# SIMULTANEOUS PRIME SPECIALIZATIONS OF POLYNOMIALS OVER FINITE FIELDS 

PAUL POLLACK


#### Abstract

Recently the author proposed a uniform analogue of the Bateman-Horn conjectures for polynomials with coefficients from a finite field (i.e., for polynomials in $\mathbf{F}_{q}[T]$ rather than $\mathbf{Z}[T]$ ). Here we use an explicit form of the Chebotarev density theorem over function fields to prove this conjecture in particular ranges of the parameters. We give some applications including the solution of a problem posed by C. Hall.


## 1. Introduction

### 1.1. A polynomial analogue of the Bateman-Horn conjectures

Are there infinitely many primes of the form $n^{2}+1$ ? Questions of this type, where one inquires about the prime values of a polynomial (or the simultaneous prime values of a finite collection of polynomials) have received considerable attention, owing especially to the development of sieve methods in the early 20th century. Yet we still cannot prove the existence a single one-variable polynomial of degree $>1$ that assumes prime values infinitely often.

In 1923, Hardy and Littlewood [22] formulated quantitative predictions for the number of simultaneous prime values assumed on integers $n \leq x$ for several specific families of polynomials. A general prediction for all finite collections of polynomials was later given by Bateman and Horn [2]; roughly speaking, the number of such $n$ is conjectured to be governed by a global factor predicted by the density of primes, multiplied by a local factor depending on the number of roots of our polynomials modulo $p$ for all primes $p$.

While these conjectures remain unresolved, the new millennium has already witnessed tantalizing progress on related questions. One of the most exciting developments is the resolution by Green and Tao [19] of the longstanding conjecture that the primes contain arbitrarily long arithmetic progressions. These authors have recently attacked with some success a much more general class of questions; they are able to count, conditional on two simpler conjectures, the number of simultaneous prime values assumed by a collection of affine linear forms, provided that this collection of forms does not encode a binary problem like the Goldbach or twin prime conjecture [18]. Enough can be proved already (see [20]) to obtain the correct asymptotic for the number of four-term arithmetic progressions of primes. One also thinks of the remarkable work by Goldston, Pintz and Yıldırım towards the twin prime conjecture (see, e.g., [17]). They show that any improvement of the level of distribution in the Bombieri-Vinogradov theorem would imply that $\lim \inf p_{n+1}-p_{n}<\infty$, i.e., that gaps between primes are uniformly bounded infinitely often.

Given the strong analogies between the ring of rational integers and the ring of univariate polynomials over a finite field, it is natural to inquire whether questions of this nature can be formulated and attacked in the function field setting. In [29], we presented a heuristic

2000 Mathematics Subject Classification 11T55 (primary), 11N32 (secondary)..
The author is supported by an NSF Graduate Research Fellowship.
argument for the following analogue of the Bateman-Horn conjectures where the polynomials have coefficients not from $\mathbf{Z}$ but from a finite field $\mathbf{F}_{q}$ :

Conjecture 1. Let $f_{1}, \ldots, f_{r}$ be nonassociate irreducible one-variable polynomials over $\mathbf{F}_{q}$ with the degree of $f_{1} \cdots f_{r}$ bounded by $B$. Suppose that there is no prime $P$ of $\mathbf{F}_{q}[T]$ for which the map

$$
h(T) \mapsto f_{1}(h(T)) \cdots f_{r}(h(T)) \bmod P
$$

is identically zero. Then

$$
\begin{align*}
& \#\left\{h(T): h \text { monic, } \operatorname{deg} h=n, \text { and } f_{1}(h(T)), \ldots, f_{r}(h(T)) \text { all prime }\right\} \\
& =\left(1+o_{B}(1)\right) \frac{\mathfrak{S}\left(f_{1}, \ldots, f_{r}\right)}{\prod_{i=1}^{r} \operatorname{deg} f_{i}} \frac{q^{n}}{n^{r}} \quad \text { as } q^{n} \rightarrow \infty \tag{1.1}
\end{align*}
$$

Here the local factor $\mathfrak{S}\left(f_{1}, \ldots, f_{r}\right)$ is defined by

$$
\mathfrak{S}\left(f_{1}, \ldots, f_{r}\right):=\prod_{m=1}^{\infty} \prod_{\substack{\operatorname{deg} P=m \\ P \text { monic, prime }}} \frac{1-\omega(P) / q^{m}}{\left(1-1 / q^{m}\right)^{r}}
$$

where

$$
\omega(P):=\#\left\{A \bmod P: f_{1}(A) \cdots f_{r}(A) \equiv 0 \quad(\bmod P)\right\}
$$

Since there are exactly $q^{n}$ monic polynomials $h(T) \in \mathbf{F}_{q}[T]$ of degree $n$, it is natural to consider asymptotics as $q^{n} \rightarrow \infty$. Note that $q^{n} \rightarrow \infty$ when either $q \rightarrow \infty$ or $n \rightarrow \infty$. Moreover, Conjecture 1 does not require that the family $\left\{f_{i}\right\}$ stay fixed as $q^{n}$ tends to infinity; all that is required for the convergence of the $o_{B}(1)$-term to zero is that the degree of $f_{1} \cdots f_{r}$ remains bounded by $B$.

The following concrete example serves to illustrate these points: Let $\mathbf{F}_{q}$ be a finite field of size $q \equiv 3(\bmod 4)$ and let $f(T):=T^{2}+1 \in \mathbf{F}_{q}[T]$. Then the conditions of Conjecture 1 are satisfied with $B=2$, leading us to predict that the number of monic, degree $n$ polynomials $h(T)$ for which $h(T)^{2}+1$ is irreducible over $\mathbf{F}_{q}$ is

$$
\begin{equation*}
(1+o(1)) \frac{\mathfrak{S}(f)}{2} \frac{q^{n}}{n} \quad \text { as } \quad q^{n} \rightarrow \infty \tag{1.2}
\end{equation*}
$$

If we fix $q$ here and let $n \rightarrow \infty$, then we obtain the $\mathbf{F}_{q}[T]$-analogue of Hardy and Littlewood's classical prediction [22, Conjecture E] on the number of primes of the form $n^{2}+1$ with $n \leq x$. But in contrast to the classical case (where the ring $\mathbf{Z}$ is fixed), this is not our only option: rather than fixing $q$, we could just as well fix $n$ and let $q$ tend to infinity through prime powers congruent to $3(\bmod 4)$, or we could vary $q$ and $n$ jointly so that both tend to infinity.

To understand the prediction in these latter cases, we quote two results from [29, Appendix] on the behavior of the singular series $\mathfrak{S}\left(f_{1}, \ldots, f_{r}\right)$ :
(i) If the local condition of Conjecture 1 is satisfied, then the product defining $\mathfrak{S}\left(f_{1}, \ldots, f_{r}\right)$ converges to a positive constant.
(ii) Under the assumptions of Conjecture 1, we have

$$
\frac{\mathfrak{S}\left(f_{1}, \ldots, f_{r}\right)}{\prod_{i=1}^{r} \operatorname{deg} f_{i}}=1+O_{B}(1 / q)
$$

In particular, if $B$ is fixed and $q$ is large, then this ratio is close to 1 .
Returning to our example above, we see from (ii) that if $q \rightarrow \infty$ (through prime powers $\equiv 3$ $(\bmod 4))$, then $(1.2)$ predicts roughly $q^{n} / n$ primes of the form $h(T)^{2}+1$ with $h(T) \in \mathbf{F}_{q}[T]$ monic of degree $n$.

### 1.2. Statement of our main result

In [29], we announced the following theorem, which in view of the result (ii) on $\mathfrak{S}\left(f_{1}, \ldots, f_{r}\right)$ quoted above, confirms Conjecture 1 when $q$ is much larger than $n$ and $\mathbf{F}_{q}$ obeys a mild restriction on its characteristic:

Theorem 2. Let $n$ be a positive integer. Let $f_{1}(T), \ldots, f_{r}(T)$ be nonassociate irreducible polynomials over $\mathbf{F}_{q}$ with the degree of the product $f_{1} \cdots f_{r}$ bounded by $B$. The number of univariate monic polynomials $h$ of degree $n$ for which all of $f_{1}(h(T)), \ldots, f_{r}(h(T))$ are irreducible over $\mathbf{F}_{q}$ is $q^{n} / n^{r}+O_{n, B}\left(q^{n-1 / 2}\right)$ provided $\operatorname{gcd}(q, 2 n)=1$.
(The dependence of the $O_{n, B^{-} \text {-term here is explicit but unpleasant, and it would be interesting }}$ to improve this.) The purpose of this paper is to prove Theorem 2 and discuss some of its consequences.

Theorem 2 was inspired by the result of Effinger, Hicks, and Mullen [14] that for each fixed $n \geq 1$ and every large enough finite field $\mathbf{F}_{q}$, one can find a pair of distinct monic irreducibles of degree $n$ over $\mathbf{F}_{q}$ which differ only in their constant term. This suggests that counting problems of this type may be more approachable if $q$ is allowed to be large in comparison to $n$, a perspective we build upon here. However, while these authors' methods are elementary, our argument rests on an explicit form of the Chebotarev density theorem for function fields, which in turn relies on Weil's deep results on the Riemann Hypothesis for curves. Our proof of Theorem 2 is similar in spirit to the argument used by Cohen $[\mathbf{6}]$ and Ree ( $[\mathbf{3 0}],[\mathbf{3 1}]$ ) to settle Chowla's conjecture [5] on the existence of prime polynomials of the form $T^{n}+T+a$ modulo $p$ for $p>p_{0}(n)$.

Conjecture 1 and Theorem 2 fulfill a desideratum of Shparlinski (see [35, Problem 3.1]), who proposed investigating the distribution of irreducibles of the form $f(h(T))$ with $f$ a polynomial over $\mathbf{F}_{q}$. But they do not address the question of prime specializations of polynomials with coefficients from the larger ring $\mathbf{F}_{q}[u]$, a question which arises naturally when searching for a complete analogue of the Hardy-Littlewood conjectures. For example, one might hope to predict the frequency of polynomials $h$ for which $h(u)$ and $h(u)^{q}+u$ are both prime in $\mathbf{F}_{q}[u]$, and this falls outside the purview of our results. A conjecture in this generality was only recently proposed by Conrad, Conrad and Gross ([10]; see also the survey [11]). Essential to this work is the study of a surprising global obstruction not present in the classical setting. We do not say any more about their general conjecture here except to note that, in contrast to our work, the authors of [10] do not consider the issue of uniformity in $q$.

As observed by Cohen (op. cit., as well as [7]) and Leonard [25], the Chebotarev density theorem and the Weil bound can be coupled to count the occurrence of polynomials in appropriate sequences with any prescribed cycle type, not merely the occurrence of irreducibles. (By the cycle type of a degree $n$ polynomial, we mean the partition of $n$ obtained from the list of degrees of the irreducible factors, which we identify with the associated conjugacy class of the symmetric group on $n$ letters.) Such a variant of Theorem 2 can then be combined with the known results on the structure of random permutations to obtain additional theorems of arithmetic interest. For instance, one can establish in this way a theorem on smooth values of polynomials over $\mathbf{F}_{q}$ that bears the same relation to Martin's conjectured formula [27] as Theorem 2 bears to the Bateman-Horn conjecture. Details will appear in the author's doctoral dissertation (currently in progress). One will also find there an analogue of Theorem 2 for primitive polynomials, with the expected main term and an error term of $O_{n, B, \epsilon}\left(q^{n-1 / 2+\epsilon}\right)$.

### 1.3. Some applications

If $f_{1}(T), \ldots, f_{r}(T)$ are fixed irreducible polynomials over $\mathbf{F}_{q}$ satisfying the local conditions of Conjecture 1, then we expect that there are infinitely many monic polynomials $h(T)$ for which

PAUL POLLACK
$f_{1}(h(T)), \ldots, f_{r}(h(T))$ are simultaneously irreducible. This qualitative conjecture, analogous to Schinzel's classical Hypothesis H, would of course follow immediately if the quantitative Conjecture 1 was known to hold for fixed $q$ and $n$ tending to infinity. However, it seems difficult to prove an asymptotic in this range of $(q, n)$-space.

Despite the difficulty of obtaining satisfactory quantitative results, this polynomial Hypothesis H can be proved in many special cases. The first to make significant progress in this direction was Hall [21], who showed that there are infinitely many monic twin prime pairs $f, f+1$ over all finite fields with more than two elements (excepting $\mathbf{F}_{3}$, which was later treated by the present author [29, Theorem 1]). Generalizing the work of Hall, the author recently established the following result (cf. [29, Theorem 2]):

Theorem A. Let $f_{1}(T), \ldots, f_{r}(T)$ be nonassociate irreducible polynomials over $\mathbf{F}_{q}$ with the degree of $f_{1} \cdots f_{r}$ bounded by $B$. If $q \geq 2^{2 r}(1+B)^{2}$, then there is a prime $l$ dividing $q-1$ and an element $\beta \in \mathbf{F}_{q}$ for which every substitution

$$
T \mapsto T^{l^{k}}-\beta \quad \text { with } \quad k=1,2,3, \ldots
$$

leaves all of $f_{1}, \ldots, f_{r}$ irreducible. In particular, there are infinitely many monic $h(T)$ for which $f_{1}(h(T)), \ldots, f_{r}(h(T))$ are simultaneously irreducible.

In both Hall's original theorem and in Theorem A, the set of substitutions $T \mapsto h(T)$ leaving all the $f_{i}$ irreducible is rather sparse. A weak consequence of Conjecture 1 is that there should be such $h(T)$ of every sufficiently large degree. Here we establish that the degrees of these polynomials $h(T)$ are "dense" with respect to arithmetic progressions, in the following sense:

Theorem 3. Let $f_{1}(T), \ldots, f_{r}(T)$ be nonassociate irreducibles over $\mathbf{F}_{q}$ with the degree of $f_{1} \cdots f_{r}$ bounded by $B$. Let $a$ mod $m$ be an arbitrary infinite arithmetic progression of integers. If the finite field $\mathbf{F}_{q}$ is sufficiently large, depending just on $m, r$, and $B$, and if $q$ is prime to $2 \operatorname{gcd}(a, m)$, then there are infinitely many univariate monic polynomials $h$ over $\mathbf{F}_{q}$ with

$$
\operatorname{deg} h \equiv a \quad(\bmod m) \quad \text { and } \quad f_{1}(h(T)), \ldots, f_{r}(h(T)) \text { all irreducible over } \mathbf{F}_{q} .
$$

Theorem 3 is no doubt true without any restriction on the characteristic of $\mathbf{F}_{q}$, but we have not been able to show this. The proof of Theorem 3 is entirely effective and leaves no mystery surrounding "sufficiently large." We illustrate the methods involved by establishing the following result, the first half of which settles a problem posed by Hall [21, p. 140]:

Theorem 4. Let $\mathbf{F}_{q}$ be any finite field with more than two elements. Then there are infinitely many monic prime pairs $f, f+1$ of odd degree over $\mathbf{F}_{q}$. The same holds for the case of even degree.

Even for large $q$ this is not immediate from Theorem 3, since that theorem says nothing about prime specializations over fields of characteristic 2.

Theorem 4 is the twin prime analogue of Kornblum's result that every coprime residue class of polynomials over $\mathbf{F}_{q}$ contains infinitely many monic irreducibles of odd degree, as well as infinitely many of even degree. In the posthumously-published version of Kornblum's paper [24], Landau presents a modification of Kornblum's argument to the effect that the degrees can be taken from an arbitrary arithmetic progression. Theorem 3 can be seen as an effort in the same direction.

## 2. Preparation for the proof of Theorem 2

### 2.1. Notation

We fix once and for all an algebraically closed field $\Omega_{q}$ of infinite transcendence degree over $\mathbf{F}_{q}$ and assume for the remainder of the paper that all extensions of $\mathbf{F}_{q}$ which appear are subfields of $\Omega_{q}$. We use an overline to denote the operation of taking an algebraic closure; in particular, $\overline{\mathbf{F}}_{q}$ denotes the algebraic closure of $\mathbf{F}_{q}$ inside $\Omega_{q}$.

We use res and disc to denote the polynomial resultant and discriminant, respectively. Our work also requires variants of these quantities, which we define as follows: If $f=\sum_{i=0}^{n} a_{i} u^{i}$ and $g=\sum_{j=0}^{m} b_{j} u^{j}$ are polynomials in $u$ of degrees at most $n$ and $m$ respectively over a domain $R$ (so that $a_{n}$ and $b_{m}$ may vanish), we define

$$
\operatorname{res}_{u}^{n, m}(f, g):=\left.\operatorname{res}_{u}\left(\sum_{i=0}^{n} A_{i} u^{i}, \sum_{j=0}^{m} B_{j} u^{j}\right)\right|_{A_{0}=a_{0}, \ldots, A_{n}=a_{n}, B_{0}=b_{0}, \ldots, B_{m}=b_{m}}
$$

where the right-hand resultant is computed over the ring $R\left[A_{0}, \ldots, A_{n}, B_{0}, \ldots, B_{m}\right]$ of polynomials obtained by adjoining the indeterminates $A_{i}$ and $B_{j}$ to $R$. Similarly, if $f=\sum_{i=0}^{n} a_{i} T^{i}$ is a polynomial in $T$ of degree at most $n$, we define

$$
\operatorname{disc}_{T}^{n}(f):=\left.\operatorname{disc}_{T}\left(\sum_{i=0}^{n} A_{i} T^{i}\right)\right|_{A_{0}=a_{0}, \ldots, A_{n}=a_{n}}
$$

the right-hand discriminant being taken over $R\left[A_{0}, \ldots, A_{n}\right]$. If $n$ and $m$ represent the actual degrees of $f$ and $g$, respectively, then $\operatorname{res}_{u}^{n, m}(f, g)=\operatorname{res}_{u}(f, g)$, and similarly for $\operatorname{disc}_{T}^{n}(f)$. We work with $\operatorname{res}_{u}^{n, m}$ and $\operatorname{disc}_{T}^{n}$ rather than the usual resultant and discriminant in order to obtain uniform formulas without needing to worry about "degree-dropping" in intermediate calculations. The fundamental property of $\operatorname{res}_{u}^{n, m}$ that we need is that $\operatorname{res}_{u}^{n, m}(f, g)$ is an $R[u]-$ linear combination of $f$ and $g$. (This follows from our definitions above and the analogous result for the usual resultant.) In particular, if $R$ is a field and $\operatorname{res}_{u}^{n, m}(f, g)$ is a nonzero constant, then $f$ and $g$ have no common roots in $R$.

We use $\operatorname{Sym}(S)$ to denote the symmetric group on the set $S$.

### 2.2. Further preliminaries for the proof of Theorem 2

Since the case $n=1$ of Theorem 2 is trivial, we always suppose that $n \geq 2$. We also suppose the following setup:

$$
\begin{aligned}
f_{1}, \ldots, f_{r} & \text { nonassociate irreducible univariate polynomials over } \mathbf{F}_{q}, \\
d_{1}, \ldots, d_{r} & \text { degrees of } f_{1}, \ldots, f_{r} \text { respectively, } \\
\theta_{1}, \ldots, \theta_{r} & \text { fixed roots of } f_{1}, \ldots, f_{r}, \text { respectively, from } \overline{\mathbf{F}}_{q}, \\
\theta_{i}^{(j)} & j \text { th conjugate of } \theta_{i} \text { with respect to Frobenius, i.e., } \theta_{i}^{(j)}:=\theta_{i}^{q^{j}}
\end{aligned}
$$

If $h(T)$ is a fixed polynomial of degree $n \geq 2$ over $\mathbf{F}_{q}$, we define the function fields $K_{i, j} / \mathbf{F}_{q}$, $L_{i, j} / \mathbf{F}_{q}$, and $M_{i} / \mathbf{F}_{q}$ (for $1 \leq i \leq r, 1 \leq j \leq d_{i}$ ) as follows, suppressing in our notation the dependence on $h$ :

$$
\begin{aligned}
K_{i, j} & \text { field obtained by adjoining a fixed root of } h(T)-u-\theta_{i}^{(j)} \text { to } \mathbf{F}_{q^{d_{i}}}(u), \\
L_{i, j} & \text { normal closure of } K_{i, j} \text { over } \mathbf{F}_{q^{d_{i}}}(u), \\
M_{i} & \text { compositum of the fields } L_{i, j} \text { for } j=1,2 \ldots, d_{i} .
\end{aligned}
$$



Figure 1. Tower of fields illustrating the inclusion relations between $\mathbf{F}_{q}(u), \mathbf{F}_{q^{d}}(u)$, the $K_{i, j}$, the $L_{i, j}$ and $M_{i}$.


Figure 2. Field diagram illustrating the inclusion relations between $\mathbf{F}_{q}(u), \mathbf{F}_{q^{D}}(u)$, the $\widetilde{K}_{i, j}$, the $\widetilde{L}_{i, j}, \widetilde{M}_{i}$ and $\widetilde{M}$. Here moving to a larger field is signified by moving outward from $\mathbf{F}_{q}(u)$.

We let $D$ be the least common multiple of $d_{1}, \ldots, d_{r}$ and denote with a tilde the corresponding fields obtained by extending the constant field by $\mathbf{F}_{q^{D}}$. (That is, we set $\widetilde{K}_{i, j}:=K_{i, j} \mathbf{F}_{q^{D}}, \widetilde{L}_{i, j}:=$ $L_{i, j} \mathbf{F}_{q^{D}}$ and $\widetilde{M}_{i}:=M_{i} \mathbf{F}_{q^{D}}$.) Finally, we let $\widetilde{M}$ denote the compositum of $\widetilde{M}_{1}, \ldots, \widetilde{M}_{r}$. The inclusion relations between these fields are illustrated in Figures 1 and 2.

LEmma 5. Assume that $h(T)$ is a polynomial of degree $n \geq 2$ over $\mathbf{F}_{q}$ which is not a polynomial in $T^{p}$, where $p$ is the characteristic of $\mathbf{F}_{q}$. Then the extensions $M_{i} / \mathbf{F}_{q}(u)$ are Galois for each $i=1,2, \ldots, r$. The same assertion holds for the extensions $\widetilde{M}_{i} / \mathbf{F}_{q}(u)$ and $\widetilde{M} / \mathbf{F}_{q}(u)$.

Proof. Observe that $M_{i}$ is the splitting field over $\mathbf{F}_{q}(u)$ of $f_{i}(h(T)-u)$, so that the first half of the lemma follows immediately once we show that the irreducible factors of $f_{i}(h(T)-u)$ are separable over $\mathbf{F}_{q}(u)$. Moving to the finite extension $\mathbf{F}_{q^{d_{i}}}(u)$ of $\mathbf{F}_{q}(u)$ we have

$$
f_{i}(h(T)-u)=\prod_{j=1}^{d_{i}}\left(h(T)-u-\theta_{i}^{(j)}\right)
$$

The $d_{i}$ factors on the right-hand side are pairwise coprime (in $\overline{\mathbf{F}_{q}(u)}[T]$ ), so that it suffices to verify that each factor $h(T)-u-\theta_{i}^{(j)}$ has no repeated roots. Any such repeated root is also a root of $h^{\prime}(T)$. But our hypothesis on $h$ ensures that $h^{\prime}$ is not identically zero, so each root of $h^{\prime}(T)$ is algebraic over $\mathbf{F}_{q}$, while $h(T)-u-\theta_{i}^{(j)}$ has no roots algebraic over $\mathbf{F}_{q}$.

The second half of the lemma is a consequence of the first. Indeed, since $\mathbf{F}_{q^{D}}(u) / \mathbf{F}_{q}(u)$ is Galois, what we have just proved implies that $\widetilde{M}_{i}=M_{i} \mathbf{F}_{q^{D}}=M_{i} \mathbf{F}_{q^{D}}(u)$ is also Galois over $\mathbf{F}_{q}(u)$, and thus so is the compositum of the $\widetilde{M}_{i}$.

The groups $\operatorname{Gal}\left(\widetilde{M} / \mathbf{F}_{q}(u)\right)$ and $\operatorname{Gal}\left(M_{i} / \mathbf{F}_{q}(u)\right)$ will play an important role and so we study them in some detail. Let $S_{i, j}$ denote the full set of roots of $h(T)-u-\theta_{i}^{(j)}$ (thus $S_{i, j}$ depends only on $j \bmod d_{i}$ ). We begin by observing that under the hypothesis of Lemma 5 , which assures that the extensions appearing below are Galois, we have for each $k=1,2, \ldots, r$ a commutative diagram

$$
\begin{align*}
& \operatorname{Gal}\left(\widetilde{M} / \mathbf{F}_{q}(u)\right) \xrightarrow{\iota_{1}} \operatorname{Gal}\left(\mathbf{F}_{q^{D}} / \mathbf{F}_{q}\right) \times \prod_{i=1}^{r} \operatorname{Sym}\left(\cup_{j=1}^{d_{i}} S_{i, j}\right) \\
& \left.\sigma \mapsto \sigma\right|_{M_{k}} \downarrow  \tag{2.1}\\
& \operatorname{Gal}\left(M_{k} / \mathbf{F}_{q}(u)\right) \xrightarrow{\iota_{2}} \quad \operatorname{Gal}\left(\mathbf{F}_{q^{d_{k}}} / \mathbf{F}_{q}\right) \times \operatorname{Sym}\left(\cup_{j=1}^{d_{k}} S_{k, j}\right)
\end{align*} .
$$

Here the maps $\iota_{1}, \iota_{2}$ are given by

$$
\begin{aligned}
& \iota_{1}: \sigma \mapsto\left(\left.\sigma\right|_{\mathbf{F}_{q^{D}}},\left.\sigma\right|_{\cup_{j=1}^{d_{1}} S_{1, j}}, \ldots,\left.\sigma\right|_{\cup_{j=1}^{d_{r}} S_{r, j}}\right), \\
& \iota_{2}: \sigma \mapsto\left(\left.\sigma\right|_{\mathbf{F}_{q_{k}}},\left.\sigma\right|_{\cup_{j=1}^{d_{k}} S_{k, j}}\right),
\end{aligned}
$$

and

$$
\pi:\left(\tau, \sigma_{1}, \ldots, \sigma_{r}\right) \mapsto\left(\tau \mid \mathbf{F}_{q^{d} k}, \sigma_{k}\right)
$$

Note that $\iota_{1}$ and $\iota_{2}$ are embeddings while $\pi$ is a surjection.
The remainder of this section is devoted to an explicit description of the images of $\iota_{1}$ and $\iota_{2}$ under a mild restriction on $h$. This characterization is obtained under the following two hypotheses:

$$
\begin{equation*}
\operatorname{disc}_{u}^{n-1} \operatorname{disc}_{T}^{n}\left(h(T)-u-\theta_{i}^{(j)}\right) \neq 0 \quad \text { for all } \quad 1 \leq i \leq r, \quad 1 \leq j \leq d_{i} \tag{2.2}
\end{equation*}
$$

and

$$
\begin{align*}
\operatorname{res}_{u}^{n-1, n-1}\left(\operatorname{disc}_{T}^{n}\left(h(T)-u-\theta_{i}^{(j)}\right)\right. & \left., \operatorname{disc}_{T}^{n}\left(h(T)-u-\theta_{i^{\prime}}^{\left(j^{\prime}\right)}\right)\right) \neq 0 \\
& \text { whenever } i, i^{\prime}, j, j^{\prime} \text { are as above and }(i, j) \neq\left(i^{\prime}, j^{\prime}\right) . \tag{2.3}
\end{align*}
$$

(Note that (2.2) implies immediately that $h$ is not a polynomial in $T^{p}$.) That together (2.2) and (2.3) impose only a mild restriction on $h$ is borne out by the following lemma, which we prove in $\S 3$ :

Lemma 6. Let $h(T)$ range over the polynomials of the form $T^{n}+a_{n-1} T^{n-1}+\cdots+a_{1} T$, with all coefficients $a_{i}$ belonging to $\mathbf{F}_{q}$. Assume that $q$ is prime to $2 n$. Then both of the following hold:
(i) The number of such $h$ for which (2.2) fails is bounded above by

$$
\begin{equation*}
(2 n-1)(2 n-3) q^{n-2} . \tag{2.4}
\end{equation*}
$$

(ii) For any fixed pairs of indices $(i, j) \neq\left(i^{\prime}, j^{\prime}\right)$, the same bound holds for the number of such $h$ which fail to satisfy (2.3).
Consequently, for all but at most

$$
4 n^{2}\left(1+\binom{d_{1}+\cdots+d_{r}}{2}\right) q^{n-2}
$$

values of $h$ as above, both (2.2) and (2.3) hold for all distinct pairs of indices $(i, j)$ and $\left(i^{\prime}, j^{\prime}\right)$.
We now present the promised descriptions of the images of $\iota_{1}$ and $\iota_{2}$, beginning with $\iota_{2}$ :
Lemma 7. Let $n \geq 2$. Assume that the characteristic of $\mathbf{F}_{q}$ is prime to $2 n$. Then if $h(T)$ has the form

$$
h(T)=T^{n}+a_{n-1} T^{n-1}+\cdots+a_{1} T, \quad \text { with each } a_{i} \in \mathbf{F}_{q}
$$

and $h(T)$ satisfies both (2.2) and (2.3), then all of the following hold:
(i) The $L_{i, j}$ are Galois over $\mathbf{F}_{q^{d_{i}}}(u)$ with Galois $\operatorname{group} \operatorname{Sym}\left(S_{i, j}\right)$ for each $1 \leq i \leq r, 1 \leq$ $j \leq d_{i}$.
(ii) For every $1 \leq i \leq r, 1 \leq j \leq d_{i}$, the field $L_{i, j}$ is linearly disjoint from the compositum of all other fields $L_{i, j^{\prime}}$ with $1 \leq j^{\prime} \neq j \leq d_{i}$.
(iii) $\mathbf{F}_{q^{d_{i}}}$ is the full field of constants of $M_{i} / \mathbf{F}_{q^{d_{i}}}$.
(iv) The extension $M_{i} / \mathbf{F}_{q^{d_{i}}}(u)$ is Galois with

$$
\operatorname{Gal}\left(M_{i} / \mathbf{F}_{q^{d_{i}}}(u)\right) \cong \prod_{j=1}^{d_{i}} \operatorname{Gal}\left(L_{i, j} / \mathbf{F}_{q^{d_{i}}}(u)\right) \cong \prod_{j=1}^{d_{i}} \operatorname{Sym}\left(S_{i, j}\right)
$$

the first isomorphism being induced by restriction in each component.
(v) Fix $1 \leq i \leq r$. Let Frob denote the $q$ th power map, so that Frob generates Gal $\left(\mathbf{F}_{q^{d_{i}}} / \mathbf{F}_{q}\right)$. The image of $\iota_{2}$ consists of all pairs ( $\mathrm{Frob}^{k}, \sigma$ ) which obey the following compatibility condition:

$$
\sigma\left(S_{i, j}\right) \subset S_{i, j+k}
$$

A similar lemma characterizes the image of $\iota_{1}$ :
Lemma 8. Let $n \geq 2$. Assume that the characteristic of $\mathbf{F}_{q}$ is prime to $2 n$. Then if $h(T)$ has the form

$$
h(T)=T^{n}+a_{n-1} T^{n-1}+\cdots+a_{1} T, \quad \text { with each } a_{i} \in \mathbf{F}_{q}
$$

and $h(T)$ satisfies both (2.2) and (2.3), then all of the following hold:
(i) The $\widetilde{L}_{i, j}$ are Galois over $\mathbf{F}_{q^{D}}(u)$ with Galois group $\operatorname{Sym}\left(S_{i, j}\right)$ for each $1 \leq i \leq r, 1 \leq$ $j \leq d_{i}$.
(ii) For every $1 \leq i \leq r, 1 \leq j \leq d_{i}$, the field $\widetilde{L}_{i, j}$ is linearly disjoint from the compositum of all other fields $\widetilde{L}_{i^{\prime}, j^{\prime}}$ with $1 \leq i^{\prime} \leq r, 1 \leq j^{\prime} \leq d_{i^{\prime}}$ and $(i, j) \neq\left(i^{\prime}, j^{\prime}\right)$.
(iii) $\mathbf{F}_{q^{D}}$ is the full field of constants of $\widetilde{M}$.
(iv) The image of $\iota_{1}$ consists of all pairs $\left(\mathrm{Frob}^{k}, \sigma\right)$ which obey the compatibility condition

$$
\sigma\left(S_{i, j}\right) \subset S_{i, j+k} \quad \text { for every } i=1,2, \ldots, r
$$

The proofs of Lemmas 6,7 , and 8 are deferred to the next section. The curious reader may jump directly to the proof of Theorem 2 in $\S 4$.

## 3. Proofs of Lemmas 6,7 , and 8

### 3.1. Proof of Lemma 6

The proof of Lemma 6 rests on the following elementary bound for the number of affine zeros of a polynomial:

Lemma 9. Let $E / \mathbf{F}_{q}$ be an arbitrary field extension and let $P\left(T_{1}, \ldots, T_{m}\right)$ be a nonzero polynomial in $m$ variables over $E$ with total degree bounded by $d$. Then there are at most $d q^{m-1}$ solutions to $P\left(x_{1}, \ldots, x_{m}\right)=0$ in $\mathbf{F}_{q}^{m}$.

This lemma is well-known when $E=\mathbf{F}_{q}$ (see, e.g., [26, Theorem 6.13]), and the general case reduces to this one upon writing the coefficients of $P$ with respect to an $\mathbf{F}_{q}$-basis of $E$.

Our computations also require the following evaluation of the discriminants of certain trinomials (cf. [15, Exercise 4.5.4]):

Lemma 10. Let $R$ be any integral domain, and let $a$ and $b$ be any elements of $R$. Then

$$
\operatorname{disc}_{T}\left(T^{n}+a T+b\right)=(-1)^{\binom{n}{2}}\left(n^{n} b^{n-1}+(-1)^{n-1}(n-1)^{n-1} a^{n}\right)
$$

Proof of Lemma 6(i). For every pair of $i$ and $j$ with $1 \leq i \leq r$ and $1 \leq j \leq d_{i}$, we have

$$
\begin{equation*}
\operatorname{disc}_{u}^{n-1} \operatorname{disc}_{T}^{n}\left(h(T)-u-\theta_{i}^{(j)}\right)=\operatorname{disc}_{u}^{n-1} \operatorname{disc}_{T}^{n}(h(T)-u) \tag{3.1}
\end{equation*}
$$

indeed, the $T$-discriminant on the left-hand side differs from the one on the right only in that $u$ is replaced by $u-\theta_{i}^{(j)}$, and such a shift leaves the outer $u$-discriminant unaffected.

Define a polynomial $\widehat{P}$ with integer coefficients in the $n-1$ indeterminates $T_{1}, \ldots, T_{n-1}$ by

$$
\begin{equation*}
\widehat{P}\left(T_{1}, \ldots, T_{n-1}\right):=\operatorname{disc}_{u}^{n-1} \operatorname{disc}_{T}^{n}\left(T^{n}+T_{n-1} T^{n-1}+\cdots+T_{1} T-u\right) \tag{3.2}
\end{equation*}
$$

(Note that $T$ and $u$ are successively eliminated by the right-hand discriminants, so that only the indeterminates $T_{1}, \ldots, T_{n-1}$ remain.) We claim that if $q$ is prime to $2 n$, then $\widehat{P}$ does not reduce to the zero polynomial when considered over $\mathbf{F}_{q}$. This suffices to prove (2.4). To see why, observe (from the definition of the discriminant in terms of the determinant of a $(2 n-1) \times(2 n-1)$ Sylvester matrix) that the inner $T$-discriminant on the right of (3.2) is a polynomial in $u$ of degree at most $n-1$, each coefficient of which is a polynomial in $T_{1}, \ldots, T_{n-1}$ of total degree bounded by $2 n-1$. These coefficients determine the entries of the $(2 n-3) \times(2 n-3)$ determinant used to compute $\widehat{P}$, whence $\widehat{P}$ has total degree at most $(2 n-1)(2 n-3)$ in $T_{1}, \ldots, T_{n-1}$. The desired bound (2.4) on the number of $h$ which fail to satisfy (2.2) now follows from Lemma 6 .

It remains to prove our claim that $\widehat{P}$ is nonvanishing when considered over $\mathbf{F}_{q}$. This is easiest if we adopt the further assumption that the characteristic $p$ of $\mathbf{F}_{q}$ is prime to $n-1$. Indeed, successive application of Lemma 10 shows that

$$
\begin{aligned}
\widehat{P}(1,0, \ldots, 0) & =\operatorname{disc}_{u}^{n-1} \operatorname{disc}_{T}^{n}\left(T^{n}+T-u\right) \\
& =\operatorname{disc}_{u}^{n-1}\left((-1)^{\binom{n}{2}}\left(n^{n}(-u)^{n-1}+(-1)^{n-1}(n-1)^{n-1}\right)\right) \\
& =\operatorname{disc}_{u}^{n-1}\left(n^{n} u^{n-1}+(n-1)^{n-1}\right)= \pm(n-1)^{(n-1)^{2}} n^{n(n-2)},
\end{aligned}
$$

which is nonzero under this additional hypothesis.

We therefore suppose that $p$ divides $n-1$. In this case we consider

$$
\widehat{P}(1,1, \ldots, 1)=\operatorname{disc}_{u}^{n-1} \operatorname{disc}_{T}^{n}\left(T^{n}+T^{n-1}+\cdots+T-u\right)
$$

To understand the inner discriminant, note that

$$
(T-1)\left(T^{n}+T^{n-1}+\cdots+T-u\right)=T^{n+1}-T-(T-1) u
$$

By Lemma 10, the $T$-discriminant of the right-hand polynomial is given explicitly by

$$
\begin{equation*}
(-1)\binom{n+1}{2}\left((n+1)^{n+1} u^{n}-n^{n}(u+1)^{n+1}\right) . \tag{3.3}
\end{equation*}
$$

We can relate this to the discriminant we are after by using the relations

$$
\begin{aligned}
& \operatorname{disc}_{T}\left((T-1)\left(T^{n}+T^{n-1}+\cdots+T-u\right)\right) \\
&= \pm\left(\left.\left(T^{n}+T^{n-1}+\cdots+T-u\right)\right|_{T=1}\right)^{2} \operatorname{disc}_{T}\left(T^{n}+T^{n-1}+\cdots+T-u\right) \\
&= \pm(n-u)^{2} \operatorname{disc}_{T}\left(T^{n}+T^{n-1}+\cdots+T-u\right)
\end{aligned}
$$

Piecing this all together we obtain

$$
\widehat{P}(1,1, \ldots, 1)=\operatorname{disc}_{u}^{n-1}\left(\frac{(n+1)^{n+1} u^{n}-n^{n}(u+1)^{n+1}}{(u-n)^{2}}\right)
$$

Let $Q(u)$ denote the polynomial in $u$ appearing in the $\operatorname{argument}$ of $\operatorname{disc}_{u}$ here, so that $Q$ has degree $n-1$ in $u$. If $\widehat{P}(1,1, \ldots, 1)$ vanishes, then $Q$ has a multiple root, which is necessarily also a multiple root of (3.3). One computes easily that unless $p$ divides $n+1$, the only common root of (3.3) and its derivative is $u=n$. If $u=n$ is a multiple root of $Q$, then it must be a root of multiplicity at least 4 of (3.3), which forces the second derivative of (3.3) to vanish at $u=n$. But this second derivative is given by

$$
(-1)^{\binom{n+1}{2}}\left((n+1)^{n+1} n(n-1) n^{n-2}-n^{n+1}(n+1)(n+1)^{n-1}\right)=(-1)_{\binom{n+1}{2}+1} n^{n-1}(n+1)^{n}
$$

Since the characteristic $p$ is prime to $n$, this can only vanish if $p$ divides $n+1$. So we are forced to the conclusion that $\widehat{P}(1, \ldots, 1)$ is nonvanishing except possibly if $p$ divides $n+1$. However, $p$ divides $n-1$ in the case we are considering, so that $p$ can divide $n+1$ only if $p=2$, which is excluded.

Proof of Lemma 6(ii). We proceed as in the proof of Lemma 6(i). Write $h(T)=T^{n}+$ $a_{n-1} T^{n-1}+\cdots+a_{1} T$ as usual. Fix pairs $(i, j)$ and $\left(i^{\prime}, j^{\prime}\right)$ with $(i, j) \neq\left(i^{\prime}, j^{\prime}\right)$ and set

$$
P\left(a_{1}, \ldots, a_{n-1}\right):=\operatorname{res}_{u}^{n-1, n-1}\left(\operatorname{disc}_{T}^{n}\left(h(T)-u-\theta_{i}^{(j)}\right), \operatorname{disc}_{T}^{n}\left(h(T)-u-\theta_{i^{\prime}}^{\left(j^{\prime}\right)}\right)\right) .
$$

Arguing as in Lemma 6 (i), we see that there is some polynomial $\widehat{P}\left(T_{1}, \ldots, T_{n-1}\right)$ over $\overline{\mathbf{F}}_{q}$ of degree at most $(2 n-1)(2 n-3)$ for which

$$
P\left(a_{1}, \ldots, a_{n-1}\right)=\widehat{P}\left(a_{1}, \ldots, a_{n-1}\right) \quad \text { for all } a_{1}, \ldots, a_{n-1} \in \mathbf{F}_{q}
$$

Then (2.3) is satisfied (for the fixed pairs $(i, j)$ and $\left(i^{\prime}, j^{\prime}\right)$ ) as long as $\widehat{P}$ is nonvanishing. This nonvanishing is easily checked: indeed, the constant term of $\widehat{P}$ is

$$
\begin{aligned}
\widehat{P}(0, \ldots, 0) & =\operatorname{res}_{u}^{n-1, n-1}\left(\operatorname{disc}_{T}\left(T^{n}-u-\theta_{i}^{(j)}\right), \operatorname{disc}_{T}\left(T^{n}-u-\theta_{i^{\prime}}^{\left(j^{\prime}\right)}\right)\right) \\
& =\operatorname{res}_{u}^{n-1, n-1}\left(\operatorname{disc}_{T}\left(T^{n}-u\right), \operatorname{disc}_{T}\left(T^{n}-u+\theta_{i}^{(j)}-\theta_{i^{\prime}}^{\left(j^{\prime}\right)}\right)\right) \\
& =(-1)^{n+1} n^{n(2 n-2)}\left(\theta_{i}^{(j)}-\theta_{i^{\prime}}^{\left(j^{\prime}\right)}\right)^{(n-1)^{2}} \neq 0 .
\end{aligned}
$$

Lemma 9 now implies that $\widehat{P}$ has at most $(2 n-1)(2 n-3) q^{n-2}$ zeros in $\mathbf{F}_{q}^{n-1}$, finishing the proof.

### 3.2. Proofs of Lemmas 7 and 8

Our fundamental tool is the following criterion of Birch and Swinnerton-Dyer [4] for certain polynomials to have the full symmetric group as their Galois group. We state their result in an alternative form attributed by the same authors to Davenport:

A Criterion of Birch and Swinnerton-Dyer. Let $h(T)$ be a polynomial of degree $n \geq 2$ with coefficients from a finite field $F$ whose characteristic is prime to $n$. Suppose that with $u$ an indeterminate over $F$, we have

$$
\begin{equation*}
\operatorname{disc}_{u}^{n-1} \operatorname{disc}_{T}^{n}(h(T)-u) \neq 0 . \tag{3.4}
\end{equation*}
$$

Then the Galois group of $h(T)-u$ over the rational function field $\bar{F}(u)$ is the full symmetric group on the $n$ roots of $h(T)-u$. Consequently, if $E$ is any algebraic extension of $F$, then the Galois group of $h(T)-u$ over $E(u)$ is also the full symmetric group.

Proof of Lemmas 7(i) and 8(i). Suppose that $h$ satisfies both conditions (2.2) and (2.3). Then part (i) of Lemma 7 is immediate from the Birch and Swinnerton-Dyer criterion. Since $\widetilde{L}_{i, j}$ is the splitting field of $h(T)-u-\theta_{i}^{(j)}$ over $\mathbf{F}_{q^{D}}$, the same argument also establishes Lemma 8(i).

To continue we require two more technical tools. The first is a lemma of Hayes appearing in his alternative proof of the Birch and Swinnerton-Dyer criterion:

Lemma 11 (Hayes). Let $h(T)$ be a polynomial of degree $n \geq 2$ over the finite field $\mathbf{F}_{q}$ which satisfies the hypotheses of the Birch and Swinnerton-Dyer criterion with $F=\mathbf{F}_{q}$. Let $L$ be the splitting field of $h(T)-u$ over $\overline{\mathbf{F}}_{q}(u)$. Let $P_{\infty}$ be the prime of $\overline{\mathbf{F}}_{q}(u)$ corresponding to the $(1 / u)$-adic valuation on $\overline{\mathbf{F}}_{q}[1 / u]$, and let $P$ be any prime of $L$ lying above above $P_{\infty}$. Then $e\left(P \mid P_{\infty}\right)=n$, where $e\left(P \mid P_{\infty}\right)$ denotes the ramification index of $P$ over $P_{\infty}$.

Hayes proves this explicitly only in the case $h=T^{n}+T-u$ (see [23, Proof of Lemma 1]), but as he remarks the arguments extend easily to the general case. It is also necessary for us to understand the ramification of $P_{\infty}$ in certain extensions of the fields appearing in Hayes's lemma; for this we appeal to the following result ([37, Proposition III.8.9]):

Abhyankar's Lemma. Let $F^{\prime} / F$ be a finite separable extension of function fields. Suppose that $F^{\prime}=F_{1} F_{2}$ is the compositum of two intermediate fields $F \subset F_{1}, F_{2} \subset F^{\prime}$. Let $P$ be a prime of $F$ and $P^{\prime}$ a prime of $F^{\prime}$ lying above $P$. With $P_{i}:=P^{\prime} \cap F_{i}$ for $i=1$ and 2 , assume that at least one of the extensions $P_{1} / P$ or $P_{2} / P$ is tame (i.e., that $e\left(P_{i} / P\right)$ is relatively prime to the characteristic of $F$ ). Then

$$
e\left(P^{\prime} / P\right)=\operatorname{lcm}\left[e\left(P_{1} / P\right), e\left(P_{2} / P\right)\right]
$$

In particular, if both $P_{1} / P$ and $P_{2} / P$ are tamely ramified, then so is $P^{\prime} / P$.
Proof of Lemmas 7(ii) and 8(ii). Define the constant field extensions

$$
\widehat{K}_{i, j}:=K_{i, j} \overline{\mathbf{F}}_{q}, \quad \widehat{L}_{i, j}:=L_{i, j} \overline{\mathbf{F}}_{q}, \quad \text { and } \quad \widehat{M}_{i}:=M_{i} \overline{\mathbf{F}}_{q} .
$$

Thus $\widehat{L}_{i, j}$ is the splitting field of $h(T)-u-\theta_{i}^{(j)}$ over $\overline{\mathbf{F}}_{q}$. To prove Lemma 7(ii), it suffices to show that for each fixed $i$,

$$
\begin{equation*}
\widehat{L}_{i, j} \text { is linearly disjoint from the compositum of } \widehat{L}_{i, j^{\prime}} \text { for } 1 \leq j^{\prime} \neq j \leq d_{i} \tag{3.5}
\end{equation*}
$$

Indeed, once (3.5) is known, we may deduce that

$$
\operatorname{Gal}\left(\widehat{M}_{i} / \overline{\mathbf{F}}_{q}(u)\right) \cong \operatorname{Gal}\left(\widehat{L}_{i, 1} / \overline{\mathbf{F}}_{q}(u)\right) \times \cdots \times \operatorname{Gal}\left(\widehat{L}_{i, d_{i}} / \overline{\mathbf{F}}_{q}(u)\right)
$$

By the Birch and Swinnerton-Dyer criterion the right-hand Galois groups each have size $n$ !, so that the left-hand Galois group has size $n!^{d_{i}}$. But the left-hand Galois group injects (via restriction) into $\operatorname{Gal}\left(M_{i} / \mathbf{F}_{q^{d_{i}}}(u)\right)$, and degree counting shows that this injection must be an isomorphism; thus

$$
\begin{aligned}
{\left[M_{i}: \mathbf{F}_{q^{d_{i}}}(u)\right] } & =\left[L_{i, 1} L_{i, 2} \cdots L_{i, d_{i}}: \mathbf{F}_{q^{d_{i}}}(u)\right] \\
& =\left[L_{i, 1}: \mathbf{F}_{q^{d_{i}}}(u)\right]\left[L_{i, 2}: \mathbf{F}_{q^{d_{i}}}(u)\right] \cdots\left[L_{i, d_{i}}: \mathbf{F}_{q^{d_{i}}}(u)\right]
\end{aligned}
$$

which implies Lemma 7(ii).
To prove (3.5), consider the intersection $N$ of $\widehat{L}_{i, j}$ with the compositum of the fields $\widehat{L}_{i, j^{\prime}}$ for $1 \leq j \neq j^{\prime} \leq d_{i}$. The only primes of $\overline{\mathbf{F}}_{q}(u)$ that can ramify in $N$ ramify in both $\widehat{K}_{i, j}$ and some $\widehat{K}_{i, j^{\prime}}$ with $1 \leq j \neq j^{\prime} \leq d_{i}$. But by (2.3), the polynomials

$$
\operatorname{disc}_{T}^{n}\left(h(T)-u-\theta_{i}^{(j)}\right) \quad \text { and } \quad \operatorname{disc}_{T}^{n}\left(h(T)-u-\theta_{i}^{\left(j^{\prime}\right)}\right) \quad \text { have no common roots, }
$$

and so the only prime that can possibly ramify in both extensions is $P_{\infty}$. By Hayes's Lemma 11 and repeated application of Abhyankar's Lemma, $P_{\infty}$ is tamely ramified in $\widehat{L}_{i, j}$ and hence also in $N$. (Here we again use our hypothesis that $q$ is prime to $n$.) Thus $N$ is a finite, tamely ramified geometric extension of $\overline{\mathbf{F}}_{q}(u)$ unramified except possibly at primes above the degree 1 prime $P_{\infty}$. It follows that $N=\overline{\mathbf{F}}_{q}(u)$ (this is an immediate consequence of the RiemannHurwitz genus formula; see, e.g., [23, p.460] or [33, Exercise 6, p.99]). This proves (3.5) and together with the above argument completes the proof of Lemma 7(ii).

The proof of Lemma 8(ii) is nearly identical but is based instead on the claim that

$$
\begin{equation*}
\widehat{L}_{i, j} \text { is linearly disjoint from the compositum of } \widehat{L}_{i, j} \text { for }(i, j) \neq\left(i^{\prime}, j^{\prime}\right) ; \tag{3.6}
\end{equation*}
$$

we omit the details.

Proof Proof of Lemmas 7(iii) and 8(iii). In the course of proving Lemma 7(ii), we showed that restriction induces an isomorphism

$$
\operatorname{Gal}\left(\widehat{M}_{i} / \overline{\mathbf{F}}_{q}(u)\right) \cong \operatorname{Gal}\left(M_{i} / \mathbf{F}_{q^{d_{i}}}(u)\right)
$$

If $\alpha \in M_{i} \cap \overline{\mathbf{F}}_{q}$, then $\alpha$ is fixed by every element of the left-hand Galois group appearing above, and so must be fixed by all elements of the right-hand Galois group. But this forces $\alpha$ to lie in the field of rational functions $\mathbf{F}_{q^{d_{i}}}(u)$. Since $\alpha$ is algebraic over $\mathbf{F}_{q}$, it must belong to $\mathbf{F}_{q^{d_{i}}}$. So $\mathbf{F}_{q^{d_{i}}}$ is the full field of constants of $M_{i}$. Lemma 8(iii) can be proved similarly, using that restriction induces an isomorphism $\operatorname{Gal}\left(\widetilde{M} \overline{\mathbf{F}}_{q} / \overline{\mathbf{F}}_{q}(u)\right) \cong \operatorname{Gal}\left(\widetilde{M} / \mathbf{F}_{q^{D}}(u)\right)$.

Proof Proof of Lemma 7(iv). This is immediate from parts (i) and (ii) of Lemma 7.
Proof Proof of Lemma 7(v) and Lemma 8(iv). Suppose that $\sigma \in \operatorname{Gal}\left(M_{i} / \mathbf{F}_{q^{d_{i}}}(u)\right)$ satisfies $\left.\sigma\right|_{\mathbf{F}_{d_{i}}}=$ Frob $^{k}$. Then $\sigma$ takes $\theta_{i}^{(j)}$ to $\theta_{i}^{(j+k)}$ and so takes every root of $h(T)-u-\theta_{i}^{(j)}$ to a root of $h(T)-u-\theta_{i}^{(j+k)}$. It follows that the image of $\iota_{2}$ is contained within the set of elements obeying the compatibility condition specified in Lemma $7(\mathrm{v})$. A straightforward counting argument shows that there are $d_{i} n!^{d_{i}}$ such elements of $\operatorname{Gal}\left(\mathbf{F}_{q^{d_{i}}} / \mathbf{F}_{q}\right) \times \operatorname{Sym}\left(\cup_{j=1}^{d_{i}} S_{i, j}\right)$. On the other hand, we know that $M_{i} / \mathbf{F}_{q}(u)$ is Galois of degree $\left[M_{i}: \mathbf{F}_{q}(u)\right]=\left[M_{i}: \mathbf{F}_{q^{d_{i}}}(u)\right]\left[\mathbf{F}_{q^{d_{i}}}(u)\right.$ : $\left.\mathbf{F}_{q}(u)\right]=d_{i} n!^{d_{i}}$. Since $\iota_{2}$ is injective, it follows that the image of $\iota_{2}$ must coincide with the set specified in (v).

A similar argument establishes Lemma 8(iv): in that case $\widetilde{M}$ is Galois over $\mathbf{F}_{q}(u)$ of degree $D n!^{d_{1}+\cdots+d_{r}}$, and this degree coincides with the number of elements obeying the compatibility condition of Lemma 8(iv).

## 4. Proof of Theorem 2

Throughout this section $f_{1}(T), \ldots, f_{r}(T)$ denote nonassociate irreducible polynomials of respective degrees $d_{1}, \ldots, d_{r}$ over $\mathbf{F}_{q}$ and $h(T)=T^{n}+a_{n-1} T^{n-1}+\cdots+a_{1} T$ denotes a monic polynomial over $\mathbf{F}_{q}$ of degree $n \geq 2$ without constant term satisfying conditions (2.2) and (2.3).

Our plan is to use the Chebotarev density theorem to estimate, for each individual $h(T)$, the number of $a \in \mathbf{F}_{q}$ for which all of the specializations $f_{i}(h(T)-a)$ are irreducible. We begin by recalling the following well-known lemma (see, e.g., [8, pp. 408-409]):

Lemma 12. Let $f(T)$ be an irreducible polynomial of degree $d$ over $\mathbf{F}_{q}$ and let $\theta$ be a root of $f$ from the extension $\mathbf{F}_{q^{d}}$. Let $p(T)$ be a nonconstant polynomial over $\mathbf{F}_{q}$. Then $f(p(T))$ is irreducible over $\mathbf{F}_{q}$ if and only if $p(T)-\theta$ is irreducible over $\mathbf{F}_{q^{d}}$.

The next result explains how the Chebotarev density theorem enters the picture. For $a \in \mathbf{F}_{q}$, we write $P_{a}$ for the prime of $\mathbf{F}_{q}(u)$ corresponding to the $(u-a)$-adic valuation.

Lemma 13. The group $\operatorname{Gal}\left(\widetilde{M} / \mathbf{F}_{q}(u)\right)$ contains a conjugacy class $\mathcal{C}$, of size

$$
\frac{1}{n^{r}} n!^{d_{1}+\cdots+d_{r}}
$$

with the following property: If $a$ is an element of $\mathbf{F}_{q}$ which is not a zero of any of the polynomials

$$
\begin{equation*}
\operatorname{disc}_{T}\left(h(T)-u-\theta_{i}^{(j)}\right) \quad \text { for } \quad 1 \leq i \leq r, \quad 1 \leq j \leq d_{i} \tag{4.1}
\end{equation*}
$$

then $f_{i}(h(T)-a)$ is irreducible over $\mathbf{F}_{q}$ if and only if $\mathcal{C}$ coincides with the Frobenius conjugacy class $\left(\widetilde{M} / \mathbf{F}_{q}(u), P_{a}\right)$.

Proof. Since $a$ is not a root of any of the polynomials (4.1), $P_{a}$ is unramified in $\widetilde{M}$. Now fix $1 \leq i \leq r$. Using Lemma 12 and Kummer's Theorem ([37, Theorem 3.3.7]), we find

$$
\begin{aligned}
f_{i}(h(T)-a) \text { is irreducible over } \mathbf{F}_{q} & \Longleftrightarrow h(T)-a-\theta_{i}^{(1)} \text { is irreducible over } \mathbf{F}_{q^{d_{i}}} \\
& \Longleftrightarrow P_{a} \text { stays prime in } K_{i, 1} .
\end{aligned}
$$

This last occurrence can be recast in terms of the action of Frobenius. Let $\sigma$ denote any element of the Frobenius conjugacy class $\left(M_{i} / \mathbf{F}_{q}(u), P_{a}\right)$; then necessarily

$$
\begin{equation*}
\sigma \text { restricts to the } q \text { th power map on } \mathbf{F}_{q^{d_{i}}} \tag{4.2}
\end{equation*}
$$

Moreover, $P_{a}$ stays prime in $K_{i, 1}$ if and only if

$$
\begin{equation*}
\operatorname{Gal}\left(M_{i} / \mathbf{F}_{q}(u)\right)=\bigcup_{l=0}^{d_{i} n-1} \operatorname{Gal}\left(M_{i} / K_{i, 1}\right) \sigma^{l} \tag{4.3}
\end{equation*}
$$

We now investigate when (4.3) holds.
Write $K_{i, 1}=\mathbf{F}_{q^{d_{i}}}(u)(\alpha)$, where $\alpha \in S_{i, 1}$. Now (4.2) implies that under $\iota_{2}$ the element $\sigma$ is identified with (Frob, $\sigma^{\prime}$ ), where $\sigma^{\prime}$ is a permutation of $\cup_{j=1}^{d_{i}} S_{i, j}$. We claim that (4.3) holds if and only if $\sigma^{\prime}$ is an $n d_{i}$-cycle. Indeed, suppose that $\sigma$ (equivalently, $\sigma^{\prime}$ ) acts as an $n d_{i}$-cycle on $\cup_{j=1}^{d_{i}} S_{i, j}$; then for any $\gamma \in \operatorname{Gal}\left(M_{i} / \mathbf{F}_{q}(u)\right)$, there is a unique $0 \leq l<d_{i} n$ for which $\tau \sigma^{-l}$ fixes $\alpha$, and this implies (4.3). Conversely, if (4.3) holds then $\sigma \notin \operatorname{Gal}\left(M_{i} / K_{i, 1}\right)$, so that $\sigma$ (and hence $\sigma^{\prime}$ ) must move $\alpha$. Thus in the decomposition of $\sigma^{\prime}$ into disjoint cycles, $\alpha$ must occur in a

PAUL POLLACK
nontrivial cycle. If this cycle has length $l<n d_{i}$, then both $\sigma^{l}$ and $\sigma^{0}$ belong to $\operatorname{Gal}\left(M / K_{i, 1}\right)$, and this contradicts that (4.3) is a disjoint union.

Let $\gamma$ denote an element of the conjugacy class of $\left(\widetilde{M} / \mathbf{F}_{q}(u), P_{a}\right)$. Since $\gamma$ restricts down to an element of the conjugacy class of $\left(M_{i} / \mathbf{F}_{q}(u), P_{a}\right)$, in order for $P_{a}$ to stay prime in $M_{i}$ for every $i=1,2, \ldots, r$ it is necessary and sufficient that $\left.\gamma\right|_{M_{i}}$ satisfies both (4.2) and (4.3) for every $1 \leq i \leq r$. By our work above and the commutativity of diagram (2.1), this condition on $\gamma$ holds if and only if $\gamma$ (identified with its representation under $\iota_{1}$ ) has the form (Frob, $\sigma_{1}, \ldots, \sigma_{r}$ ), where each $\sigma_{i}$ is an $n d_{i}$-cycle on $\cup_{j=1}^{d_{i}} S_{i, j}$. It remains to prove that the $\gamma$ in $\operatorname{Gal}\left(\widetilde{M} / \mathbf{F}_{q}(u)\right)$ of this form make up a single conjugacy class of size $n^{-r} n!^{d_{1}+\cdots+d_{r}}$.

Suppose that $\gamma \in \operatorname{Gal}\left(M / \mathbf{F}_{q}(u)\right)$ has the above form. The compatibility condition of Lemma 8(iv) implies that

$$
\sigma_{i}\left(S_{i, j}\right) \subset S_{i, j+1} \quad \text { for all } 1 \leq i \leq r \text { and all } j
$$

Now fix $1 \leq i \leq r$. Since $\sigma_{i}$ is an $n d_{i}$-cycle on $\cup_{j=1}^{d_{i}} S_{i, j}$, it follows that $\sigma_{i}$ has exactly $n$ representations in the form
$\left(\begin{array}{llll}a_{1} & a_{2} & \ldots & a_{n d_{i}}\end{array}\right), \quad$ where for each $1 \leq k \leq d_{i}$,

$$
a_{k} a_{k+d_{i}} \ldots a_{(n-1) k+d_{i}} \text { is a permutation of } \operatorname{Sym}\left(S_{i, k}\right)
$$

Consequently, there are exactly $n^{-1} n!^{d_{i}}$ possibilities for $\sigma_{i}$, and so exactly

$$
n^{-r} n!^{d_{1}+\cdots+d_{r}}
$$

possibilities for $\gamma$. Moreover, this explicit description shows that the $\gamma$ of this form make up a single conjugacy class of $\operatorname{Gal}\left(\widetilde{M} / \mathbf{F}_{q}(u)\right)$. To see this observe that

$$
\operatorname{Gal}\left(\widetilde{M} / \mathbf{F}_{q}(u)\right) \supset \operatorname{Gal}\left(\widetilde{M} / \mathbf{F}_{q^{D}}(u)\right)=\prod_{\substack{1 \leq i \leq r \\ 1 \leq j \leq d_{i}}} \operatorname{Sym}\left(S_{i, j}\right)
$$

and that $\operatorname{Sym}\left(S_{i, j}\right)$ acts transitively by conjugation on its own $n$-cycles.
To apply the Chebotarev density theorem we require an estimate for the genus of $\widetilde{M} / \mathbf{F}_{q^{D}}$. This will be obtained as a corollary of the next two results. The first is a special case of a genus estimate due to Cohen (see [9, Theorem 1.1]):

Lemma 14. Let $f(T)$ be a nonconstant polynomial over $\mathbf{F}_{q}$ which is not a polynomial in $T^{p}$, and let $L$ be the splitting field of $f(T)-u$ over $\mathbf{F}_{q}(u)$. Then the genus of $L$ is bounded above by

$$
\frac{1}{2}(\operatorname{deg} f-3)\left[L: \mathbf{F}_{q}(u)\right]+1
$$

The next result appears as [37, Theorem III.10.3]:
Castelnuovo's Inequality. Let $F / k$ be a function field with full constant field $k$. Suppose we are given two subfields $F_{1} / k$ and $F_{2} / k$ of $F / k$ satisfying
(i) $F=F_{1} F_{2}$ is the compositum of $F_{1}$ and $F_{2}$,
(ii) $\left[F: F_{i}\right]=n_{i}$ and $F_{i} / k$ has genus $g_{i}$ for $i=1,2$.

Then the genus $g$ of $F / k$ obeys the bound

$$
g \leq n_{1} g_{1}+n_{2} g_{2}+\left(n_{1}-1\right)\left(n_{2}-1\right)
$$

Corollary 15. Let $f_{1}(T), \ldots, f_{r}(T)$ be nonassociate monic irreducible polynomials of respective degrees $d_{1}, \ldots, d_{r}$ over $\mathbf{F}_{q}$ and suppose that $h(T)$ is a polynomial of degree $n \geq 2$ without constant term satisfying conditions (2.2) and (2.3). Then the genus of $\widetilde{M} / \mathbf{F}_{q^{D}}$ is
bounded above by

$$
\left(d_{1}+\cdots+d_{r}\right) n \cdot n!^{d_{1}+\cdots+d_{r}} .
$$

Proof. Write $g_{N}$ for the genus of a function field $N$ with constant field $\mathbf{F}_{q^{D}}$. Since $\widetilde{L}_{i, j}$ is the splitting field of $h(T)-u-\theta_{i}^{(j)}$ over $\mathbf{F}_{q^{D}}\left(\right.$ for $1 \leq i \leq r$ and $1 \leq j \leq d_{i}$ ), Lemma 14 implies that

$$
g_{\widetilde{L}_{i, j}} \leq \frac{1}{2}(n-3) n!+1 \leq \frac{1}{2} n \cdot n!
$$

To continue we enumerate the $\widetilde{L}_{i, j}$ as $\widetilde{L}^{(1)}, \ldots, \widetilde{L}^{\left(d_{1}+\cdots+d_{r}\right)}$, so that $\widetilde{M}$ is the compositum of the $\widetilde{L}^{(i)}$ for $1 \leq i \leq d_{1}+\cdots+d_{r}$. By Castelnuovo's Inequality, we have for any $k \leq d_{1}+\cdots+d_{r}$ that

$$
\begin{aligned}
g_{\widetilde{L}^{(1)} \ldots \widetilde{L}^{(k)}} \leq\left[\widetilde{L}^{(1)} \cdots \widetilde{L}^{(k)}: \widetilde{L}^{(k)}\right] g_{\widetilde{L}^{(k)}}+\left[\widetilde{L}^{(1)} \cdots \widetilde{L}^{(k)}: \widetilde{L}^{(1)} \cdots \widetilde{L}^{(k-1)}\right] g_{\widetilde{L}^{(1)} \ldots \widetilde{L}^{(k-1)}}+ \\
\left(\left[\left[\widetilde{L}^{(1)} \cdots \widetilde{L}^{(k)}: \widetilde{L}^{(k)}\right]-1\right)\left(\left[\widetilde{L}^{(1)} \cdots \widetilde{L}^{(k)}: \widetilde{L}^{(1)} \cdots \widetilde{L}^{(k-1)}\right]-1\right)\right.
\end{aligned}
$$

thus

$$
\begin{aligned}
g_{\widetilde{L}^{(1)} \ldots \tilde{L}^{(k)}} & \leq n!^{k-1} \cdot \frac{1}{2} n \cdot n!+n!g_{\widetilde{L}^{(1)} \ldots \widetilde{L}^{(k-1)}}+\left(n!^{k-1}-1\right)(n!-1) \\
& \leq \frac{1}{2} n \cdot n!^{k}+n!g_{\widetilde{L}^{(1)} \ldots \widetilde{L}^{(k-1)}}+n!^{k} \leq n \cdot n!^{k}+n!g_{\widetilde{L}^{(1)} \ldots \widetilde{L}^{(k-1)}}
\end{aligned}
$$

By induction we deduce that

$$
g_{\widetilde{L}^{(1)} \ldots \tilde{L}^{(k)}} \leq k n \cdot n!^{k}
$$

Taking $k=d_{1}+d_{2}+\cdots+d_{r}$ gives the result.
Finally we state the particular version of the Chebotarev density theorem required in our application. This result is implicit in Fried \& Jarden's discussion of that theorem (see the proof of [16, Proposition 6.4.8]). A similar result could also be derived from the work of Murty and Scherk [28].

Explicit Chebotarev Density Theorem for First Degree Primes. Suppose that $M / \mathbf{F}_{q}(u)$ is a finite Galois extension having full field of constants $\mathbf{F}_{q^{D}}$. Let $\mathcal{C}$ be a conjugacy class of $\operatorname{Gal}\left(M / \mathbf{F}_{q}(u)\right)$ every element of which restricts down to the $q$ th power map on $\mathbf{F}_{q^{D}}$. Let

$$
\mathcal{P}:=\left\{\text { first degree primes } P \text { of } \mathbf{F}_{q}(u) \text { unramified in } M:\left(\frac{M / \mathbf{F}_{q}(u)}{P}\right)=\mathcal{C}\right\} .
$$

Then

$$
\left|\# \mathcal{P}-\frac{\# C}{\left[M: \mathbf{F}_{q^{D}}(u)\right]} q\right| \leq 2 \frac{\# C}{\left[M: \mathbf{F}_{q^{D}}(u)\right]}\left(g q^{1 / 2}+g+\left[M: \mathbf{F}_{q^{D}}(u)\right]\right)
$$

where $g$ denotes the genus of $M / \mathbf{F}_{q^{D}}$.
Proof of Theorem 2. Suppose that the polynomial $h(T)=T^{n}+a_{n-1} T^{n-1}+\cdots+a_{1} T$ over $\mathbf{F}_{q}$ satisfies both (2.2) and (2.3). The number of $a \in \mathbf{F}_{q}$ for which at least one of the polynomials (4.1) vanishes is bounded above by

$$
(n-1)\left(d_{1}+\cdots+d_{r}\right) \leq(n-1) B
$$

For all other $a \in \mathbf{F}_{q}$ the simultaneous irreducibility of the $f_{i}(h(T)-a)$ is equivalent to $\left(\widetilde{M} / \mathbf{F}_{q}(u), P_{a}\right)$ coinciding with the conjugacy class $\mathcal{C}$ appearing in Lemma 13 . Since $\mathcal{C}$ has size $n^{-r} n!^{d_{1}+\cdots+d_{r}}$ and $\left[\widetilde{M}: \mathbf{F}_{q^{D}}(u)\right]=n!^{d_{1}+\cdots+d_{r}}$, the explicit Chebotarev density theorem
implies that there are at least

$$
\frac{q}{n^{r}}-\frac{2}{n^{r}}\left(g q^{1 / 2}+g+n!^{d_{1}+\cdots+d_{r}}\right)-(n-1) B
$$

values of $a \in \mathbf{F}_{q}$ for which all the polynomials $f_{i}(h(T)-a)$ are irreducible, and at most

$$
(n-1) B+\frac{q}{n^{r}}+\frac{2}{n^{r}}\left(g q^{1 / 2}+g+n!^{d_{1}+\cdots+d_{r}}\right)
$$

such values of $a$. Here $g$ denotes the genus of $\widetilde{M} / \mathbf{F}_{q^{D}}(u)$.
We now replace $d_{1}+\cdots+d_{r}$ by $B$ and sum over the possibilities for $h$. Assume that

$$
q^{n-1}>4 n^{2} q^{n-2}\left(1+\binom{B}{2}\right)
$$

which holds if $q$ is sufficiently large in terms of $n$ and $B$. (This inequality guarantees that there is some $h$ of degree $n$ for which (2.2) and (2.3) both hold. Note that this inequality can be assumed for the proof of Theorem 2, since for $q$ bounded in terms of $n$ and $B$ the estimate of that theorem is trivial.) Then we find that the total number of monic degree $n$ polynomials $\widetilde{h}(T) \in \mathbf{F}_{q}[T]$ for which all the $f_{i}(\widetilde{h}(T))$ are irreducible is bounded below by

$$
\begin{equation*}
\left(q^{n-1}-4 n^{2} q^{n-2}\left(1+\binom{B}{2}\right)\right)\left(\frac{q}{n^{r}}-\frac{2}{n^{r}}\left(g q^{1 / 2}+g+n!^{B}\right)-(n-1) B\right) \tag{4.4}
\end{equation*}
$$

and bounded above by

$$
\begin{aligned}
& 4 n^{2} q^{n-1}\left(1+\binom{B}{2}\right) \\
& \\
& \quad+\left(q^{n-1}-4 n^{2} q^{n-2}\left(1+\binom{B}{2}\right)\right)\left(\frac{q}{n^{r}}+\frac{2}{n^{r}}\left(g q^{1 / 2}+g+n!^{B}\right)+(n-1) B\right)
\end{aligned}
$$

Since $g$ is $O_{n, B}(1)$ by Corollary 15, both the upper and lower bounds have the form $q^{n} / n^{r}+$ $O_{n, B}\left(q^{n-1 / 2}\right)$, finishing the proof.

## 5. Proof of Theorem 3

We begin with some comments on the relation between Theorem A and Theorem 3. For $q$ large in terms of $r$ and $B$, Theorem A asserts the existence of infinitely many irreducibility preserving substitutions $T \mapsto T^{l^{k}}-\beta$ for some prime $l$ dividing $q-1$ and some $\beta \in \mathbf{F}_{q}$. So we obtain irreducibility-preserving substitutions whose degrees are exactly the powers of $l$. In the proof of Theorem A, there is some control over the choice of $l$, and this could be used to establish Theorem 3 in a number of special cases.

In order to prove Theorem 3 in full, we require two additional ingredients:
(i) the existence of a preliminary irreducibility-preserving substitution $T \mapsto h(T)$ of degree $d$, for some $d$ belonging to the progression $a \bmod m$,
(ii) the existence of some $l$ coprime to $m$ and some $\beta \in \mathbf{F}_{q}$ for which all the substitutions $T \mapsto T^{l^{k}}-\beta$ preserve the irreducibility of the polynomials $f_{i}(h(T))$, where $h(T)$ is as in (i).

If we can establish (i) and (ii), then Theorem 3 follows immediately, since $h\left(T^{l^{k}}-\beta\right)$ has degree from the progression $a \bmod m$ whenever $k$ is divisible by $\varphi(m)$. The most difficult part of the proof is obtaining (i), which requires Theorem 2. By contrast, the techniques necessary for the proof of (ii) are present already in [29]. However, the details here are slightly different; this is because in proving Theorem 3 we take $l$ as a divisor of $q^{d}-1$ (with $d$ as in (i) above), while in [29] $l$ is always chosen as a divisor of $q-1$.

Now for the specifics. Recall the following elementary result of Bang [1] (see [32, Theorem 3] for a short modern account):

Bang's Theorem on Primitive Prime Divisors. Let $a$ and $d$ be integers greater than 1. Then there is a prime $p$ for which $a$ has order $d$ modulo $p$ in all except the following cases:
(i) $d=2, a=2^{s}-1$, where $s \geq 2$,
(ii) $d=6, a=2$.

Corollary 16. Let $m$ be a positive integer. Then every integer $d>\max \{2, \varphi(m)\}$ has the following property: if $q$ is any odd integer $\geq 3$, then $q^{d}-1$ has an odd prime divisor not dividing $m$.

Proof. Suppose $d>\max \{2, \varphi(m)\}$. By Bang's theorem there is a prime $l$ for which $q$ has order $d$ in $(\mathbf{Z} / l \mathbf{Z})^{\times}$. Since $d>1$, we must have $l \neq 2$. Moreover, $l$ is necessarily prime to $m$ : for if $l$ divides $m$, then the order of $q$ in $(\mathbf{Z} / l \mathbf{Z})^{\times}$is a divisor of $\varphi(l)$, hence also a divisor of $\varphi(m)$ and so less than $d$, a contradiction. Hence $l$ is an odd prime divisor of $q^{d}-1$ which is prime to $m$.

The next lemma, due to Serret in the case of prime fields [34, Théorème I, p. 656] and Dickson in the general case ([12, p. 382]; see also [13, §34]), plays an essential role in the proofs of both Theorems 3 and 4. (For a modern treatment see [26, Theorem 3.3.5].) Recall that if $f(T)$ is an irreducible polynomial over $\mathbf{F}_{q}$ not associated to $T$, then by the order of $f$ we mean the order of any of its roots in the multiplicative group of its splitting field (equivalently, the order of $T$ in the unit group $\left.\left(\mathbf{F}_{q}[T] / f\right)^{\times}\right)$. Thus if $f$ has degree $d$, then the order of $f$ is a divisor of $q^{d}-1$.

Lemma 17 (Serret, Dickson). Let $f$ be an irreducible polynomial over $\mathbf{F}_{q}$ of degree $d$ and order $e$. Let $l$ be an odd prime. Suppose that $f$ has a root $\alpha \in \mathbf{F}_{q^{d}}$ which is not an lth power, or equivalently that

$$
\begin{equation*}
l \mid e \quad \text { but } \quad l \nmid\left(q^{d}-1\right) / e \tag{5.1}
\end{equation*}
$$

Then $f\left(T^{l^{k}}\right)$ is irreducible in $\mathbf{F}_{q}[T]$ for $k=0,1,2,3, \ldots$
We also require the following estimate for character sums which appears as $[\mathbf{2 9}$, Lemma 4]:
LEMMA 18. Let $f_{1}(T), \ldots, f_{s}(T)$ be nonassociate irreducible polynomials over $\mathbf{F}_{q}$ with the degree of $f_{1} \cdots f_{s}$ bounded by $B$. Fix roots $\alpha_{1}, \ldots, \alpha_{s}$ of $f_{1}, \ldots, f_{s}$, respectively, lying in an algebraic closure of $\mathbf{F}_{q}$. Suppose that for each $i=1,2, \ldots, s$ we have a multiplicative character $\chi_{i}$ of $\mathbf{F}_{q}\left(\alpha_{i}\right)$ and that at least one of these $\chi_{i}$ is nontrivial. Then

$$
\begin{equation*}
\left|\sum_{\beta \in \mathbf{F}_{q}} \chi_{1}\left(\alpha_{1}+\beta\right) \cdots \chi_{s}\left(\alpha_{s}+\beta\right)\right| \leq(B-1) \sqrt{q} \tag{5.2}
\end{equation*}
$$

We can now establish the following variant of Theorem A:
Lemma 19. Let $f_{1}(T), \ldots, f_{r}(T)$ be nonassociate irreducible polynomials over $\mathbf{F}_{q}$ with each $f_{i}$ of degree $>1$ and the degree of $f_{1} \cdots f_{r}$ bounded by $B$. Suppose that $l$ is an odd prime dividing $q^{\operatorname{deg} f_{i}}-1$ for each $i=1,2, \ldots, r$. If

$$
q>\left(2^{r-1} B-2^{r}+1\right)^{2}
$$

then there is a $\beta \in \mathbf{F}_{q}$ for which all the polynomials $f_{1}\left(T^{l^{k}}-\beta\right), \ldots, f_{r}\left(T^{l^{k}}-\beta\right)$ are irreducible for each $k=0,1,2,3, \ldots$.

Proof. Fix roots $\alpha_{1}, \ldots, \alpha_{r}$ of $f_{1}(T), \ldots, f_{r}(T)$, respectively. By Lemma 17 it suffices to produce an element $\beta \in \mathbf{F}_{q}$ with the property that $\alpha_{i}+\beta$ is an $l$ th power nonresidue in $\mathbf{F}_{q}\left(\alpha_{i}\right)$ for every $i=1,2, \ldots, r$. Since $l$ divides $q^{\operatorname{deg} f_{i}}-1$ for each $i$, there are characters $\chi_{i}$ of order $l$ on each of the fields $\mathbf{F}_{q}\left(\alpha_{i}\right)$. If for every choice of $\beta$, there is an $i \in\{1,2, \ldots, r\}$ for which $\alpha_{i}+\beta$ is an $l$ th power in $\mathbf{F}_{q}\left(\alpha_{i}\right)$, then the sum

$$
\sum_{\beta \in \mathbf{F}_{q}}\left(1-\chi_{1}\left(\alpha_{1}+\beta\right)\right)\left(1-\chi_{2}\left(\alpha_{2}+\beta\right)\right) \cdots\left(1-\chi_{r}\left(\alpha_{r}+\beta\right)\right)
$$

vanishes. (Note that it is impossible for any of the arguments $\alpha_{i}+\beta$ inside a character to vanish, since each $\alpha_{i}$ belongs to a nontrivial extension of $\mathbf{F}_{q}$.) But by Lemma 18, the absolute value of this sum is bounded below by

$$
\begin{aligned}
q- & \sum_{\substack{\mathcal{I} \subset\{1,2, \ldots, r\} \\
\mathcal{I} \neq \emptyset}}\left(-1+\sum_{i \in \mathcal{I}} \operatorname{deg} f_{i}(T)\right) \sqrt{q}= \\
& q+\left(2^{r}-1\right) \sqrt{q}-\sum_{i=1}^{r} \operatorname{deg} f_{i}\left(\sum_{\substack{\mathcal{I} \subset\{1,2, \ldots, r\} \\
i \in I}} 1\right) \sqrt{q} \geq q+\left(2^{r}-1\right) \sqrt{q}-2^{r-1} B \sqrt{q}
\end{aligned}
$$

and this is positive for $q$ as in the hypothesis of the lemma.
Proof of Theorem 3. Suppose $f_{1}, \ldots, f_{r}$ are irreducible polynomials over $\mathbf{F}_{q}$, where $\mathbf{F}_{q}$ is a finite field with characteristic $p$ coprime to $2 \operatorname{gcd}(a, m)$. Let $d$ be the smallest integer exceeding $\max \{2, \varphi(m)\}$ relatively prime to $p$ and satisfying $d \equiv a(\bmod m)$. Since $p$ is prime to $\operatorname{gcd}(a, m)$, it follows that $p$ divides at most one of any two consecutive terms from the progression $a \bmod m$, so that $d \leq 3 m$. In particular $d$ is bounded solely in terms of $m$. So by Theorem 2 , as long as $q$ is sufficiently large (depending just on $B$ and $m$ ), there is a polynomial $h$ of degree $d$ for which all of $f_{1}(h(T)), \ldots, f_{r}(h(T))$ are irreducible over $\mathbf{F}_{q}$. Using Corollary 16, choose a prime $l$ dividing $q^{d}-1$ which is relatively prime to $m$. Then $l$ also divides $q^{\operatorname{deg} f_{i}(h(T))}-1$ for each $i=1,2, \ldots, r$. According to Lemma 19 (applied to the polynomials $\left.f_{1}(h(T)), \cdots, f_{r}(h(T))\right)$, if

$$
q>\left(2^{r-1} d B-2^{r}+1\right)^{2}
$$

then there is some $\beta \in \mathbf{F}_{q}$ with the property that the polynomials $f_{i}\left(h\left(T^{l^{k}}-\beta\right)\right)$ are all irreducible over $\mathbf{F}_{q}$ for $k=0,1,2,3, \ldots$. Since

$$
\operatorname{deg} h\left(T^{l^{k}}-\beta\right)=d l^{k} \equiv a l^{k} \equiv a \quad(\bmod m)
$$

whenever $k$ is a multiple of $\varphi(m)$, the proof of Theorem 3 is complete.

## 6. Application to a question of Hall

We prove Theorem 4 in two parts:

### 6.1. Part I: Infinitely many twin prime pairs of odd degree

In the case when $q-1$ has an odd prime divisor the twin prime pairs constructed by Hall [21] already have odd degree, so we may suppose that $q-1$ is a power of 2 . Now recall that if $q$ is an odd prime power for which $q-1$ is a power of 2 , then either $q=9$ or $q$ is a Fermat prime ([36, p. 374, Exercise 1]).

Theorem 3 guarantees the existence of a twin prime pair $f, f+1$ of odd degree over all sufficiently large finite fields $\mathbf{F}_{q}$ with $q$ odd. The next lemma is an explicit version of a slightly weaker result:

| $q$ | $f$ | $q^{3}-1$ | order of $f$ | order of $f+1$ | $l$ |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 3 | $T^{3}-T+2$ | $2 \cdot 13$ | 13 | 26 | 13 |
| 9 | $T^{3}-T+2$ | $2^{3} \cdot 7 \cdot 13$ | $2^{2} \cdot 31$ | $2^{4} \cdot 307$ | $2^{2} \cdot 31$ |
| $2^{2} \cdot 307$ | 26 | 13 |  |  |  |
| 5 | $T^{3}+3 T+2$ | $T^{3}+T+8$ | $2^{2} \cdot 31$ | 31 |  |
| 17 | 257 | $T^{3}+T+15$ | $2^{8} \cdot 61 \cdot 1087$ | $2^{5} \cdot 61 \cdot 1087$ | $2^{2} \cdot 61 \cdot 3087$ |
| 65537 | $T^{3}+T+18$ | $2^{16} \cdot 37 \cdot P_{9}$ | $2^{15} \cdot 37 \cdot P_{9}$ | $2^{25} \cdot 37 \cdot P_{9}$ | 61 |

Table 1. Twin prime pairs of odd degree over small finite fields $\mathbf{F}_{q}$, where $q=1+2^{N}$. We write $P_{9}$ for the 9-digit prime 116085511.

Lemma 20. Suppose $q>200000$ is a prime power coprime to 6 . Then there are infinitely many twin prime pairs $f, f+1$ over $\mathbf{F}_{q}$ for which $\operatorname{deg} f=\operatorname{deg}(f+1)$ is odd.

It is worth remarking that no Fermat primes > 200000 are known, and it is plausible that none exist.

Proof. By Theorem 2, if $q$ is large enough and prime to 6 , then we may choose a monic prime pair $f, f+1$ of degree 3 over $\mathbf{F}_{q}$. In fact, referring to the lower bound (4.4) (with $r=2$, $B=2$ and $n=3$ ), we see that such pairs exist as long as $q$ satisfies the inequalities

$$
\begin{equation*}
q^{2}>8 \cdot 3^{2} \quad \text { and } \quad \frac{q}{9}-\frac{2}{9}\left(g q^{1 / 2}+g+6^{2}\right)-2 \cdot 2>0 \tag{6.1}
\end{equation*}
$$

where $g$ is the genus of an appropriate function field. The left hand inequality is satisfied already for $q \geq 9$. By Corollary 15, we have

$$
g \leq 2 \cdot 3 \cdot 3!^{2}=216 ;
$$

and so the right hand inequality of (6.1) holds as soon as

$$
\frac{1}{9} q-48 \sqrt{q}-60>0
$$

which is valid for $q \geq 187703$, so certainly for $q>200000$. To complete the proof, choose an odd prime divisor $l$ of $q^{3}-1$ (e.g., any prime divisor of $q^{2}+q+1$ ) and apply Lemma 19 to the pair $f, f+1$ (taking $B=6$ and $r=2$ ). We obtain that for $q>81$, there is some $\beta \in \mathbf{F}_{q}$ for which both $f\left(T^{l^{k}}-\beta\right)$ and $f\left(T^{l^{k}}-\beta\right)+1$ are simultaneously irreducible for $k=1,2,3, \ldots$. This is an infinite family of twin prime pairs of odd degree.

To finish off this half of Theorem 4, it remains to consider the cases when $q=9$ or when $q$ is a Fermat prime less than 200000 . These small finite fields are treated by hand. For each such $q$, Table 1 exhibits the first member $f$ of a monic twin prime pair $f, f+1$ of odd degree together with all the information necessary to verify that Lemma 17 can be applied to both $f$ and $f+1$ with the specified odd prime $l$.

### 6.2. Part II: Infinitely many twin prime pairs of even degree

We first argue that for $q \geq 4$, there is always a monic, quadratic twin prime pair $f, f+1$ over $\mathbf{F}_{q}$. In the proof of this result it is convenient to consider odd and even $q$ separately.

Lemma 21. Let $\mathbf{F}_{q}$ be a finite field of odd characteristic with $q \geq 5$. Then there is a pair $f, f+1$ of monic irreducible quadratic polynomials over $\mathbf{F}_{q}$.

Lemma 21 could be established by the methods of Theorem 2, in analogy with the proof of Lemma 20 in Part I. However, the direct approach below leads to better bounds.

TABLE 2. Twin prime pairs of even degree over some small finite fields.

| $q$ | $f$ | $q^{d}-1$ | order of $f$ | order of $f+1$ | $l$ |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 3 | $T^{6}+T^{5}+2 T^{3}+2 T^{2}+1$ | $2^{3} \cdot 7 \cdot 13$ | $2^{2} \cdot 7 \cdot 13$ | $2^{3} \cdot 7 \cdot 13$ | 7 |
| 4 | $T^{2}+T+\alpha$ | $3 \cdot 5$ | $3 \cdot 5$ | $3 \cdot 5$ | 3 |
| 5 | $T^{2}+T+1$ | $T^{3}+T+3$ | $2^{4} \cdot 3$ | 3 | $2^{3} \cdot 3$ |
| 7 | $T^{2}+(\beta+1) T+\beta^{2}+\beta$ | $3^{2} \cdot 7$ | $2^{4} \cdot 3$ | 3 |  |
| 8 | $T^{2}+3^{2} \cdot 7$ | $2^{2} \cdot 3$ | 3 |  |  |
| 9 | $T^{2}+(\gamma+1) T+\gamma+1$ | $2^{4} \cdot 5$ | $2^{4} \cdot 5$ | $3^{2} \cdot 7$ | 7 |
| 11 | $T^{2}+3$ | $2^{3} \cdot 3 \cdot 5$ | $2^{2} \cdot 5$ | $2^{4} \cdot 5$ | 5 |
| 13 | $T^{2}+6$ | $2^{3} \cdot 3 \cdot 7$ | $2^{3} \cdot 3$ | $2^{2} \cdot 5$ | 5 |
| 16 | $T^{2}+\left(\delta^{2}+\delta\right) T+\delta$ | $3 \cdot 5 \cdot 17$ | $3 \cdot 5 \cdot 17$ | $2^{3} \cdot 3$ | 3 |
| 17 | $T^{2}+T+2$ | $2^{5} \cdot 3^{2}$ | $2^{4} \cdot 3^{2}$ | $3 \cdot 5 \cdot 17$ | 3 |
| 19 | $T^{2}+4$ | $2^{3} \cdot 3^{2} \cdot 5$ | $2^{2} \cdot 3^{2}$ | $2^{5} \cdot 3^{2}$ | 3 |
| 23 | $T^{2}+2$ | $2^{4} \cdot 3 \cdot 11$ | $2^{2} \cdot 11$ | $2^{2} \cdot 3^{2}$ | 3 |
| 25 | $T^{2}+4 \epsilon T+4 \epsilon+2$ | $2^{4} \cdot 3 \cdot 13$ | $3 \cdot 13$ | $2^{2} \cdot 11$ | 11 |
|  | Here $\alpha^{2}+\alpha+1=0, \beta^{3}+\beta+1=0, \gamma^{2}+1=0, \delta^{4}+\delta+1=0$, and $\epsilon^{2}+2=0$. | 3 |  |  |  |

Proof. It suffices to show that there is some pair of consecutive quadratic nonresidues in $\mathbf{F}_{q}$. Letting $\chi$ denote the quadratic character on $\mathbf{F}_{q}$, the number of such pairs is $\frac{1}{4}$ of the sum $\sum(1-\chi(\alpha))(1-\chi(\alpha+1))$, the sum being taken over $\alpha \neq 0,-1$ from $\mathbf{F}_{q}$. Now a straightforward calculation using the evaluation $\sum_{\alpha \in \mathbf{F}_{q}} \chi(\alpha) \chi(\alpha+1)=-1$ (cf. [3, Theorem 2.1.2]) results in a count of

$$
\frac{1}{4}(q-3+\chi(1)+\chi(-1))=\frac{1}{4}(q-2+\chi(-1))
$$

such pairs, which is positive for $q>3$.
Lemma 22. Let $\mathbf{F}_{q}$ be a finite field of characteristic 2 with $q \geq 4$. Then there is a pair $f, f+1$ of monic quadratic polynomials both of which are irreducible over $\mathbf{F}_{q}$.

Proof. For any fixed $\gamma \in \mathbf{F}_{q}$, the map $\phi: \mathbf{F}_{q} \mapsto \mathbf{F}_{q}$ defined by $\phi(\beta):=\beta^{2}+\gamma \beta$ is an endomorphism of the underlying additive group of $\mathbf{F}_{q}$. We choose $\gamma$ so that $\gamma \neq 0$ and the image of $\phi$ contains 1 (and so contains all of $\mathbf{F}_{2}$ ). This is possible as soon as $\mathbf{F}_{q}$ is a nontrivial extension of $\mathbf{F}_{2}$; merely choose any $\beta \in \mathbf{F}_{q} \backslash \mathbf{F}_{2}$ and define $\gamma$ so that $\beta^{2}+\gamma \beta=1$.

We claim that with this choice of $\gamma$, there is a pair $f, f+1$ of irreducibles where $f$ has the form $T^{2}+\gamma T+\delta$. A polynomial of this form is irreducible if and only if $\delta$ is not in the image of $\phi$. But by our choice of $\gamma$, the element $\delta$ is missing from the image of $\phi$ if and only if the same is true for $\delta+1$. So the lemma follows provided that $\phi$ is not onto. Since $\phi$ is a map from $\mathbf{F}_{q}$ to itself, if $\phi$ were onto it would also be injective. But $\phi(\gamma)=\phi(0)=0$, and the lemma is proved.

Lemma 23. Let $\mathbf{F}_{q}$ be a finite field with $q>25$. Then there are infinitely many twin prime pairs $f, f+1$ of even degree over $\mathbf{F}_{q}$.

Proof. Lemmas 21 and 22 show that for $q \geq 4$ there is a monic twin prime pair $f, f+1$ of degree 2 over $\mathbf{F}_{q}$. Since $q>3$, it is impossible for both $q-1$ and $q+1$ to be powers of 2 , and so there must be an odd prime divisor $l$ of $q^{2}-1$. Lemma 19 (with $r=2$ and $B=4$ ) implies that for $q>25$, there is some $\beta \in \mathbf{F}_{q}$ for which both $f\left(T^{l^{k}}-\beta\right)$ and $f\left(T^{l^{k}}-\beta\right)+1$ are simultaneously irreducible for $k=0,1,2,3, \ldots$. Since these twin prime pairs have even degree, the lemma follows.

To complete the proof of Theorem 4 it suffices to consider those finite fields with at most 25 elements, and these are treated in Table 2.

Acknowledgements. Mitsuo Kobayashi and Tom Shemanske read over preliminary versions of this paper and offered suggestions which proved indispensable in coaxing it into its present form. Particular thanks are due to my advisor, Carl Pomerance, both for his helpful advice and encouragement on the paper at every stage of its development and for his initial suggestion that I formulate Conjecture 1 and Theorem 2 in their present generality. Finally, I would like to express my gratitude to Andrew Granville for his interest in and enthusiastic support of this work.

## References

1. A. S. Bang, 'Taltheoretiske Undersøgelser', Tidsskrift Math. 5 (1886) 70-80, 130-137.
2. P. T. BATEMAN AND R. A. HORN, 'A heuristic asymptotic formula concerning the distribution of prime numbers', Math. Comp. 16 (1962) 363-367.
3. B. C. Berndt, R. J. Evans, and K. S. Williams, Gauss and Jacobi sums, Canadian Mathematical Society Series of Monographs and Advanced Texts (John Wiley \& Sons Inc., New York, 1998).
4. B. J. Birch and H. P. F. Swinnerton-Dyer, 'Note on a problem of Chowla', Acta Arith. 5 (1959) 417-423 (1959).
5. S. Chowla, 'A note on the construction of finite Galois fields $\mathrm{GF}\left(p^{n}\right)^{\prime}$ ', J. Math. Anal. Appl. 15 (1966) 53-54.
6. S. D. Cohen, 'The distribution of polynomials over finite fields', Acta Arith. 17 (1970) 255-271.
7. S. D. Cohen, 'Uniform distribution of polynomials over finite fields', J. London Math. Soc. (2) 6 (1972) 93-102.
8. S. D. Cohen, 'The reducibility theorem for linearised polynomials over finite fields', Bull. Austral. Math. Soc. 40 (1989) 407-412.
9. S. D. Cohen, 'Some function field estimates with applications', Number theory and its applications (eds. S. Stepanov and C.Y. Yıldırım), Lecture Notes in Pure and Appl. Math. 204 (Dekker, New York, 1999), pp. 23-45.
10. B. Conrad, K. Conrad, and R. Gross, 'Prime specialization in genus 0', Trans. Amer. Math. Soc. To appear.
11. K. Conrad, 'Irreducible values of polynomials: a non-analogy', Number fields and function fields-two parallel worlds (eds. G. van der Geer, B. Moonen, R. Schoof). Progress in Mathematics 239 (Birkhäuser Boston, Boston, 2005), pp. 71-85.
12. L. E. Dickson, 'Higher irreducible congruences', Bull. Amer. Math. Soc. 3 (1897) 381-389.
13. L. E. Dickson, Linear groups: with an exposition of the Galois field theory (Dover Publications Inc., New York, 1958).
14. G. W. Effinger, K. H. Hicks, and G. L. Mullen, 'Twin irreducible polynomials over finite fields', Finite fields with applications to coding theory, cryptography and related areas (eds. G. L. Mullen, H. Stichtenoth, and H. Tapia-Recillas) (Springer, Berlin, 2002), pp. 94-111.
15. J. Esmonde and M. R. Murty, Problems in algebraic number theory, Graduate Texts in Mathematics 190 (Springer-Verlag, New York, 1999).
16. M. D. Fried and M. Jarden, Field arithmetic (second edition), Ergebnisse der Mathematik und ihrer Grenzgebiete 11, 3rd Series (Springer-Verlag, Berlin, 2005).
17. D. A. Goldston, Y. Motohashi, J. Pintz, and C. Y. Yildirim, 'Small gaps between primes exist', Proc. Japan Acad. Ser. A Math. Sci. 82 (2006) 61-65.
18. B. J. Green and T. Tao, 'Linear equations in primes', Ann. of Math. (2). To appear.
19. B. J. Green and T. TaO, 'The primes contain arbitrarily long arithmetic progressions', Ann. of Math. (2). To appear.
20. B. J. Green and T. Tao, 'Quadratic uniformity of the Möbius function', Ann. Inst. Fourier (Grenoble). To appear.
21. C. Hall, 'L-functions of twisted Legendre curves', J. Number Theory 119 (2006) 128-147.
22. G. H. Hardy and J. E. Littlewood, 'Some problems of Partitio Numerorum III: on the expression of a number as a sum of primes', Acta Math. 44 (1923) 1-70.
23. D. R. Hayes, 'The Galois group of $x^{n}+x-t$ ', Duke Math. J. 40 (1973) 459-461.
24. H. Kornblum, 'Über die Primfunktionen in einer arithmetischen Progression', Math. Z. 5 (1919) 100-111. Posthumously edited by E. Landau.
25. P. A. Leonard, 'Factorizations of general polynomials', J. Number Theory 6 (1974) 335-338.
26. R. Lidl and H. Niederreiter, Finite fields (second edition), Encyclopedia of Mathematics and its Applications 20 (Cambridge University Press, Cambridge, 1997).
27. G. Martin, 'An asymptotic formula for the number of smooth values of a polynomial', J. Number Theory 93 (2002) 108-182.
28. V. K. Murty and J. Scherk, 'Effective versions of the Chebotarev density theorem for function fields', C. R. Acad. Sci. Paris Sér. I Math. 319 (1994) 523-528.
29. P. Pollack, 'An explicit approach to Hypothesis H for polynomials over a finite field', Proceedings of a conference on the anatomy of integers (eds. J. M. de Koninck, A. Granville and F. Luca). To appear.
30. R. Ree, 'Proof of a conjecture of S. Chowla', J. Number Theory 3 (1971) 210-212.
31. R. Ree, 'Erratum to: "Proof of a conjecture of S. Chowla"', J. Number Theory 4 (1972) 223.
32. M. Roitman, 'On Zsigmondy primes', Proc. Amer. Math. Soc. 125 (1997) 1913-1919.
33. M. Rosen, Number theory in function fields, Graduate Texts in Mathematics 210 (Springer-Verlag, New York, 2002).
34. J.-A. Serret, 'Mémoire sur la théorie des congruences suivant un module premier et suivant une fonction modulaire irréductible', Mémoires de l'Académie des sciences de l'Institut Impérial de France 35 (1866) 617-688.
35. I. E. Shparlinski, Finite fields: theory and computation, Mathematics and its Applications 477 (Kluwer Academic Publishers, Dordrecht, 1999).
36. W. SierpińSki, Elementary theory of numbers (second edition), North-Holland Mathematical Library 31 (North-Holland Publishing Co., Amsterdam, 1988).
37. H. Stichtenoth, Algebraic function fields and codes, Universitext (Springer-Verlag, Berlin, 1993).

6188 Kemeny Hall, Mathematics
Department, Dartmouth College,
Hanover, NH 03755 USA
paul.pollack@dartmouth.edu

