N .

It is worth noting for future use that the right hand sum is always nonnegative,
since

∑
degQj=N degQ = qN .

Combining these results with the orthogonality relations for characters, we de-
duce the following explicit formula for primes in residue classes modulo Rl,M :

Lemma 1. Let A be a polynomial prime to M . Then

qlφ(M)
∑

Qj≡A (mod Rl,M )

degQj=N

degQ = qN −
∑
χ

χ̄(A)
a(χ)∑
i=1

βi(χ)N ,

where χ runs over all characters modulo Rl,M . Here a(χ) ≤ l + degM for all χ,
and each |βi(χ)| ≤ q1/2.

3. Proof of Theorem 1

3.1. A heuristic. Let M be a polynomial of degree k over Fq and suppose n > k.
Let h(T ) range over a set of representatives of the units modulo Rn−1−k,M , and
let Nh be the number of monic primes of degree n congruent to h(T ) modulo
Rn−1−k,M . (If we choose our representatives h(T ) from the set of monic, degree n
polynomials, then Nh can be interpreted as the number of prime polynomials in the
q-element set {h(T )+αM}, where α ranges over Fq.) Then

∑
hN

2
h is precisely the

number of monic prime pairs Q,Q′ of degree n whose difference is an Fq-multiple
of M . If Q′−Q is nonzero for such a pair, then necessarily Q′−Q = αM for some
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α ∈ F×q . But then α−1Q and α−1Q′ form a pair of primes differing by M . Thus,
removing the pairs where Q = Q′, we find that

(7) R(n;M, q) =
∑
h

N2
h − π(n; q).

There are a total of qnφ(M)/|M | monic, degree n polynomials which are prime to
M , of which about qn/n are irreducible. Thus, a random monic, degree n polyno-
mial coprime to M is irreducible with probability about n−1|M |/φ(M). Hence it
is natural to guess that Nh is roughly (q/n)|M |/φ(M) for each h, and this leads us
to expect that∑

h

N2
h ≈ (q/n)2(|M |/φ(M))2#(M/Rn−1−k,M )× =

q2

n2

|M |2

φ(M)2
qn−1−kφ(M) =

|M |
φ(M)

qn+1

n2
.

3.2. Lower bound. To obtain a lower bound it is not necessary to understand
the numbers Nh individually. Since every monic prime of degree n belongs to some
unit residue class modulo Rn−1−k,M , we have

∑
hNh = π(n; q), so that by the

Cauchy-Schwarz inequality and (4),

∑
h

12
∑
h

N2
h ≥

(∑
h

Nh

)2

≥ q2n

n2
− 4

qn(1+1/p)

n2
,

and so ∑
h

N2
h ≥

1
qn−1−kφ(M)

(
q2n

n2
− 4

qn(1+1/p)

n2

)

=
|M |
φ(M)

(
qn+1

n2
− 4

qn/p+1

n2

)
.

The relation (7) now implies that

(8) R(n;M, q) ≥ |M |
φ(M)

qn+1

n2
− 4

|M |
φ(M)

qn/p+1

n2
− π(n; q).

The upper estimate π(n; q) ≤ qn/n completes the proof of the lower bound.

3.3. Upper bound. From Lemma 1, if h is a representative of a unit residue class
modulo Rn−1−k,M , then

qn−1−kφ(M)nNh ≤ qn−1−kφ(M)
∑

Qj≡h (mod Rn−1−k,M )

degQj=n

degQ

= qn −
∑
χ

χ(h)
a(χ)∑
i=1

βi(χ)n.
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Now square both sides and sum over h:

n2q2(n−1−k)φ(M)2
∑
h

N2
h ≤

∑
h

q2n − 2qn
∑
h

∑
χ

χ(h)
a(χ)∑
i=1

βi(χ)n

+
∑
h

∑
χ,χ′

χ(h)χ′(h)
∑

1≤i≤a(χ)
1≤j≤a(χ′)

βi(χ)nβj(χ′)n.

Interchanging the sums over h with the sums over χ and χ′, and using the orthog-
onality relations once again, we find that the right hand side simplifies to

qn−1−kφ(M)q2n − 2qnqn−1−kφ(M)
a(χ0)∑
i=1

βi(χ0)n

+
∑
h

∑
χ

∑
1≤i≤a(χ)

1≤j≤a(χ−1)

βi(χ)nβj(χ−1)n.

As noted above, the first sum appearing here is nonnegative, and so the entire term
it belongs to is nonpositive and can therefore be ignored, since we are looking for
an upper bound. Moreover, since |βi(χ)| and |βj(χ−1)| are bounded by q1/2, and
both a(χ) and a(χ−1) are bounded by n − 1, the triple sum here is bounded in
absolute value by

(qn−1−kφ(M))2(qn/2)2n2 = q3n−2−2kφ(M)2n2.

Thus ∑
h

N2
h ≤

q3n−1−kφ(M) + q3n−2−2kφ(M)2n2

n2q2n−2−2kφ(M)2
,

so that

R(n;M, q) =
∑
h

N2
h − π(n; q)

≤ |M |
φ(M)

qn+1

n2
+ qn − π(n; q).

Inserting the lower estimate for π(n; q) from (4) completes the proof of the upper
bound.

Appendix: An upper bound for twin prime pairs in Fq[T ]

In this section we establish the following estimate:

Lemma 2. Let n ≥ 2 be an integer, and let M 6= 0 be a polynomial of degree < n
over the finite field Fq. Then

#{P : P, P +M are both monic irreducibles of degree n} ≤ 8
|M |
φ(M)

qn

n2
.

As a corollary, we have

R(n;M, q) ≤ 8
|M |
φ(M)

qn+1

n2
,

whenever 0 ≤ degM < n.
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The estimate of Lemma 2 is analogous to an explicit upper bound on generalized
twin prime pairs obtained by Riesel and Vaughan ([12, Lemma 5]), but working in
the polynomial setting enables us to give a much simpler proof. We begin with a
statement of Selberg’s upper-bound sieve for polynomials (cf. [13, Theorem 1]).

Lemma 3 (Selberg’s Λ2-sieve for Fq[T ]). Let A be a multiset of polynomials over
Fq, and let Q be a finite set of monic irreducibles over Fq. Suppose that f is
a multiplicative function defined on the squarefree divisors of

∏
Q∈QQ with 1 <

f(Q) ≤ |Q| for each Q ∈ Q, and write

(9)
∑
A∈A
D|A

1 =
#A
f(D)

+RD.

Let D be any nonempty subset of the monic divisors of
∏
Q∈QQ which is divisor

closed (i.e., every monic divisor of an element of D belongs to D). Then∑
A∈A

gcd(A,
∏

Q∈QQ)=1

1 ≤ #A∑
D∈D f(D)−1

∏
Q|D

(
1− f(Q)−1

)−1

+
∑

D1,D2∈D
|XD1XD2R[D1,D2]|,

where

XD = µ(D)f(D)

∑
C∈D,D|C f(C)−1

∏
Q|C

(
1− f(Q)−1

)−1

∑
C∈D f(C)−1

∏
Q|C

(
1− f(Q)−1

)−1 .

Before proceeding we introduce a bit more notation. Let A be a nonzero poly-
nomial over Fq. Then we can express A uniquely in the form

A = εQe11 Q
e2
2 · · ·Qer

r ,

where ε ∈ F×q and the Qi are distinct monic irreducibles. We define the arithmetic
functions Ω(·), d(·), and rad(·) in analogy with their integer counterparts by setting

Ω(A) :=
r∑
i=1

ei, d(A) :=
r∏
i=1

(ei + 1), rad(A) :=
r∏
i=1

Qi.

Proof of Lemma 2. In the case when q = 2, we may assume that T (T + 1) divides
M , since otherwise there are no prime pairs P, P + M of degree n. Thus |Q| > 2
for every prime Q not dividing M . Define the multiset

A := {A(A+M) : A monic,degA = n}.

Let Q be the set of monic primes of degree ≤ n/2. Then the number of monic,
degree n prime pairs P, P +M is precisely the number of elements of A coprime to∏
Q∈QQ, a quantity which may be estimated with Lemma 3.
We take D to be the (divisor-closed) set of squarefree, monic polynomials of

degree ≤ n/2. Define the multiplicative function f appearing in Lemma 3 by
setting (for monic primes Q)

f(Q) =

{
|Q|/2 if Q does not divide M,

|Q| if Q divides M,
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and extending f to be a completely multiplicative function on the monoid of monic
polynomials. It is easy to check that if the squarefree polynomial D has degree
≤ n, then (9) holds without any error term, i.e., with RD = 0.

Since the least common multiple of any pair D1, D2 ∈ D has degree ≤ n, we
obtain from Lemma 3 the following clean inequality:

(10)
∑
A∈A

gcd(A,
∏

Q∈QQ)=1

1 ≤ #A∑
D∈D f(D)−1

∏
Q|D

(
1− f(Q)−1

)−1 .

To proceed we need a lower bound on the denominator in this expression. For
each D ∈ D, write D = D1D2, where D1 divides M and D2 is prime to M . Then
we have

f(D)−1
∏
Q|D

(
1− f(Q)−1

)−1

=
∏
Q|D1

1
|Q| − 1

∏
Q|D2

2
|Q| − 2

,

using |Q| > 2 for every Q dividing D2. Thus we have reduced the problem to
obtaining a lower bound on∑

D∈D

∏
Q|D1

1
|Q| − 1

∏
Q|D2

2
|Q| − 2

=
∑
D∈D

∏
Q|D1

(
1
|Q|

+
1
|Q|2

+
1
|Q|3

+ . . .

) ∏
Q|D2

(
2
|Q|

+
4
|Q|2

+
8
|Q|3

+ . . .

)
.

We may rewrite this expression as∑
A monic

2Ω(A2)

|A|
∑
D∈D

rad(A)=D

1,

where A2 denotes that part of A supported on the primes not dividing M . The
inner sum is at least 1 whenever degA ≤ n/2, which yields a lower bound of

(11)
∑

A2 monic
degA2≤n/2

gcd(A2,M)=1

2Ω(A2)

|A2|
∑

A1 monic
degA1≤n/2−degA2

rad(A1)|M

1
|A1|

.

Now 2Ω(A2) ≥ d(A2), while for the inner sum we have∑
A1 monic

degA1≤n/2−degA2
rad(A1)|M

1
|A1|

=
φ(M)
|M |

∑
A1 monic

degA1≤n/2−degA2
rad(A1)|M

1
|A1|

∏
Q|M

(
1− 1
|Q|

)−1

=
φ(M)
|M |

∑
A1 monic

degA1≤n/2−degA2
rad(A1)|M

1
|A1|

∑
B monic

rad(B)|M

1
|B|

≥ φ(M)
|M |

∑
C monic

degC≤n/2−degA2
rad(C)|M

d(C)
|C|

.
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Assembling these results, we find that (11) is bounded below by

φ(M)
|M |

∑
A monic

degA≤n/2

d(A)
|A|

.

By a result of Carlitz, we have
∑

A monic
degA=k

d(A) = (k+ 1)qk (see [1]), and so our final

sum is just ∑
0≤k≤n/2

(k + 1) ≥ n2

8
,

so that (11) is bounded below by (φ(M)/|M |)n2/8. Since the numerator in (10) is
#A = qn, we obtain the stated result. �

Remark. Let Iq(n) denote the set of monic irreducibles of degree n over Fq. Then
our argument shows that for any nonzero polynomial M (without any restriction
on its degree) there are at most 8(|M |/φ(M))qn/n2 values of P ∈ Iq(n) for which
P + M is free of prime factors of degree ≤ n/2. As a consequence, there are at
most

8
|M |
φ(M)

qn

n2
+ qbn/2c+1

values of P ∈ Iq(n) for which P +M is irreducible, where the qbn/2c+1 term can be
omitted unless M has degree n and leading coefficient −1. (The extra term is due
to irreducible values of P +M which are nevertheless removed in the sieve because
deg(P +M) ≤ n/2.)
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