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SIMULTANEOUS PRIME SPECIALIZATIONS OF POLYNOMIALS OVER

FINITE FIELDS

PAUL POLLACK

Abstract

Recently the author proposed a uniform analogue of the Bateman-Horn conjectures for polynomials with
coefficients from a finite field (i.e., for polynomials in Fq [T ] rather than Z[T ]). Here we use an explicit form
of the Chebotarev density theorem over function fields to prove this conjecture in particular ranges of the
parameters. We give some applications including the solution of a problem posed by C. Hall.

1. Introduction

1.1. A polynomial analogue of the Bateman-Horn conjectures

Are there infinitely many primes of the form n2+1? Questions of this type, where one inquires
about the prime values of a polynomial (or the simultaneous prime values of a finite collection of
polynomials) have received considerable attention, owing especially to the development of sieve
methods in the early 20th century. Yet we still cannot prove the existence a single one-variable
polynomial of degree > 1 that assumes prime values infinitely often.

In 1923, Hardy and Littlewood [22] formulated quantitative predictions for the number of
simultaneous prime values assumed on integers n ≤ x for several specific families of polynomi-
als. A general prediction for all finite collections of polynomials was later given by Bateman
and Horn [2]; roughly speaking, the number of such n is conjectured to be governed by a global
factor predicted by the density of primes, multiplied by a local factor depending on the number
of roots of our polynomials modulo p for all primes p.

While these conjectures remain unresolved, the new millennium has already witnessed tan-
talizing progress on related questions. One of the most exciting developments is the resolution
by Green and Tao [19] of the longstanding conjecture that the primes contain arbitrarily long
arithmetic progressions. These authors have recently attacked with some success a much more
general class of questions; they are able to count, conditional on two simpler conjectures, the
number of simultaneous prime values assumed by a collection of affine linear forms, provided
that this collection of forms does not encode a binary problem like the Goldbach or twin prime
conjecture [18]. Enough can be proved already (see [20]) to obtain the correct asymptotic for
the number of four-term arithmetic progressions of primes. One also thinks of the remarkable
work by Goldston, Pintz and Yıldırım towards the twin prime conjecture (see, e.g., [17]). They
show that any improvement of the level of distribution in the Bombieri-Vinogradov theorem
would imply that lim inf pn+1 −pn < ∞, i.e., that gaps between primes are uniformly bounded
infinitely often.

Given the strong analogies between the ring of rational integers and the ring of univariate
polynomials over a finite field, it is natural to inquire whether questions of this nature can
be formulated and attacked in the function field setting. In [29], we presented a heuristic
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argument for the following analogue of the Bateman-Horn conjectures where the polynomials
have coefficients not from Z but from a finite field Fq:

Conjecture 1. Let f1, . . . , fr be nonassociate irreducible one-variable polynomials over
Fq with the degree of f1 · · · fr bounded by B. Suppose that there is no prime P of Fq[T ] for
which the map

h(T ) 7→ f1(h(T )) · · · fr(h(T )) mod P

is identically zero. Then

#{h(T ) : h monic, deg h = n, and f1(h(T )), . . . , fr(h(T )) all prime}

= (1 + oB(1))
S(f1, . . . , fr)∏r

i=1 deg fi

qn

nr
as qn → ∞. (1.1)

Here the local factor S(f1, . . . , fr) is defined by

S(f1, . . . , fr) :=
∞∏

m=1

∏

deg P=m
P monic, prime

1 − ω(P )/qm

(1 − 1/qm)r
,

where

ω(P ) := #{A mod P : f1(A) · · · fr(A) ≡ 0 (mod P )}.

Since there are exactly qn monic polynomials h(T ) ∈ Fq[T ] of degree n, it is natural to
consider asymptotics as qn → ∞. Note that qn → ∞ when either q → ∞ or n → ∞. Moreover,
Conjecture 1 does not require that the family {fi} stay fixed as qn tends to infinity; all that
is required for the convergence of the oB(1)-term to zero is that the degree of f1 · · · fr remains
bounded by B.

The following concrete example serves to illustrate these points: Let Fq be a finite field of
size q ≡ 3 (mod 4) and let f(T ) := T 2 + 1 ∈ Fq[T ]. Then the conditions of Conjecture 1 are
satisfied with B = 2, leading us to predict that the number of monic, degree n polynomials
h(T ) for which h(T )2 + 1 is irreducible over Fq is

(1 + o(1))
S(f)

2

qn

n
as qn → ∞. (1.2)

If we fix q here and let n → ∞, then we obtain the Fq[T ]-analogue of Hardy and Littlewood’s
classical prediction [22, Conjecture E] on the number of primes of the form n2 +1 with n ≤ x.
But in contrast to the classical case (where the ring Z is fixed), this is not our only option:
rather than fixing q, we could just as well fix n and let q tend to infinity through prime powers
congruent to 3 (mod 4), or we could vary q and n jointly so that both tend to infinity.

To understand the prediction in these latter cases, we quote two results from [29, Appendix]
on the behavior of the singular series S(f1, . . . , fr):

(i) If the local condition of Conjecture 1 is satisfied, then the product defining S(f1, . . . , fr)
converges to a positive constant.

(ii) Under the assumptions of Conjecture 1, we have

S(f1, . . . , fr)∏r
i=1 deg fi

= 1 + OB(1/q).

In particular, if B is fixed and q is large, then this ratio is close to 1.

Returning to our example above, we see from (ii) that if q → ∞ (through prime powers ≡ 3
(mod 4)), then (1.2) predicts roughly qn/n primes of the form h(T )2 + 1 with h(T ) ∈ Fq[T ]
monic of degree n.
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1.2. Statement of our main result

In [29], we announced the following theorem, which in view of the result (ii) on S(f1, . . . , fr)
quoted above, confirms Conjecture 1 when q is much larger than n and Fq obeys a mild
restriction on its characteristic:

Theorem 2. Let n be a positive integer. Let f1(T ), . . . , fr(T ) be nonassociate irreducible
polynomials over Fq with the degree of the product f1 · · · fr bounded by B. The number
of univariate monic polynomials h of degree n for which all of f1(h(T )), . . . , fr(h(T )) are
irreducible over Fq is qn/nr + On,B(qn−1/2) provided gcd(q, 2n) = 1.

(The dependence of the On,B-term here is explicit but unpleasant, and it would be interesting
to improve this.) The purpose of this paper is to prove Theorem 2 and discuss some of its
consequences.

Theorem 2 was inspired by the result of Effinger, Hicks, and Mullen [14] that for each fixed
n ≥ 1 and every large enough finite field Fq, one can find a pair of distinct monic irreducibles
of degree n over Fq which differ only in their constant term. This suggests that counting
problems of this type may be more approachable if q is allowed to be large in comparison to
n, a perspective we build upon here. However, while these authors’ methods are elementary,
our argument rests on an explicit form of the Chebotarev density theorem for function fields,
which in turn relies on Weil’s deep results on the Riemann Hypothesis for curves. Our proof of
Theorem 2 is similar in spirit to the argument used by Cohen [6] and Ree ([30], [31]) to settle
Chowla’s conjecture [5] on the existence of prime polynomials of the form T n + T + a modulo
p for p > p0(n).

Conjecture 1 and Theorem 2 fulfill a desideratum of Shparlinski (see [35, Problem 3.1]), who
proposed investigating the distribution of irreducibles of the form f(h(T )) with f a polynomial
over Fq. But they do not address the question of prime specializations of polynomials with
coefficients from the larger ring Fq[u], a question which arises naturally when searching for
a complete analogue of the Hardy-Littlewood conjectures. For example, one might hope to
predict the frequency of polynomials h for which h(u) and h(u)q + u are both prime in Fq[u],
and this falls outside the purview of our results. A conjecture in this generality was only recently
proposed by Conrad, Conrad and Gross ([10]; see also the survey [11]). Essential to this work
is the study of a surprising global obstruction not present in the classical setting. We do not
say any more about their general conjecture here except to note that, in contrast to our work,
the authors of [10] do not consider the issue of uniformity in q.

As observed by Cohen (op. cit., as well as [7]) and Leonard [25], the Chebotarev density
theorem and the Weil bound can be coupled to count the occurrence of polynomials in appro-
priate sequences with any prescribed cycle type, not merely the occurrence of irreducibles. (By
the cycle type of a degree n polynomial, we mean the partition of n obtained from the list
of degrees of the irreducible factors, which we identify with the associated conjugacy class of
the symmetric group on n letters.) Such a variant of Theorem 2 can then be combined with
the known results on the structure of random permutations to obtain additional theorems of
arithmetic interest. For instance, one can establish in this way a theorem on smooth values
of polynomials over Fq that bears the same relation to Martin’s conjectured formula [27] as
Theorem 2 bears to the Bateman-Horn conjecture. Details will appear in the author’s doctoral
dissertation (currently in progress). One will also find there an analogue of Theorem 2 for
primitive polynomials, with the expected main term and an error term of On,B,ǫ(q

n−1/2+ǫ).

1.3. Some applications

If f1(T ), . . . , fr(T ) are fixed irreducible polynomials over Fq satisfying the local conditions of
Conjecture 1, then we expect that there are infinitely many monic polynomials h(T ) for which
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f1(h(T )), . . . , fr(h(T )) are simultaneously irreducible. This qualitative conjecture, analogous
to Schinzel’s classical Hypothesis H, would of course follow immediately if the quantitative
Conjecture 1 was known to hold for fixed q and n tending to infinity. However, it seems
difficult to prove an asymptotic in this range of (q, n)-space.

Despite the difficulty of obtaining satisfactory quantitative results, this polynomial Hypothe-
sis H can be proved in many special cases. The first to make significant progress in this direction
was Hall [21], who showed that there are infinitely many monic twin prime pairs f, f +1 over all
finite fields with more than two elements (excepting F3, which was later treated by the present
author [29, Theorem 1]). Generalizing the work of Hall, the author recently established the
following result (cf. [29, Theorem 2]):

Theorem A. Let f1(T ), . . . , fr(T ) be nonassociate irreducible polynomials over Fq with
the degree of f1 · · · fr bounded by B. If q ≥ 22r (1 + B)

2
, then there is a prime l dividing q − 1

and an element β ∈ Fq for which every substitution

T 7→ T lk − β with k = 1, 2, 3, . . .

leaves all of f1, . . . , fr irreducible. In particular, there are infinitely many monic h(T ) for which
f1(h(T )), . . . , fr(h(T )) are simultaneously irreducible.

In both Hall’s original theorem and in Theorem A, the set of substitutions T 7→ h(T ) leaving
all the fi irreducible is rather sparse. A weak consequence of Conjecture 1 is that there should
be such h(T ) of every sufficiently large degree. Here we establish that the degrees of these
polynomials h(T ) are “dense” with respect to arithmetic progressions, in the following sense:

Theorem 3. Let f1(T ), . . . , fr(T ) be nonassociate irreducibles over Fq with the degree of
f1 · · · fr bounded by B. Let a mod m be an arbitrary infinite arithmetic progression of integers.
If the finite field Fq is sufficiently large, depending just on m, r, and B, and if q is prime to
2 gcd(a, m), then there are infinitely many univariate monic polynomials h over Fq with

deg h ≡ a (mod m) and f1(h(T )), . . . , fr(h(T )) all irreducible over Fq.

Theorem 3 is no doubt true without any restriction on the characteristic of Fq, but we
have not been able to show this. The proof of Theorem 3 is entirely effective and leaves no
mystery surrounding “sufficiently large.” We illustrate the methods involved by establishing
the following result, the first half of which settles a problem posed by Hall [21, p. 140]:

Theorem 4. Let Fq be any finite field with more than two elements. Then there are
infinitely many monic prime pairs f, f + 1 of odd degree over Fq. The same holds for the case
of even degree.

Even for large q this is not immediate from Theorem 3, since that theorem says nothing
about prime specializations over fields of characteristic 2.

Theorem 4 is the twin prime analogue of Kornblum’s result that every coprime residue class
of polynomials over Fq contains infinitely many monic irreducibles of odd degree, as well as
infinitely many of even degree. In the posthumously-published version of Kornblum’s paper
[24], Landau presents a modification of Kornblum’s argument to the effect that the degrees
can be taken from an arbitrary arithmetic progression. Theorem 3 can be seen as an effort in
the same direction.
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2. Preparation for the proof of Theorem 2

2.1. Notation

We fix once and for all an algebraically closed field Ωq of infinite transcendence degree over
Fq and assume for the remainder of the paper that all extensions of Fq which appear are
subfields of Ωq. We use an overline to denote the operation of taking an algebraic closure; in
particular, Fq denotes the algebraic closure of Fq inside Ωq.

We use res and disc to denote the polynomial resultant and discriminant, respectively. Our
work also requires variants of these quantities, which we define as follows: If f =

∑n
i=0 aiu

i and
g =

∑m
j=0 bju

j are polynomials in u of degrees at most n and m respectively over a domain R
(so that an and bm may vanish), we define

resn,m
u (f, g) := resu




n∑

i=0

Aiu
i,

m∑

j=0

Bju
j



∣∣∣∣∣∣
A0=a0,...,An=an,B0=b0,...,Bm=bm

,

where the right-hand resultant is computed over the ring R[A0, . . . , An, B0, . . . , Bm] of poly-
nomials obtained by adjoining the indeterminates Ai and Bj to R. Similarly, if f =

∑n
i=0 aiT

i

is a polynomial in T of degree at most n, we define

discn
T (f) := discT

(
n∑

i=0

AiT
i

)∣∣∣∣∣
A0=a0,...,An=an

,

the right-hand discriminant being taken over R[A0, . . . , An]. If n and m represent the actual
degrees of f and g, respectively, then resn,m

u (f, g) = resu(f, g), and similarly for discn
T (f).

We work with resn,m
u and discn

T rather than the usual resultant and discriminant in order to
obtain uniform formulas without needing to worry about “degree-dropping” in intermediate
calculations. The fundamental property of resn,m

u that we need is that resn,m
u (f, g) is an R[u]-

linear combination of f and g. (This follows from our definitions above and the analogous result
for the usual resultant.) In particular, if R is a field and resn,m

u (f, g) is a nonzero constant,
then f and g have no common roots in R.

We use Sym(S) to denote the symmetric group on the set S.

2.2. Further preliminaries for the proof of Theorem 2

Since the case n = 1 of Theorem 2 is trivial, we always suppose that n ≥ 2. We also suppose
the following setup:

f1, . . . , fr nonassociate irreducible univariate polynomials over Fq,

d1, . . . , dr degrees of f1, . . . , fr respectively,

θ1, . . . , θr fixed roots of f1, . . . , fr, respectively, from Fq,

θ
(j)
i jth conjugate of θi with respect to Frobenius, i.e., θ

(j)
i := θqj

i .

If h(T ) is a fixed polynomial of degree n ≥ 2 over Fq, we define the function fields Ki,j/Fq,
Li,j/Fq, and Mi/Fq (for 1 ≤ i ≤ r, 1 ≤ j ≤ di) as follows, suppressing in our notation the
dependence on h:

Ki,j field obtained by adjoining a fixed root of h(T ) − u − θ
(j)
i to Fqdi (u),

Li,j normal closure of Ki,j over Fqdi (u),

Mi compositum of the fields Li,j for j = 1, 2 . . . , di.
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Figure 1. Tower of fields illustrating the inclusion relations between Fq(u),Fqdi (u), the Ki,j , the
Li,j and Mi.
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Figure 2. Field diagram illustrating the inclusion relations between Fq(u),FqD (u), the K̃i,j , the

L̃i,j , M̃i and M̃ . Here moving to a larger field is signified by moving outward from Fq(u).

We let D be the least common multiple of d1, . . . , dr and denote with a tilde the corresponding
fields obtained by extending the constant field by FqD . (That is, we set K̃i,j := Ki,jFqD , L̃i,j :=

Li,jFqD and M̃i := MiFqD .) Finally, we let M̃ denote the compositum of M̃1, . . . , M̃r. The
inclusion relations between these fields are illustrated in Figures 1 and 2.
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Lemma 5. Assume that h(T ) is a polynomial of degree n ≥ 2 over Fq which is not a
polynomial in T p, where p is the characteristic of Fq. Then the extensions Mi/Fq(u) are Galois

for each i = 1, 2, . . . , r. The same assertion holds for the extensions M̃i/Fq(u) and M̃/Fq(u).

Proof. Observe that Mi is the splitting field over Fq(u) of fi(h(T ) − u), so that the first
half of the lemma follows immediately once we show that the irreducible factors of fi(h(T )−u)
are separable over Fq(u). Moving to the finite extension Fqdi (u) of Fq(u) we have

fi(h(T ) − u) =

di∏

j=1

(h(T ) − u − θ
(j)
i ).

The di factors on the right-hand side are pairwise coprime (in Fq(u)[T ]), so that it suffices to

verify that each factor h(T )− u− θ
(j)
i has no repeated roots. Any such repeated root is also a

root of h′(T ). But our hypothesis on h ensures that h′ is not identically zero, so each root of

h′(T ) is algebraic over Fq, while h(T ) − u − θ
(j)
i has no roots algebraic over Fq.

The second half of the lemma is a consequence of the first. Indeed, since FqD (u)/Fq(u) is

Galois, what we have just proved implies that M̃i = MiFqD = MiFqD (u) is also Galois over

Fq(u), and thus so is the compositum of the M̃i.

The groups Gal(M̃/Fq(u)) and Gal(Mi/Fq(u)) will play an important role and so we study

them in some detail. Let Si,j denote the full set of roots of h(T )− u − θ
(j)
i (thus Si,j depends

only on j mod di). We begin by observing that under the hypothesis of Lemma 5, which assures
that the extensions appearing below are Galois, we have for each k = 1, 2, . . . , r a commutative
diagram

Gal(M̃/Fq(u))
ι1−−−−→ Gal(FqD/Fq) ×

∏r
i=1 Sym(∪di

j=1Si,j)

σ 7→σ|Mk

y π

y

Gal(Mk/Fq(u))
ι2−−−−→ Gal(Fqdk /Fq) × Sym(∪dk

j=1Sk,j)

. (2.1)

Here the maps ι1, ι2 are given by

ι1 : σ 7→ (σ|F
qD

, σ|
∪

d1
j=1S1,j

, . . . , σ|∪dr
j=1Sr,j

),

ι2 : σ 7→ (σ|F
q

dk
, σ|

∪
dk
j=1Sk,j

),

and

π : (τ, σ1, . . . , σr) 7→ (τ |F
q

dk
, σk).

Note that ι1 and ι2 are embeddings while π is a surjection.
The remainder of this section is devoted to an explicit description of the images of ι1 and

ι2 under a mild restriction on h. This characterization is obtained under the following two
hypotheses:

discn−1
u discn

T (h(T ) − u − θ
(j)
i ) 6= 0 for all 1 ≤ i ≤ r, 1 ≤ j ≤ di, (2.2)

and

resn−1,n−1
u

(
discn

T (h(T ) − u − θ
(j)
i ), discn

T (h(T ) − u − θ
(j′)
i′ )

)
6= 0

whenever i, i′, j, j′ are as above and (i, j) 6= (i′, j′). (2.3)

(Note that (2.2) implies immediately that h is not a polynomial in T p.) That together (2.2)
and (2.3) impose only a mild restriction on h is borne out by the following lemma, which we
prove in §3:
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Lemma 6. Let h(T ) range over the polynomials of the form T n+an−1T
n−1+· · ·+a1T , with

all coefficients ai belonging to Fq. Assume that q is prime to 2n. Then both of the following
hold:

(i) The number of such h for which (2.2) fails is bounded above by

(2n − 1)(2n − 3)qn−2. (2.4)

(ii) For any fixed pairs of indices (i, j) 6= (i′, j′), the same bound holds for the number of
such h which fail to satisfy (2.3).

Consequently, for all but at most

4n2

(
1 +

(
d1 + · · · + dr

2

))
qn−2

values of h as above, both (2.2) and (2.3) hold for all distinct pairs of indices (i, j) and (i′, j′).

We now present the promised descriptions of the images of ι1 and ι2, beginning with ι2:

Lemma 7. Let n ≥ 2. Assume that the characteristic of Fq is prime to 2n. Then if h(T )
has the form

h(T ) = T n + an−1T
n−1 + · · · + a1T, with each ai ∈ Fq,

and h(T ) satisfies both (2.2) and (2.3), then all of the following hold:
(i) The Li,j are Galois over Fqdi (u) with Galois group Sym(Si,j) for each 1 ≤ i ≤ r, 1 ≤

j ≤ di.
(ii) For every 1 ≤ i ≤ r, 1 ≤ j ≤ di, the field Li,j is linearly disjoint from the compositum

of all other fields Li,j′ with 1 ≤ j′ 6= j ≤ di.
(iii) Fqdi is the full field of constants of Mi/Fqdi .
(iv) The extension Mi/Fqdi (u) is Galois with

Gal(Mi/Fqdi (u)) ∼=
di∏

j=1

Gal(Li,j/Fqdi (u)) ∼=
di∏

j=1

Sym(Si,j),

the first isomorphism being induced by restriction in each component.
(v) Fix 1 ≤ i ≤ r. Let Frob denote the qth power map, so that Frob generates Gal(Fqdi /Fq).

The image of ι2 consists of all pairs (Frobk, σ) which obey the following compatibility
condition:

σ(Si,j) ⊂ Si,j+k.

A similar lemma characterizes the image of ι1:

Lemma 8. Let n ≥ 2. Assume that the characteristic of Fq is prime to 2n. Then if h(T )
has the form

h(T ) = T n + an−1T
n−1 + · · · + a1T, with each ai ∈ Fq,

and h(T ) satisfies both (2.2) and (2.3), then all of the following hold:
(i) The L̃i,j are Galois over FqD (u) with Galois group Sym(Si,j) for each 1 ≤ i ≤ r, 1 ≤

j ≤ di.
(ii) For every 1 ≤ i ≤ r, 1 ≤ j ≤ di, the field L̃i,j is linearly disjoint from the compositum

of all other fields L̃i′,j′ with 1 ≤ i′ ≤ r, 1 ≤ j′ ≤ di′ and (i, j) 6= (i′, j′).

(iii) FqD is the full field of constants of M̃ .

(iv) The image of ι1 consists of all pairs (Frobk, σ) which obey the compatibility condition

σ(Si,j) ⊂ Si,j+k for every i = 1, 2, . . . , r.
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The proofs of Lemmas 6, 7, and 8 are deferred to the next section. The curious reader may
jump directly to the proof of Theorem 2 in §4.

3. Proofs of Lemmas 6, 7, and 8

3.1. Proof of Lemma 6

The proof of Lemma 6 rests on the following elementary bound for the number of affine zeros
of a polynomial:

Lemma 9. Let E/Fq be an arbitrary field extension and let P (T1, . . . , Tm) be a nonzero
polynomial in m variables over E with total degree bounded by d. Then there are at most
dqm−1 solutions to P (x1, . . . , xm) = 0 in F

m
q .

This lemma is well-known when E = Fq (see, e.g., [26, Theorem 6.13]), and the general case
reduces to this one upon writing the coefficients of P with respect to an Fq-basis of E.

Our computations also require the following evaluation of the discriminants of certain trino-
mials (cf. [15, Exercise 4.5.4]):

Lemma 10. Let R be any integral domain, and let a and b be any elements of R. Then

discT (T n + aT + b) = (−1)(
n

2)(nnbn−1 + (−1)n−1(n − 1)n−1an).

Proof of Lemma 6(i). For every pair of i and j with 1 ≤ i ≤ r and 1 ≤ j ≤ di, we have

discn−1
u discn

T (h(T ) − u − θ
(j)
i ) = discn−1

u discn
T (h(T ) − u); (3.1)

indeed, the T -discriminant on the left-hand side differs from the one on the right only in that
u is replaced by u − θ

(j)
i , and such a shift leaves the outer u-discriminant unaffected.

Define a polynomial P̂ with integer coefficients in the n − 1 indeterminates T1, . . . , Tn−1 by

P̂ (T1, . . . , Tn−1) := discn−1
u discn

T (T n + Tn−1T
n−1 + · · · + T1T − u). (3.2)

(Note that T and u are successively eliminated by the right-hand discriminants, so that only the
indeterminates T1, . . . , Tn−1 remain.) We claim that if q is prime to 2n, then P̂ does not reduce
to the zero polynomial when considered over Fq. This suffices to prove (2.4). To see why, observe
(from the definition of the discriminant in terms of the determinant of a (2n − 1) × (2n − 1)
Sylvester matrix) that the inner T -discriminant on the right of (3.2) is a polynomial in u of
degree at most n − 1, each coefficient of which is a polynomial in T1, . . . , Tn−1 of total degree
bounded by 2n−1. These coefficients determine the entries of the (2n−3)×(2n−3) determinant
used to compute P̂ , whence P̂ has total degree at most (2n − 1)(2n − 3) in T1, . . . , Tn−1. The
desired bound (2.4) on the number of h which fail to satisfy (2.2) now follows from Lemma 6.

It remains to prove our claim that P̂ is nonvanishing when considered over Fq. This is easiest
if we adopt the further assumption that the characteristic p of Fq is prime to n − 1. Indeed,
successive application of Lemma 10 shows that

P̂ (1, 0, . . . , 0) = discn−1
u discn

T (T n + T − u)

= discn−1
u

(
(−1)(

n

2)
(
nn(−u)n−1 + (−1)n−1(n − 1)n−1

))

= discn−1
u (nnun−1 + (n − 1)n−1) = ±(n − 1)(n−1)2nn(n−2),

which is nonzero under this additional hypothesis.
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We therefore suppose that p divides n − 1. In this case we consider

P̂ (1, 1, . . . , 1) = discn−1
u discn

T (T n + T n−1 + · · · + T − u).

To understand the inner discriminant, note that

(T − 1)(T n + T n−1 + · · · + T − u) = T n+1 − T − (T − 1)u.

By Lemma 10, the T -discriminant of the right-hand polynomial is given explicitly by

(−1)(
n+1

2 ) ((n + 1)n+1un − nn(u + 1)n+1
)
. (3.3)

We can relate this to the discriminant we are after by using the relations

discT ((T − 1)(T n + T n−1 + · · · + T − u))

= ±
(
(T n + T n−1 + · · · + T − u)|T=1

)2
discT (T n + T n−1 + · · · + T − u)

= ±(n − u)2 discT (T n + T n−1 + · · · + T − u).

Piecing this all together we obtain

P̂ (1, 1, . . . , 1) = discn−1
u

(
(n + 1)n+1un − nn(u + 1)n+1

(u − n)2

)
.

Let Q(u) denote the polynomial in u appearing in the argument of discu here, so that Q has
degree n − 1 in u. If P̂ (1, 1, . . . , 1) vanishes, then Q has a multiple root, which is necessarily
also a multiple root of (3.3). One computes easily that unless p divides n+1, the only common
root of (3.3) and its derivative is u = n. If u = n is a multiple root of Q, then it must be a
root of multiplicity at least 4 of (3.3), which forces the second derivative of (3.3) to vanish at
u = n. But this second derivative is given by

(−1)(
n+1

2 ) ((n + 1)n+1n(n − 1)nn−2 − nn+1(n + 1)(n + 1)n−1
)

= (−1)(
n+1

2 )+1nn−1(n + 1)n.

Since the characteristic p is prime to n, this can only vanish if p divides n+1. So we are forced
to the conclusion that P̂ (1, . . . , 1) is nonvanishing except possibly if p divides n + 1. However,
p divides n − 1 in the case we are considering, so that p can divide n + 1 only if p = 2, which
is excluded.

Proof of Lemma 6(ii). We proceed as in the proof of Lemma 6(i). Write h(T ) = T n +
an−1T

n−1 + · · · + a1T as usual. Fix pairs (i, j) and (i′, j′) with (i, j) 6= (i′, j′) and set

P (a1, . . . , an−1) := resn−1,n−1
u

(
discn

T (h(T ) − u − θ
(j)
i ), discn

T (h(T ) − u − θ
(j′)
i′ )

)
.

Arguing as in Lemma 6(i), we see that there is some polynomial P̂ (T1, . . . , Tn−1) over Fq of
degree at most (2n − 1)(2n − 3) for which

P (a1, . . . , an−1) = P̂ (a1, . . . , an−1) for all a1, . . . , an−1 ∈ Fq.

Then (2.3) is satisfied (for the fixed pairs (i, j) and (i′, j′)) as long as P̂ is nonvanishing. This
nonvanishing is easily checked: indeed, the constant term of P̂ is

P̂ (0, . . . , 0) = resn−1,n−1
u (discT (T n − u − θ

(j)
i ), discT (T n − u − θ

(j′)
i′ ))

= resn−1,n−1
u (discT (T n − u), discT (T n − u + θ

(j)
i − θ

(j′)
i′ ))

= (−1)n+1nn(2n−2)(θ
(j)
i − θ

(j′)
i′ )(n−1)2 6= 0.

Lemma 9 now implies that P̂ has at most (2n − 1)(2n − 3)qn−2 zeros in F
n−1
q , finishing the

proof.
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3.2. Proofs of Lemmas 7 and 8

Our fundamental tool is the following criterion of Birch and Swinnerton-Dyer [4] for certain
polynomials to have the full symmetric group as their Galois group. We state their result in
an alternative form attributed by the same authors to Davenport:

A Criterion of Birch and Swinnerton-Dyer. Let h(T ) be a polynomial of degree
n ≥ 2 with coefficients from a finite field F whose characteristic is prime to n. Suppose that
with u an indeterminate over F , we have

discn−1
u discn

T (h(T ) − u) 6= 0. (3.4)

Then the Galois group of h(T ) − u over the rational function field F (u) is the full symmetric
group on the n roots of h(T )− u. Consequently, if E is any algebraic extension of F , then the
Galois group of h(T ) − u over E(u) is also the full symmetric group.

Proof of Lemmas 7(i) and 8(i). Suppose that h satisfies both conditions (2.2) and (2.3).
Then part (i) of Lemma 7 is immediate from the Birch and Swinnerton-Dyer criterion. Since

L̃i,j is the splitting field of h(T )−u−θ
(j)
i over FqD , the same argument also establishes Lemma

8(i).

To continue we require two more technical tools. The first is a lemma of Hayes appearing in
his alternative proof of the Birch and Swinnerton-Dyer criterion:

Lemma 11 (Hayes). Let h(T ) be a polynomial of degree n ≥ 2 over the finite field Fq

which satisfies the hypotheses of the Birch and Swinnerton-Dyer criterion with F = Fq. Let L
be the splitting field of h(T ) − u over Fq(u). Let P∞ be the prime of Fq(u) corresponding to
the (1/u)-adic valuation on Fq[1/u], and let P be any prime of L lying above above P∞. Then
e(P |P∞) = n, where e(P |P∞) denotes the ramification index of P over P∞.

Hayes proves this explicitly only in the case h = T n + T − u (see [23, Proof of Lemma 1]),
but as he remarks the arguments extend easily to the general case. It is also necessary for us
to understand the ramification of P∞ in certain extensions of the fields appearing in Hayes’s
lemma; for this we appeal to the following result ([37, Proposition III.8.9]):

Abhyankar’s Lemma. Let F ′/F be a finite separable extension of function fields. Suppose
that F ′ = F1F2 is the compositum of two intermediate fields F ⊂ F1, F2 ⊂ F ′. Let P be a
prime of F and P ′ a prime of F ′ lying above P . With Pi := P ′ ∩ Fi for i = 1 and 2, assume
that at least one of the extensions P1/P or P2/P is tame (i.e., that e(Pi/P ) is relatively prime
to the characteristic of F ). Then

e(P ′/P ) = lcm[e(P1/P ), e(P2/P )].

In particular, if both P1/P and P2/P are tamely ramified, then so is P ′/P .

Proof of Lemmas 7(ii) and 8(ii). Define the constant field extensions

K̂i,j := Ki,jFq, L̂i,j := Li,jFq, and M̂i := MiFq.

Thus L̂i,j is the splitting field of h(T ) − u − θ
(j)
i over Fq. To prove Lemma 7(ii), it suffices to

show that for each fixed i,

L̂i,j is linearly disjoint from the compositum of L̂i,j′ for 1 ≤ j′ 6= j ≤ di. (3.5)
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Indeed, once (3.5) is known, we may deduce that

Gal(M̂i/Fq(u)) ∼= Gal(L̂i,1/Fq(u)) × · · · × Gal(L̂i,di
/Fq(u)).

By the Birch and Swinnerton-Dyer criterion the right-hand Galois groups each have size n!,
so that the left-hand Galois group has size n!di . But the left-hand Galois group injects (via
restriction) into Gal(Mi/Fqdi (u)), and degree counting shows that this injection must be an
isomorphism; thus

[Mi : Fqdi (u)] = [Li,1Li,2 · · ·Li,di
: Fqdi (u)]

= [Li,1 : Fqdi (u)][Li,2 : Fqdi (u)] · · · [Li,di
: Fqdi (u)],

which implies Lemma 7(ii).
To prove (3.5), consider the intersection N of L̂i,j with the compositum of the fields L̂i,j′

for 1 ≤ j 6= j′ ≤ di. The only primes of Fq(u) that can ramify in N ramify in both K̂i,j and

some K̂i,j′ with 1 ≤ j 6= j′ ≤ di. But by (2.3), the polynomials

discn
T (h(T ) − u − θ

(j)
i ) and discn

T (h(T ) − u − θ
(j′)
i ) have no common roots,

and so the only prime that can possibly ramify in both extensions is P∞. By Hayes’s Lemma
11 and repeated application of Abhyankar’s Lemma, P∞ is tamely ramified in L̂i,j and hence
also in N . (Here we again use our hypothesis that q is prime to n.) Thus N is a finite, tamely
ramified geometric extension of Fq(u) unramified except possibly at primes above the degree
1 prime P∞. It follows that N = Fq(u) (this is an immediate consequence of the Riemann-
Hurwitz genus formula; see, e.g., [23, p.460] or [33, Exercise 6, p.99]). This proves (3.5) and
together with the above argument completes the proof of Lemma 7(ii).

The proof of Lemma 8(ii) is nearly identical but is based instead on the claim that

L̂i,j is linearly disjoint from the compositum of L̂i,j for (i, j) 6= (i′, j′); (3.6)

we omit the details.

Proof Proof of Lemmas 7(iii) and 8(iii). In the course of proving Lemma 7(ii), we showed
that restriction induces an isomorphism

Gal(M̂i/Fq(u)) ∼= Gal(Mi/Fqdi (u)).

If α ∈ Mi∩Fq, then α is fixed by every element of the left-hand Galois group appearing above,
and so must be fixed by all elements of the right-hand Galois group. But this forces α to lie
in the field of rational functions Fqdi (u). Since α is algebraic over Fq, it must belong to Fqdi .
So Fqdi is the full field of constants of Mi. Lemma 8(iii) can be proved similarly, using that

restriction induces an isomorphism Gal(M̃Fq/Fq(u)) ∼= Gal(M̃/FqD(u)).

Proof Proof of Lemma 7(iv). This is immediate from parts (i) and (ii) of Lemma 7.

Proof Proof of Lemma 7(v) and Lemma 8(iv). Suppose that σ ∈ Gal(Mi/Fqdi (u)) satisfies

σ|F
qdi

= Frobk. Then σ takes θ
(j)
i to θ

(j+k)
i and so takes every root of h(T )−u−θ

(j)
i to a root of

h(T )−u−θ
(j+k)
i . It follows that the image of ι2 is contained within the set of elements obeying

the compatibility condition specified in Lemma 7(v). A straightforward counting argument
shows that there are din!di such elements of Gal(Fqdi /Fq) × Sym(∪di

j=1Si,j). On the other
hand, we know that Mi/Fq(u) is Galois of degree [Mi : Fq(u)] = [Mi : Fqdi (u)][Fqdi (u) :
Fq(u)] = din!di . Since ι2 is injective, it follows that the image of ι2 must coincide with the set
specified in (v).
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A similar argument establishes Lemma 8(iv): in that case M̃ is Galois over Fq(u) of degree
Dn!d1+···+dr , and this degree coincides with the number of elements obeying the compatibility
condition of Lemma 8(iv).

4. Proof of Theorem 2

Throughout this section f1(T ), . . . , fr(T ) denote nonassociate irreducible polynomials of
respective degrees d1, . . . , dr over Fq and h(T ) = T n + an−1T

n−1 + · · ·+ a1T denotes a monic
polynomial over Fq of degree n ≥ 2 without constant term satisfying conditions (2.2) and (2.3).

Our plan is to use the Chebotarev density theorem to estimate, for each individual h(T ),
the number of a ∈ Fq for which all of the specializations fi(h(T )−a) are irreducible. We begin
by recalling the following well-known lemma (see, e.g., [8, pp. 408-409]):

Lemma 12. Let f(T ) be an irreducible polynomial of degree d over Fq and let θ be a root
of f from the extension Fqd . Let p(T ) be a nonconstant polynomial over Fq. Then f(p(T )) is
irreducible over Fq if and only if p(T ) − θ is irreducible over Fqd .

The next result explains how the Chebotarev density theorem enters the picture. For a ∈ Fq,
we write Pa for the prime of Fq(u) corresponding to the (u − a)-adic valuation.

Lemma 13. The group Gal(M̃/Fq(u)) contains a conjugacy class C, of size

1

nr
n!d1+···+dr ,

with the following property: If a is an element of Fq which is not a zero of any of the polynomials

discT (h(T ) − u − θ
(j)
i ) for 1 ≤ i ≤ r, 1 ≤ j ≤ di, (4.1)

then fi(h(T )−a) is irreducible over Fq if and only if C coincides with the Frobenius conjugacy

class (M̃/Fq(u), Pa).

Proof. Since a is not a root of any of the polynomials (4.1), Pa is unramified in M̃ . Now
fix 1 ≤ i ≤ r. Using Lemma 12 and Kummer’s Theorem ([37, Theorem 3.3.7]), we find

fi(h(T ) − a) is irreducible over Fq ⇐⇒ h(T ) − a − θ
(1)
i is irreducible over Fqdi

⇐⇒ Pa stays prime in Ki,1.

This last occurrence can be recast in terms of the action of Frobenius. Let σ denote any element
of the Frobenius conjugacy class (Mi/Fq(u), Pa); then necessarily

σ restricts to the qth power map on Fqdi . (4.2)

Moreover, Pa stays prime in Ki,1 if and only if

Gal(Mi/Fq(u)) =
⋃̇din−1

l=0
Gal(Mi/Ki,1)σ

l. (4.3)

We now investigate when (4.3) holds.
Write Ki,1 = Fqdi (u)(α), where α ∈ Si,1. Now (4.2) implies that under ι2 the element σ is

identified with (Frob, σ′), where σ′ is a permutation of ∪di

j=1Si,j . We claim that (4.3) holds if
and only if σ′ is an ndi-cycle. Indeed, suppose that σ (equivalently, σ′) acts as an ndi-cycle on
∪di

j=1Si,j ; then for any γ ∈ Gal(Mi/Fq(u)), there is a unique 0 ≤ l < din for which τσ−l fixes
α, and this implies (4.3). Conversely, if (4.3) holds then σ 6∈ Gal(Mi/Ki,1), so that σ (and
hence σ′) must move α. Thus in the decomposition of σ′ into disjoint cycles, α must occur in a
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nontrivial cycle. If this cycle has length l < ndi, then both σl and σ0 belong to Gal(M/Ki,1),
and this contradicts that (4.3) is a disjoint union.

Let γ denote an element of the conjugacy class of (M̃/Fq(u), Pa). Since γ restricts down to an
element of the conjugacy class of (Mi/Fq(u), Pa), in order for Pa to stay prime in Mi for every
i = 1, 2, . . . , r it is necessary and sufficient that γ|Mi

satisfies both (4.2) and (4.3) for every
1 ≤ i ≤ r. By our work above and the commutativity of diagram (2.1), this condition on γ holds
if and only if γ (identified with its representation under ι1) has the form (Frob, σ1, . . . , σr),

where each σi is an ndi-cycle on ∪di

j=1Si,j . It remains to prove that the γ in Gal(M̃/Fq(u)) of

this form make up a single conjugacy class of size n−rn!d1+···+dr .
Suppose that γ ∈ Gal(M̃/Fq(u)) has the above form. The compatibility condition of Lemma

8(iv) implies that

σi(Si,j) ⊂ Si,j+1 for all 1 ≤ i ≤ r and all j.

Now fix 1 ≤ i ≤ r. Since σi is an ndi-cycle on ∪di

j=1Si,j , it follows that σi has exactly n
representations in the form

(a1 a2 . . . andi
), where for each 1 ≤ k ≤ di,

ak ak+di
. . . a(n−1)k+di

is a permutation of Sym(Si,k).

Consequently, there are exactly n−1n!di possibilities for σi, and so exactly

n−rn!d1+···+dr

possibilities for γ. Moreover, this explicit description shows that the γ of this form make up a
single conjugacy class of Gal(M̃/Fq(u)). To see this observe that

Gal(M̃/Fq(u)) ⊃ Gal(M̃/FqD (u)) =
∏

1≤i≤r
1≤j≤di

Sym(Si,j)

and that Sym(Si,j) acts transitively by conjugation on its own n-cycles.

To apply the Chebotarev density theorem we require an estimate for the genus of M̃/FqD .
This will be obtained as a corollary of the next two results. The first is a special case of a genus
estimate due to Cohen (see [9, Theorem 1.1]):

Lemma 14. Let f(T ) be a nonconstant polynomial over Fq which is not a polynomial in
T p, and let L be the splitting field of f(T ) − u over Fq(u). Then the genus of L is bounded
above by

1

2
(deg f − 3)[L : Fq(u)] + 1.

The next result appears as [37, Theorem III.10.3]:

Castelnuovo’s Inequality. Let F/k be a function field with full constant field k.
Suppose we are given two subfields F1/k and F2/k of F/k satisfying

(i) F = F1F2 is the compositum of F1 and F2,
(ii) [F : Fi] = ni and Fi/k has genus gi for i = 1, 2.

Then the genus g of F/k obeys the bound

g ≤ n1g1 + n2g2 + (n1 − 1)(n2 − 1).

Corollary 15. Let f1(T ), . . . , fr(T ) be nonassociate monic irreducible polynomials of
respective degrees d1, . . . , dr over Fq and suppose that h(T ) is a polynomial of degree n ≥ 2

without constant term satisfying conditions (2.2) and (2.3). Then the genus of M̃/FqD is
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bounded above by

(d1 + · · · + dr)n · n!d1+···+dr .

Proof. Write gN for the genus of a function field N with constant field FqD . Since L̃i,j is

the splitting field of h(T )−u−θ
(j)
i over FqD (for 1 ≤ i ≤ r and 1 ≤ j ≤ di), Lemma 14 implies

that

gL̃i,j
≤ 1

2
(n − 3)n! + 1 ≤ 1

2
n · n!.

To continue we enumerate the L̃i,j as L̃(1), . . . , L̃(d1+···+dr), so that M̃ is the compositum of

the L̃(i) for 1 ≤ i ≤ d1 + · · ·+dr. By Castelnuovo’s Inequality, we have for any k ≤ d1 + · · ·+dr

that

gL̃(1)···L̃(k) ≤ [L̃(1) · · · L̃(k) : L̃(k)]gL̃(k) + [L̃(1) · · · L̃(k) : L̃(1) · · · L̃(k−1)]gL̃(1)···L̃(k−1)+

([L̃(1) · · · L̃(k) : L̃(k)] − 1)([L̃(1) · · · L̃(k) : L̃(1) · · · L̃(k−1)] − 1);

thus

gL̃(1)···L̃(k) ≤ n!k−1 · 1

2
n · n! + n!gL̃(1)···L̃(k−1) + (n!k−1 − 1)(n! − 1)

≤ 1

2
n · n!k + n!gL̃(1)···L̃(k−1) + n!k ≤ n · n!k + n!gL̃(1)···L̃(k−1) .

By induction we deduce that

gL̃(1)···L̃(k) ≤ kn · n!k.

Taking k = d1 + d2 + · · · + dr gives the result.

Finally we state the particular version of the Chebotarev density theorem required in our
application. This result is implicit in Fried & Jarden’s discussion of that theorem (see the proof
of [16, Proposition 6.4.8]). A similar result could also be derived from the work of Murty and
Scherk [28].

Explicit Chebotarev Density Theorem for First Degree Primes. Suppose that
M/Fq(u) is a finite Galois extension having full field of constants FqD . Let C be a conjugacy
class of Gal(M/Fq(u)) every element of which restricts down to the qth power map on FqD .
Let

P :=

{
first degree primes P of Fq(u) unramified in M :

(
M/Fq(u)

P

)
= C

}
.

Then ∣∣∣∣#P − #C

[M : FqD (u)]
q

∣∣∣∣ ≤ 2
#C

[M : FqD (u)]
(gq1/2 + g + [M : FqD (u)]),

where g denotes the genus of M/FqD .

Proof of Theorem 2. Suppose that the polynomial h(T ) = T n + an−1T
n−1 + · · · + a1T

over Fq satisfies both (2.2) and (2.3). The number of a ∈ Fq for which at least one of the
polynomials (4.1) vanishes is bounded above by

(n − 1)(d1 + · · · + dr) ≤ (n − 1)B.

For all other a ∈ Fq the simultaneous irreducibility of the fi(h(T ) − a) is equivalent to

(M̃/Fq(u), Pa) coinciding with the conjugacy class C appearing in Lemma 13. Since C has

size n−rn!d1+···+dr and [M̃ : FqD (u)] = n!d1+···+dr , the explicit Chebotarev density theorem
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implies that there are at least

q

nr
− 2

nr

(
gq1/2 + g + n!d1+···+dr

)
− (n − 1)B

values of a ∈ Fq for which all the polynomials fi(h(T ) − a) are irreducible, and at most

(n − 1)B +
q

nr
+

2

nr

(
gq1/2 + g + n!d1+···+dr

)

such values of a. Here g denotes the genus of M̃/FqD(u).
We now replace d1 + · · · + dr by B and sum over the possibilities for h. Assume that

qn−1 > 4n2qn−2

(
1 +

(
B

2

))
,

which holds if q is sufficiently large in terms of n and B. (This inequality guarantees that there
is some h of degree n for which (2.2) and (2.3) both hold. Note that this inequality can be
assumed for the proof of Theorem 2, since for q bounded in terms of n and B the estimate of
that theorem is trivial.) Then we find that the total number of monic degree n polynomials
h̃(T ) ∈ Fq[T ] for which all the fi(h̃(T )) are irreducible is bounded below by

(
qn−1 − 4n2qn−2

(
1 +

(
B

2

)))(
q

nr
− 2

nr

(
gq1/2 + g + n!B

)
− (n − 1)B

)
(4.4)

and bounded above by

4n2qn−1

(
1 +

(
B

2

))

+

(
qn−1 − 4n2qn−2

(
1 +

(
B

2

)))(
q

nr
+

2

nr

(
gq1/2 + g + n!B

)
+ (n − 1)B

)
.

Since g is On,B(1) by Corollary 15, both the upper and lower bounds have the form qn/nr +
On,B(qn−1/2), finishing the proof.

5. Proof of Theorem 3

We begin with some comments on the relation between Theorem A and Theorem 3. For q
large in terms of r and B, Theorem A asserts the existence of infinitely many irreducibility
preserving substitutions T 7→ T lk − β for some prime l dividing q − 1 and some β ∈ Fq. So
we obtain irreducibility-preserving substitutions whose degrees are exactly the powers of l. In
the proof of Theorem A, there is some control over the choice of l, and this could be used to
establish Theorem 3 in a number of special cases.

In order to prove Theorem 3 in full, we require two additional ingredients:
(i) the existence of a preliminary irreducibility-preserving substitution T 7→ h(T ) of degree

d, for some d belonging to the progression a mod m,
(ii) the existence of some l coprime to m and some β ∈ Fq for which all the substitutions

T 7→ T lk − β preserve the irreducibility of the polynomials fi(h(T )), where h(T ) is as in
(i).

If we can establish (i) and (ii), then Theorem 3 follows immediately, since h(T lk −β) has degree
from the progression a mod m whenever k is divisible by ϕ(m). The most difficult part of the
proof is obtaining (i), which requires Theorem 2. By contrast, the techniques necessary for the
proof of (ii) are present already in [29]. However, the details here are slightly different; this is
because in proving Theorem 3 we take l as a divisor of qd − 1 (with d as in (i) above), while in
[29] l is always chosen as a divisor of q − 1.

Now for the specifics. Recall the following elementary result of Bang [1] (see [32, Theorem
3] for a short modern account):
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Bang’s Theorem on Primitive Prime Divisors. Let a and d be integers greater than
1. Then there is a prime p for which a has order d modulo p in all except the following cases:

(i) d = 2, a = 2s − 1, where s ≥ 2,
(ii) d = 6, a = 2.

Corollary 16. Let m be a positive integer. Then every integer d > max{2, ϕ(m)} has
the following property: if q is any odd integer ≥ 3, then qd − 1 has an odd prime divisor not
dividing m.

Proof. Suppose d > max{2, ϕ(m)}. By Bang’s theorem there is a prime l for which q has
order d in (Z/lZ)×. Since d > 1, we must have l 6= 2. Moreover, l is necessarily prime to m: for
if l divides m, then the order of q in (Z/lZ)× is a divisor of ϕ(l), hence also a divisor of ϕ(m)
and so less than d, a contradiction. Hence l is an odd prime divisor of qd − 1 which is prime to
m.

The next lemma, due to Serret in the case of prime fields [34, Théorème I, p. 656] and
Dickson in the general case ([12, p. 382]; see also [13, §34]), plays an essential role in the
proofs of both Theorems 3 and 4. (For a modern treatment see [26, Theorem 3.3.5].) Recall
that if f(T ) is an irreducible polynomial over Fq not associated to T , then by the order of f we
mean the order of any of its roots in the multiplicative group of its splitting field (equivalently,
the order of T in the unit group (Fq[T ]/f)×). Thus if f has degree d, then the order of f is a
divisor of qd − 1.

Lemma 17 (Serret, Dickson). Let f be an irreducible polynomial over Fq of degree d and
order e. Let l be an odd prime. Suppose that f has a root α ∈ Fqd which is not an lth power,
or equivalently that

l | e but l ∤ (qd − 1)/e. (5.1)

Then f(T lk) is irreducible in Fq[T ] for k = 0, 1, 2, 3, . . . .

We also require the following estimate for character sums which appears as [29, Lemma 4]:

Lemma 18. Let f1(T ), . . . , fs(T ) be nonassociate irreducible polynomials over Fq with the
degree of f1 · · · fs bounded by B. Fix roots α1, . . . , αs of f1, . . . , fs, respectively, lying in an
algebraic closure of Fq. Suppose that for each i = 1, 2, . . . , s we have a multiplicative character
χi of Fq(αi) and that at least one of these χi is nontrivial. Then

∣∣∣∣∣∣

∑

β∈Fq

χ1(α1 + β) · · ·χs(αs + β)

∣∣∣∣∣∣
≤ (B − 1)

√
q. (5.2)

We can now establish the following variant of Theorem A:

Lemma 19. Let f1(T ), . . . , fr(T ) be nonassociate irreducible polynomials over Fq with each
fi of degree > 1 and the degree of f1 · · · fr bounded by B. Suppose that l is an odd prime
dividing qdeg fi − 1 for each i = 1, 2, . . . , r. If

q > (2r−1B − 2r + 1)2,

then there is a β ∈ Fq for which all the polynomials f1(T
lk −β), . . . , fr(T

lk −β) are irreducible
for each k = 0, 1, 2, 3, . . . .
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Proof. Fix roots α1, . . . , αr of f1(T ), . . . , fr(T ), respectively. By Lemma 17 it suffices to
produce an element β ∈ Fq with the property that αi +β is an lth power nonresidue in Fq(αi)
for every i = 1, 2, . . . , r. Since l divides qdeg fi − 1 for each i, there are characters χi of order
l on each of the fields Fq(αi). If for every choice of β, there is an i ∈ {1, 2, . . . , r} for which
αi + β is an lth power in Fq(αi), then the sum

∑

β∈Fq

(1 − χ1(α1 + β))(1 − χ2(α2 + β)) · · · (1 − χr(αr + β))

vanishes. (Note that it is impossible for any of the arguments αi + β inside a character to
vanish, since each αi belongs to a nontrivial extension of Fq.) But by Lemma 18, the absolute
value of this sum is bounded below by

q −
∑

I⊂{1,2,...,r}
I6=∅

(
−1 +

∑

i∈I

deg fi(T )

)
√

q =

q + (2r − 1)
√

q −
r∑

i=1

deg fi




∑

I⊂{1,2,...,r}
i∈I

1




√
q ≥ q + (2r − 1)

√
q − 2r−1B

√
q,

and this is positive for q as in the hypothesis of the lemma.

Proof of Theorem 3. Suppose f1, . . . , fr are irreducible polynomials over Fq, where Fq is a
finite field with characteristic p coprime to 2 gcd(a, m). Let d be the smallest integer exceeding
max{2, ϕ(m)} relatively prime to p and satisfying d ≡ a (mod m). Since p is prime to gcd(a, m),
it follows that p divides at most one of any two consecutive terms from the progression a mod m,
so that d ≤ 3m. In particular d is bounded solely in terms of m. So by Theorem 2, as long
as q is sufficiently large (depending just on B and m), there is a polynomial h of degree d for
which all of f1(h(T )), . . . , fr(h(T )) are irreducible over Fq. Using Corollary 16, choose a prime
l dividing qd − 1 which is relatively prime to m. Then l also divides qdeg fi(h(T )) − 1 for each
i = 1, 2, . . . , r. According to Lemma 19 (applied to the polynomials f1(h(T )), · · · , fr(h(T ))), if

q > (2r−1dB − 2r + 1)2,

then there is some β ∈ Fq with the property that the polynomials fi(h(T lk − β)) are all
irreducible over Fq for k = 0, 1, 2, 3, . . . . Since

deg h(T lk − β) = dlk ≡ alk ≡ a (mod m)

whenever k is a multiple of ϕ(m), the proof of Theorem 3 is complete.

6. Application to a question of Hall

We prove Theorem 4 in two parts:

6.1. Part I: Infinitely many twin prime pairs of odd degree

In the case when q − 1 has an odd prime divisor the twin prime pairs constructed by Hall
[21] already have odd degree, so we may suppose that q − 1 is a power of 2. Now recall that
if q is an odd prime power for which q − 1 is a power of 2, then either q = 9 or q is a Fermat
prime ([36, p. 374, Exercise 1]).

Theorem 3 guarantees the existence of a twin prime pair f, f + 1 of odd degree over all
sufficiently large finite fields Fq with q odd. The next lemma is an explicit version of a slightly
weaker result:
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q f q3
− 1 order of f order of f + 1 l

3 T 3
− T + 2 2 · 13 13 26 13

9 T 3
− T + 2 23

· 7 · 13 13 26 13
5 T 3 + 3T + 2 22

· 31 22
· 31 22

· 31 31
17 T 3 + T + 8 24

· 307 22
· 307 22

· 307 307
257 T 3 + T + 15 28

· 61 · 1087 25
· 61 · 1087 22

· 61 · 1087 61
65537 T 3 + T + 18 216

· 37 · P9 215
· 37 · P9 215

· 37 · P9 37

Table 1. Twin prime pairs of odd degree over small finite fields Fq, where q = 1 + 2N . We write P9

for the 9-digit prime 116085511.

Lemma 20. Suppose q > 200000 is a prime power coprime to 6. Then there are infinitely
many twin prime pairs f, f + 1 over Fq for which deg f = deg (f + 1) is odd.

It is worth remarking that no Fermat primes > 200000 are known, and it is plausible that
none exist.

Proof. By Theorem 2, if q is large enough and prime to 6, then we may choose a monic
prime pair f, f + 1 of degree 3 over Fq. In fact, referring to the lower bound (4.4) (with r = 2,
B = 2 and n = 3), we see that such pairs exist as long as q satisfies the inequalities

q2 > 8 · 32 and
q

9
− 2

9
(gq1/2 + g + 62) − 2 · 2 > 0, (6.1)

where g is the genus of an appropriate function field. The left hand inequality is satisfied
already for q ≥ 9. By Corollary 15, we have

g ≤ 2 · 3 · 3!2 = 216;

and so the right hand inequality of (6.1) holds as soon as

1

9
q − 48

√
q − 60 > 0,

which is valid for q ≥ 187703, so certainly for q > 200000. To complete the proof, choose an
odd prime divisor l of q3 − 1 (e.g., any prime divisor of q2 + q +1) and apply Lemma 19 to the
pair f, f + 1 (taking B = 6 and r = 2). We obtain that for q > 81, there is some β ∈ Fq for

which both f(T lk − β) and f(T lk − β) + 1 are simultaneously irreducible for k = 1, 2, 3, . . . .
This is an infinite family of twin prime pairs of odd degree.

To finish off this half of Theorem 4, it remains to consider the cases when q = 9 or when
q is a Fermat prime less than 200000. These small finite fields are treated by hand. For each
such q, Table 1 exhibits the first member f of a monic twin prime pair f, f + 1 of odd degree
together with all the information necessary to verify that Lemma 17 can be applied to both f
and f + 1 with the specified odd prime l.

6.2. Part II: Infinitely many twin prime pairs of even degree

We first argue that for q ≥ 4, there is always a monic, quadratic twin prime pair f, f + 1
over Fq. In the proof of this result it is convenient to consider odd and even q separately.

Lemma 21. Let Fq be a finite field of odd characteristic with q ≥ 5. Then there is a pair
f, f + 1 of monic irreducible quadratic polynomials over Fq.

Lemma 21 could be established by the methods of Theorem 2, in analogy with the proof of
Lemma 20 in Part I. However, the direct approach below leads to better bounds.
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Table 2. Twin prime pairs of even degree over some small finite fields.
q f qd

− 1 order of f order of f + 1 l

3 T 6 + T 5 + 2T 3 + 2T 2 + 1 23
· 7 · 13 22

· 7 · 13 23
· 7 · 13 7

4 T 2 + T + α 3 · 5 3 · 5 3 · 5 3
5 T 2 + T + 1 23

· 3 3 23
· 3 3

7 T 2 + T + 3 24
· 3 24

· 3 23
· 3 3

8 T 2 + (β + 1)T + β2 + β 32
· 7 32

· 7 32
· 7 7

9 T 2 + (γ + 1)T + γ + 1 24
· 5 24

· 5 24
· 5 5

11 T 2 + 3 23
· 3 · 5 22

· 5 22
· 5 5

13 T 2 + 6 23
· 3 · 7 23

· 3 23
· 3 3

16 T 2 + (δ2 + δ)T + δ 3 · 5 · 17 3 · 5 · 17 3 · 5 · 17 3
17 T 2 + T + 2 25

· 32 24
· 32 25

· 32 3
19 T 2 + 4 23

· 32
· 5 22

· 32 22
· 32 3

23 T 2 + 2 24
· 3 · 11 22

· 11 22
· 11 11

25 T 2 + 4ǫT + 4ǫ + 2 24
· 3 · 13 3 · 13 22

· 3 · 13 3

Here α2 + α + 1 = 0, β3 + β + 1 = 0, γ2 + 1 = 0, δ4 + δ + 1 = 0, and ǫ2 + 2 = 0.

Proof. It suffices to show that there is some pair of consecutive quadratic nonresidues in
Fq. Letting χ denote the quadratic character on Fq, the number of such pairs is 1

4 of the sum∑
(1−χ(α))(1−χ(α+1)), the sum being taken over α 6= 0,−1 from Fq. Now a straightforward

calculation using the evaluation
∑

α∈Fq
χ(α)χ(α + 1) = −1 (cf. [3, Theorem 2.1.2]) results in

a count of
1

4
(q − 3 + χ(1) + χ(−1)) =

1

4
(q − 2 + χ(−1))

such pairs, which is positive for q > 3.

Lemma 22. Let Fq be a finite field of characteristic 2 with q ≥ 4. Then there is a pair
f, f + 1 of monic quadratic polynomials both of which are irreducible over Fq.

Proof. For any fixed γ ∈ Fq, the map φ : Fq 7→ Fq defined by φ(β) := β2 + γβ is an
endomorphism of the underlying additive group of Fq. We choose γ so that γ 6= 0 and the
image of φ contains 1 (and so contains all of F2). This is possible as soon as Fq is a nontrivial
extension of F2; merely choose any β ∈ Fq \ F2 and define γ so that β2 + γβ = 1.

We claim that with this choice of γ, there is a pair f, f + 1 of irreducibles where f has the
form T 2 + γT + δ. A polynomial of this form is irreducible if and only if δ is not in the image
of φ. But by our choice of γ, the element δ is missing from the image of φ if and only if the
same is true for δ +1. So the lemma follows provided that φ is not onto. Since φ is a map from
Fq to itself, if φ were onto it would also be injective. But φ(γ) = φ(0) = 0, and the lemma is
proved.

Lemma 23. Let Fq be a finite field with q > 25. Then there are infinitely many twin prime
pairs f, f + 1 of even degree over Fq.

Proof. Lemmas 21 and 22 show that for q ≥ 4 there is a monic twin prime pair f, f + 1
of degree 2 over Fq. Since q > 3, it is impossible for both q − 1 and q + 1 to be powers of 2,
and so there must be an odd prime divisor l of q2 − 1. Lemma 19 (with r = 2 and B = 4)

implies that for q > 25, there is some β ∈ Fq for which both f(T lk − β) and f(T lk − β)+ 1 are
simultaneously irreducible for k = 0, 1, 2, 3, . . . . Since these twin prime pairs have even degree,
the lemma follows.
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To complete the proof of Theorem 4 it suffices to consider those finite fields with at most 25
elements, and these are treated in Table 2.
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