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Abstract

For each m ≥ 3, let n2(m) denote the least quadratic nonresidue modulo m. In
1961, Erdős determined the mean value of n2(p), as p runs over the odd primes.
We show that the mean value of n2(m), without the restriction to prime values, is∑∞

k=1
pk−1

p1p2···pk−1
≈ 2.920. For each prime p, let G(p) denote the least natural number

n so that the subgroup generated by {1, 2, . . . , n} is all of (Z/pZ)×. Assuming the
Generalized Riemann Hypothesis, we show that G(p) possesses a finite mean value
≈ 3.975. For K a quadratic extension of Q, let nK denote the smallest rational prime
which is inert in K and rK the least prime which is split in K. We show that with
quadratic fields ordered by the absolute value of their discriminant, rK and nK have
the same mean value, which is ≈ 4.981.
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1. Introduction

For each natural number m > 2, let n2(m) denote the least quadratic nonresidue
modulo m, i.e., the smallest natural number n relatively prime to m for which the
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congruence x2 ≡ n (mod m) is insoluble. Such an n always exists, since the squaring
map on (Z/mZ)× fails to be injective (as (−1)2 = 12), and so also fails to be surjec-
tive. Set n2(1) = n2(2) = 1. The maximal order of the function n2(m) has been the
object of intense study, especially in the case when the argument m is assumed to
be a prime number p. Around 1920, I. M. Vinogradov conjectured that n2(p)�ε p

ε

for each ε > 0; this remains open, the closest approximation being Burgess’s result
[4] that

n2(p)�ε p
1

4
√
e
+ε
.

Short of a proof that n2(p) is never large, one could hope to show that large values
are very rare. The first theorem of this type is due to Linnik [24], who showed that
for each ε > 0, one has that

#{p ≤ x : n2(p) > xε} �ε 1 (for all x).

This was an early triumph of the large sieve in analytic number theory. Borrowing
ideas from this work of Linnik, Erdős [15] showed that n2(p) has a finite mean value:
As x→∞,

1

π(x)

∑
p≤x

n2(p)→
∞∑
k=1

pk
2k
, (1.1)

where pk denotes the kth prime in increasing order.
Our first theorem is a determination of the average value of n2(m) without the

restriction to prime arguments.

Theorem 1.1. As x→∞, we have

1

x

∑
m≤x

n2(m)→ Γ, where Γ :=
∞∑
k=1

pk − 1

p1 · · · pk−1
.

Remarks 1.2.

(i) It is easy to see that n2(m) is prime for m > 2. The heuristic for Erdős’s
theorem is that n2(p) = pk with probability 2−k. This is exactly what one
would guess, since each of p1, . . . , pk should be a quadratic residue modulo p
with probability 1

2
, and these events should be independent. The heuristic

for Theorem 1.1 is simpler; a typical m has many prime factors, and so the
proportion of quadratic residues among the units is very small. Thus, one
might guess that typically, the least prime not dividing m is the least quadratic
nonresidue. This turns out to be the case and explains the form of Γ given
above: Γ is the mean value of the least prime not dividing m.
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(ii) From the expressions above, we may compute that n2(p) has average value

3.67464396601132877899567630908402941167779758877943 . . .

while the average of n2(m) is

2.92005097731613471209256291711201946800272789932142 . . .

For each prime p, let g(p) denote the least primitive root modulo p. Then n2(p) ≤
g(p) for all p. The mean value of g(p) was investigated by Elliott and Burgess [5]
and later by Elliott and Murata. In [5], one finds the result

1

π(x)

∑
p≤x

g(p)� (log x)2(log log x)4, (1.2)

and in [14], one reads that on the Generalized Riemann Hypothesis,

1

π(x)

∑
p≤x

g(p) ≤ (log x)(log log x)1+o(1),

as x→∞. (Throughout this article, we use the term Generalized Riemann Hypoth-
esis, or GRH, to refer to the assertion that all nontrivial zeros of all Dedekind zeta
functions lie on the line <(s) = 1

2
.) Under a certain technical hypothesis additional

to GRH, Elliott and Murata show that g(p) possesses a finite mean value, which they
believe to be 4.924 . . ..

The second topic of this paper is an investigation into a function intermediate
between n2(p) and g(p). Let G(p) denote the least natural number n so that the set
{1, 2, . . . , n} generates the full unit group modulo p. Thus, n2(p) ≤ G(p) ≤ g(p).
We prove the following unconditional result, which is slightly better than what one
obtains directly from (1.2) and the inequality G(p) ≤ g(p):

Theorem 1.3. For x ≥ 3, we have

1

π(x)

∑
p≤x

G(p)� (log x)2.

Assuming GRH (and without any further technical hypotheses) we show that the
mean value of G(p) exists:

Theorem 1.4. Assume the Generalized Riemann Hypothesis. Then as x→∞,

1

π(x)

∑
p≤x

G(p)→ ∆, where ∆ = 3.97483847045631033 . . ..
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In fact, we give a (complicated) expression for ∆ as an infinite series. The proof of
Theorem 1.4 rests on work of Pappalardi [29], who studied (on GRH) the proportion
of primes p for which G(p) assumes a prescribed value. We note that G(m) can also
be defined for composite values of m and that in this case, the maximal and average
orders have been investigated by Burthe [6, 7] and Norton [27].

The last theme we take up concerns yet another variation on (1.1). For each
nonprincipal Dirichlet character χ, let nχ denote the least n for which χ(n) 6∈ {0, 1}.
Erdős’s result (1.1) gives the average of nχ as χ runs over the characters

( ·
p

)
, for p ≤ x.

Now let D be a fundamental discriminant, i.e., the discriminant of a quadratic field.
Let χD :=

(
D
·

)
be the associated Kronecker symbol, which is a real primitive character

modulo |D|, and let n(D) := nχD . What is the average of n(D)? Equivalently, what is
the average size of the smallest inert prime, where the average is taken over quadratic
fields ordered by discriminant? Our answer is the following:

Theorem 1.5. As x→∞, one has∑
|D|≤x n(D)∑
|D|≤x 1

→ Θ, where Θ :=
∞∑
k=1

p2k
2(pk + 1)

k−1∏
i=1

pi + 2

2(pi + 1)
. (1.3)

Here D runs over all fundamental discriminants with |D| ≤ x. Numerically,

Θ = 4.98094733961493415079132532588077528123773269658520 . . . .

Theorem 1.5 may be compared with the following theorem of Elliott [13, Theorem
5]: The function n′(a), defined for a > 1 as the least odd prime p with

(
a
p

)
= −1,

possesses a finite mean value.
Elliott [12, Theorem 2] showed that Erdős’s result (1.1) holds with n2(p) replaced

by r2(p), the least prime quadratic residue. This raises the question of the behavior of
r(D), defined as the least split prime in Q(

√
D), with D a fundamental discriminant.

We conclude the paper by discussing the proof of the following result:

Theorem 1.6. The average smallest split prime in Q(
√
D), in the sense of Theorem

1.5, is the constant Θ defined in (1.3). In other words,∑
|D|≤x r(D)∑
|D|≤x 1

→ Θ (as x→∞),

where again D runs over fundamental discriminants of absolute value ≤ x.
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Notation and conventions

The letters p and ` are reserved for prime numbers. We remind the reader that
pk denotes the kth prime in increasing order, so that p1 = 2, p2 = 3, etc. When
we speak of the subgroup of (Z/pZ)× generated by a set of integers, we mean the
group generated by (the images of) the elements coprime to p. We use Ψ(x, y) for the
number of y-smooth (also called y-friable) natural numbers n ≤ x, i.e., the number
of n ≤ x divisible only by primes p ≤ y. We let Ψq(x, y) denote the counting function
of the y-smooth numbers coprime to q. We write Li(x) :=

∫ x
2
dt/ log t for the usual

logarithmic integral.

2. Proof of Theorem 1.3

It is convenient to prove Theorems 1.3 and 1.4 before Theorem 1.1, since their
proofs are shorter and conceptually simpler.

We need a few preliminary results. The following lemma, which is proved using
the arithmetic large sieve (à la Linnik and Erdős), is extracted from work of Konyagin
and Pomerance [23]; essentially the same lemma appears in work of Pappalardi [28].

Lemma 2.1. Suppose that 2 ≤ y ≤ x. The number of primes p ≤ x for which the
natural numbers ≤ y fail to generate (Z/pZ)× is � x2/Ψ(x2, y).

The next lemma, with an explicit implied constant, appears as [23, Theorem 6.2]:

Lemma 2.2. Suppose that 2 ≤ y ≤ x. The number of primes p ≤ x with G(p) > y
is � x2 log log(x

2)/ log y.

Proof. This follows immediately from Lemma 2.1 and the following lower bound on

Ψ(X, Y ) due to Konyagin and Pomerance [23, Theorem 2.1]: Ψ(X, Y ) > X1− log logX
log Y

whenever X ≥ 4 and 2 ≤ Y ≤ X.

The next result follows immediately from the classical Polya–Vinogradov inequal-
ity; sharper upper bounds on G(p) are known but these would not be of use to us.

Lemma 2.3. For all primes p ≥ 2, we have G(p)� p1/2 log p.

Proof of Theorem 1.3. We split the mean value appearing in the theorem statement
into three parts, according to whether (i) G(p) > (2 log x)5, (ii) (3 log x)2 < G(p) ≤
(2 log x)5, or (iii) G(p) ≤ (3 log x)2. By Lemmas 2.2 and 2.3, the sum over those p in
(i) is

� x1/2 log x
∑
p≤x

G(p)>(2 log x)5

1� (x1/2 log x) · x2/5;
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in particular, this contribution is o(π(x)). The sum over those p in (ii) is

� (log x)5
∑
p≤x

G(p)>(3 log x)2

1� (log x)5x
2 log log (x2)

2 log log x+log 9 � x/ exp(
1

3
log x/ log log x),

by a short computation. So this contribution is also o(π(x)). Finally, the sum over
those p satisfying (iii) is trivially at most π(x)(3 log x)2. Dividing through by π(x)
gives the theorem.

3. Proof of Theorem 1.4

If p > 2, so that the unit group modulo p consists of more than one element, then
G(p) is a prime number. We would like an estimate on the proportion of primes p
for which G(p) assumes a prescribed prime value. This comes out of the next result,
which is due to Hooley [20] when r = 1 and to Pappalardi (see [29, Theorems 1, 2])
when r > 1.

Theorem A. Assume GRH. Let x ≥ 3, and let r be a natural number satisfying

r ≤ 1

4

log x

log log x
. (3.1)

The number of p ≤ x for which the primes p1, . . . , pr generate the unit group modulo
p is

δrπ(x) +O(x log log x(4/ log x)r+1).

Here the constant δr is given by( ∏
` odd prime

(
1− 1

`r(`− 1)

))
×(

1− 1

2r+1

{
r−1∏
i=1

(
1−

(−1
pi

)
pr+1
i − pri − 1

)
+

r−1∏
i=1

(
1− 1

pr+1
i − pri − 1

)})
. (3.2)

Remark 3.1. To obtain our statement from [29, Theorems 1, 2], we use that the
product of the first r primes is bounded by x1/2 (say), for r satisfying (3.1) and x
sufficiently large. We also replace π(x) with Li(x), which is justified by von Koch’s
well-known estimate Li(x)−π(x)� x1/2 log x (under GRH). Note that [29, Theorem
1] allows us to remove the factor log log x from the error term whenever r > 1;
however, this is unimportant.
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Proof of Theorem 1.4. Put δ0 = 0, and for r ≥ 1, let δr have the same meaning as
in Theorem A. By that theorem, it is natural to expect that

1

π(x)

∑
p≤x

G(p)→ ∆, where ∆ :=
∞∑
r=1

pr(δr − δr−1), (3.3)

provided that the series defining ∆ converges. We prove convergence of this series
and then we prove (3.3); after the proof, we indicate how to obtain a numerical
approximation to ∆.

Convergence of the infinite series in (3.3) is easy; indeed, the first factor in (3.2)
satisfies ∏

`>2

(
1− 1

`r(`− 1)

)
≥ 1−

∑
`>2

1

`r(`− 1)

> 1−
∑
`>2

1

(`− 1)r+1
> 1− 1

2r−1
,

where the final sum is handled by ignoring the primality of ` and employing a crude
integral approximation. Also, the second factor in (3.2) is at least 1 − 1/2r. Thus,
for r ≥ 2, we have 1− 3

2r
≤ δr ≤ 1. This gives convergence of the series defining ∆,

by comparison with the convergent series
∑∞

r=1 pr/2
r.

Now we prove the limiting relation asserted in (3.3). Referring back to the proof of
Theorem 1.3, we have from the estimates in ranges (i) and (ii) that (unconditionally)

1

π(x)

∑
p≤x

G(p)>(3 log x)2

G(p) = o(1) (as x→∞).

So we may focus attention on p with G(p) ≤ (3 log x)2. When G(p) ≤ 1
8

log x, we use
Theorem A: Set R := π(1

8
log x), and note that R ≤ 1

4
log x/ log log x if x is large (as

we may assume). From Theorem A,

1

π(x)

∑
p≤x

G(p)≤ 1
8
log x

G(p) =
∑
r≤R

pr(δr − δr−1) +O

(
log log x

∑
1≤r<R

pr+1(4/ log x)r

)

=
∑
r≤R

pr(δr − δr−1) +O

(
log log x

∑
1≤r<R

(8/ log x)r

)
= ∆−

∑
r>R

pr(δr − δr−1) +O(log log x/ log x) = ∆ + o(1).
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Thus, it remains only to show that those primes p ≤ x with pR < G(p) ≤ (3 log x)2

contribute o(1) to mean value. Clearly,

1

π(x)

∑
p≤x

pR<G(p)≤(3 log x)2

G(p) ≤ (3 log x)2

 1

π(x)

∑
p≤x

G(p)>pR

1

 , (3.4)

while by Theorem A and our estimate for δR above, 1

π(x)

∑
p≤x

G(p)>pR

1

 = 1− δR +O((log log x)(4/ log x)R)

� 1

2R
+

1

x1/10
� exp

(
− 1

20
log x/ log log x

)
.

We use here that R > 1
9

log x/ log log x (say) for large x. Thus, the right-hand side
of (3.4) is o(1), completing the proof of (3.3).

To approximate ∆, we use ideas of Moree [26] (who made effective earlier work
of Dahlquist [10]) to evaluate the constants δj.

1 The only difficult part of this com-
putation is obtaining an approximation to the products over ` appearing in (3.2).
These products are tailor-made for application of [26, Theorem 1]:

Theorem B. Let A(T ), B(T ) ∈ Z[T ] be monic polynomials with degA ≤ degB− 2.
Let β be the modulus of a root of B(B−A) of maximum modulus, and let n0 be such
that pn0+1 > β. Then for n ≥ n0,∏

p>pn

(
1− A(p)

B(p)

)
=
∞∏
j=2

ζn(j)bB(j)−bB−A(j).

Here the function ζn is defined by ζn(s) := ζ(s)
∏

p≤pn(1− p−s); also, if C(T ) ∈ Z[T ]
and j ≥ 1, we set

bC(j) :=
1

j

∑
d|j

µ(j/d)sC(d),

where sC(d) is the sum of the dth powers of the roots of C (appearing with multiplic-
ity).

1The published version of this paper claimed that Moree’s work developed ideas of Wrench [35].
In fact, Wrench’s method is substantially different.
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In our case, A(T ) = 1 and B(T ) = T r(T − 1). By the triangle inequality, if
|x| ≥ 2, then (B−A)(x) ≥ 1. Thus, every root of B(B−A) has absolute value < 2,
and we may take n = n0 = 1 in Theorem B to estimate the first factor in (3.2). We
used Mathematica to carry out the computations, employing the algorithm of [33,
p. 916] to find the values of sB−A. This yields

∆ = 3.97483847045631033839959898978950661723093656290289 . . . .

Remarks 3.2.

(i) Without any unproved hypothesis, one can at least show that

lim sup
x→∞

1

π(x)

∑
p≤x

G(p) ≥ ∆. (3.5)

To see this, first observe that rearranging the series expression in (3.3) gives

∆ = 2 +
∞∑
r=1

(pr+1 − pr)(1− δr). (3.6)

For each nonnegative integer r, define δ′r(x) as the proportion of p ≤ x with
G(p) ≤ pr, where we view p0 = 1. Fixing R, one has that as x→∞,

1

π(x)

∑
p≤x

G(p) ≥
∑

1≤r≤R

pr(δ
′
r(x)− δ′r−1(x)) + pR+1(1− δ′R(x))

≥ 2 + o(1) +
∑

1≤r≤R

(pr+1 − pr)(1− δ′r(x)). (3.7)

Pappalardi has shown (see [29, Theorem 3.1]) that lim sup δ′r(x) ≤ δr; compar-
ing (3.6) and (3.7), and finally letting R→∞, gives the claim (3.5).

(ii) Brown and Zassenhaus [3] considered the function κ(p), defined as the least k
so that p1, . . . , pk generate the unit group modulo p. (Thus, κ(p) = k precisely
when G(p) = pk.) A small modification of our arguments gives that under
GRH, κ(p) has mean value

2.20608289400797406036540959858252700635629118242205 . . . .

As in remark (i), the lower bound implicit in this claim holds unconditonally.
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4. Proof of Theorem 1.1

For each odd prime p, the number n2(p) is a prime < p. We need an analogue of
this fact for n′2(p), defined as the least odd quadratic nonresidue modulo p.

Lemma 4.1. Suppose p > 3 is prime. Then n′2(p) is prime and n′2(p) < p.

Proof. That n′2(p) is prime is clear, so it is enough to show that n′2(p) < p. If this
inequality fails, then each of the p−1

2
odd numbers < p is a quadratic residue modulo

p. Since there are precisely p−1
2

nonzero squares modulo p, every even number < p
must be a quadratic nonresidue. But 22 = 4 < p and 22 is a quadratic residue.

Lemma 4.2. Suppose p > 3 is prime. Then there is an odd prime q < p for which(
p
q

)
= −1.

Proof. Suppose first that p ≡ 1 (mod 4); then by quadratic reciprocity,(
p

n′2(p)

)
=

(
n′2(p)

p

)
= −1,

and so the result in this case follows from Lemma 4.1.
Now suppose that p ≡ 3 (mod 4). Assume for the sake of contradiction that

there is no such q. Then the Jacobi symbol
(
p
m

)
= 1 for all odd natural numbers

1 ≤ m < p. Take m = p− 2; by quadratic reciprocity,

1 =

(
p

m

)
=

(
m

p

)
=

(
−2

p

)
,

and so p ≡ 3 (mod 8). Now take m = p+3
2

. Then m < p and m ≡ 3 (mod 4), so
that

1 =

(
p

m

)
= −

(
m

p

)
= −

(
4m

p

)
= −

(
6

p

)
= −

(
2

p

)(
3

p

)
=

(
3

p

)
= −

(
p

3

)
,

Hence,
(
p
3

)
= −1, which is a contradiction.

Remark 4.3. The case p ≡ 1 (mod 4) of Lemma 4.2 was treated by Gauss without
invoking the law of quadratic reciprocity; see [17, Articles 125–129]. In fact, this case
of the lemma was a key ingredient in the first proof of this law [17, Articles 130–144].
For a modernized account, see (e.g.) Brown’s exposition [2].
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If P is a set of primes, let S(P) denote the set of natural numbers all of whose
prime divisors belong to P. The following somewhat technical lemma should be
read as saying that whenever P is sufficiently sparse, so is S(P). A lemma of this
type (with a different proof) has also been obtained by Gottschlich [18].

Lemma 4.4. Let P be a nonempty set of primes. Suppose that for all t ≥ 3, one
has

#P ∩ [1, t] ≤ t/(log t)A(t), (4.1)

where the function A(t) satisfies all of the following:

• A is defined and real-valued for all t ≥ 3,

• A is bounded on each compact subinterval of [3,∞),

• A(t) > 4 for all sufficiently large values of t,

• A(t) log log t
log t

is eventually nonincreasing.

Then for x ≥ 3, the number of elements of S(P) not exceeding x is

�P,A x/(log x)
2
3
A(x).

Proof. We use a technique of Rankin familiar from the study of smooth numbers.
For any choice of σ ∈ [1/3, 1] (say), the number of elements of S(P) not exceeding
x is bounded by

∑
n≥1

p|n⇒p∈P∩[1,x]

(x
n

)σ
= xσ

∏
p∈P
p≤x

(
1 +

1

pσ
+

1

p2σ
+ . . .

)
� xσ exp

O
(∑

p∈P
p≤x

1

pσ

) .

We choose

σ = 1− 2A(x)

3

log log x

log x
.

Notice that if x is large (as we may assume), then σ ∈ [1/3, 1]; indeed, were we to
have σ < 1/3, then A(x) > log x/ log log x, contradicting (4.1) with t = x. Now
xσ = x/(log x)2A(x)/3. Thus, it suffices to show that

∑
p∈P
p≤x

1
pσ
�P,A 1. We have

∑
p∈P
p≤x

1

pσ
�P,A 1 +

∫ x

3

dt

tσ(log t)A(t)

= 1 +

∫ x

3

exp(2A(x)
3

log log x
log x

log t)

t(log t)A(t)
dt�A 1 +

∫ x

3

(log t)
2
3
A(t)

t(log t)A(t)
dt�A 1,
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using in the last step that A(t) > 4 for large t. (Of course, we could replace 4 with
any constant > 3 here.)

We also need a variant of Lemma 2.2 for n′2(p):

Lemma 4.5. Suppose 2 ≤ y ≤ x. The number of odd primes p ≤ x for which
n′2(p) > y is � (log x) · x2 log log (x2)/ log y.

Proof. The number of p described in Lemma 4.5 is� x2/Ψ2(x
2, y); this follows from

the argument given in [23] for Lemma 2.1 (cf. [15, Lemma 2]). (Summary: One
observes that if p > 3 is as in the lemma statement, then the odd y-smooth numbers
up to x occupy < p/2 residue classes modulo p; one then applies the arithmetic
large sieve [21, Theorem 7.14, p. 180] as in the cited papers.) Now we use the

Konyagin–Pomerance lower bound Ψ(X, Y ) > X1− log logX
log Y and the crude lower esti-

mate Ψ2(X, Y )� Ψ(X, Y )/ logX, the latter proved by decomposing each Y -smooth
number as the product of an odd number and a power of 2.

The next result is a well-known consequence of the Polya–Vinogradov inequality.
As was the case for Lemma 2.3, much stronger bounds are known (see, e.g., [27]),
but these are not needed here. Recall from the introduction that nχ denotes the
least natural number n with χ(n) 6∈ {0, 1}.

Lemma 4.6. For any nonprincipal character χ modulo m, we have nχ �ε m
1
2
+ε.

Consequently, n2(m)�ε m
1
2
+ε.

Note that the second half of Lemma 4.6 follows from the first upon choosing for
χ any quadratic character (at least one of which exists once m ≥ 3).

Proof of Theorem 1.1. Let `(m) denote the least prime not dividing m, and observe
that by the prime number theorem, we have `(m) ≤ 2 log x uniformly for m ≤ x,
once x is sufficiently large. We first treat those m with ` = `(m) > 3. In this case,
Lemma 4.2 shows that there is a prime q < ` for which

(
`
q

)
= −1. Then m is a

multiple of q, since q < `. The congruence x2 ≡ ` (mod q) is insoluble, and so a
fortiori, ` is a quadratic nonresidue modulo m; thus, n2(m) = `(m). It follows that
for large x,∑

m≤x
`(m)>3

n2(m) =
∑

2<k≤π(2 log x)

∑
m≤x

`(m)=pk

n2(m) =
∑

2<k≤π(2 log x)

pk
∑
m≤x

`(m)=pk

1

=
∑

2<k≤π(2 log x)

pk

(
(1− 1/pk)

x

p1 · · · pk−1
+O(1)

)
,

12



which, after some crude estimation, is seen to be

x

∞∑
k=3

pk − 1

p1 · · · pk−1
+ o(x), (4.2)

as x→∞.
We now turn our attention to those m for which `(m) = 2 (i.e., odd values of m).

If 2 is a quadratic residue modulo m, then
(
2
p

)
= 1 for each prime p dividing m; so

by Brun’s sieve [19, Theorem 2.2, p. 68], the number of such m ≤ x is

� x
∏

p≤x, (2
p)=−1

(
1− 1

p

)
� x/(log x)1/2. (4.3)

Thus, ∑
m≤x
`(m)=2

n2(m) = 2

(
1

2
x+O(x/(log x)1/2)

)
+
∑
k>1

pk
∑
m≤x

`(m)=2, n2(m)=pk

1.

We claim that the double sum above contributes only o(x). To prove this, we split
it into three parts:

(i) those k with 2 < pk ≤ (log x)1/3,

(ii) those k with (log x)1/3 < pk ≤ (log x)100, and

(iii) those k with pk > (log x)100.

By (4.3), the contribution from (i) to the double sum is bounded by

(log x)1/3#{odd m ≤ x : n2(m) > 2} � x/(log x)1/6.

Suppose that m is counted in (ii). Then m cannot be divisible by any prime p ≤
(log x)1/3. To see this, suppose otherwise, and let p denote the smallest such prime
divisor. Then n2(p) < p ≤ (log x)1/3 and n2(p) is a quadratic nonresidue modulo
m, contradicting that n2(m) > (log x)1/3. So m is composed entirely of primes
p > (log x)1/3. Moreover, for each prime p dividing m, we have n2(p) > (log x)1/3

(otherwise, n2(p) is a nonresidue mod m, by what was just shown). Let

P := {p : n2(p) > (log p)1/3}.

13



Then m is composed entirely of primes belonging to P. We will show that such m
are rare by showing that P is a sparse set of primes and then invoking Lemma 4.4.

First, we count the number of elements of P belonging to a dyadic interval
[T, 2T ], where T is large. If p ∈ P ∩ [T, 2T ], then n2(p) > (log T )1/3. By quadratic

reciprocity, the latter inequality forces p into one of ϕ(M)·2−π((log T )1/3) residue classes
modulo M := 4

∏
q≤(log T )1/3 q. But M < T 1/100, say, and so by the Brun–Titchmarsh

inequality, the number of p ∈P ∩ [T, 2T ] is

� 1

2π((log T )1/3)
T

log T
� T/ exp((log T )1/4).

Summing over dyadic intervals, it follows that

#P ∩ [1, t]� t/ exp((log t)1/5)

for all t ≥ 3. So by Lemma 4.4, the number of m ≤ x as above is

� x/ exp((log x)1/6),

say. Thus, the contribution from (ii) is

� (log x)100(x/ exp((log x)1/6)) = o(x) (as x→∞).

Finally, we turn to (iii). By Lemma 4.6 (with ε = 1
20

), these m contribute∑
m≤x

`(m)=2, n2(m)>(log x)100

n2(m)� x0.55
∑
m≤x

`(m)=2, n2(m)>(log x)100

1.

Arguing as in (ii), we see that each m counted in the final sum is composed entirely
of primes p > (log x)100, each of which satisfies n2(p) > (log x)100. Let

P ′ := {p : n2(p) > (log p)100}.

By Lemma 2.2, the number of p ∈P ′ ∩ [T, 2T ] is � T 1/49; we use here that n2(p) ≤
G(p). Summing dyadically, #P ′ ∩ [1, t] � t1/49 for all t ≥ 3. Putting this into
Lemma 4.4, we find that the number of m ≤ x counted in (iii) is� x2/5 (say). Thus,
the contribution from (iii) is � x0.55x0.4 � x0.95 = o(x).

Collecting our estimates, we have proved that∑
m≤x
`(m)=2

n2(m) = (1 + o(1))x, (4.4)

14



as x→∞.
It remains to treat those m with `(m) = 3, i.e., those m ≡ 2, 4 (mod 6). The

steps are similar to what we have just seen, and so we only sketch them. By another
application of Brun’s sieve, the number of such m ≤ x for which 3 is a quadratic
residue is � x/(log x)1/2. Thus,∑

m≤x
`(m)=3

n2(m) = 3

(
1

3
x+O(x/(log x)1/2)

)
+
∑
k>2

pk
∑
m≤x

`(m)=3, n2(m)=pk

1.

We split the double sum into the same three pieces as above, but with the condition
“2 < pk” in (1) replaced by “3 < pk”. The contribution from (i) is treated as
before. To treat (ii), we first show that an m counted there has no odd prime factors
≤ (log x)1/3; if it did, and p was the least such prime divisor, then by Lemma 4.1,
n′2(p) would be a quadratic nonresidue of m smaller than (log x)1/3 and so smaller
than n2(m). Moreover, any odd prime p dividing m must satisfy n′2(p) > (log x)1/3;
thus, m is supported on

{2} ∪ {p : n′2(p) > (log p)1/3}.

Using quadratic reciprocity, Brun–Titchmarsh, and finally Lemma 4.4 as before, we
find the contribution from (ii) is once again o(x). For (iii), we argue again using
Lemma 4.1 that any m appearing there has all its prime divisors from the set

{2} ∪ {p : n′2(p) > (log p)100}.

In place of Lemma 2.2, we use Lemma 4.5 to show that this is a thin of set of primes,
and then Lemma 4.4 to show that there are few corresponding m. (The number of
such m turns out to again be � x2/5.) Carrying out the details and collecting the
estimates, one obtains that ∑

m≤x
`(m)=3

n2(m) = x+ o(x). (4.5)

Putting together (4.2), (4.4), and (4.5), we have shown that

1

x

∑
m≤x

n2(m) = 2 +
∞∑
k=3

pk − 1

p1 · · · pk−1
+ o(1)

=
∞∑
k=1

pk − 1

p1 · · · pk−1
+ o(1),

as x→∞. This completes the proof.
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5. Proof of Theorems 1.5 and 1.6

Since the proofs of Theorems 1.5 and 1.6 are quite similar to Erdős’s proof of
(1.1), as well as our own proofs of Theorems 1.1 and 1.4, we only sketch them.

5.1. Preliminaries

We need some preparation; the following lemma is due to Cohen and Robinson
[8, Theorem 1] and (independently) Schwarz [32, Lemma 8].

Lemma 5.1. Let a and d be integers with d ≥ 1, and let x ≥ 1. The number of
squarefree n ≤ x satisfying n ≡ a (mod d) is 1

ζ(2)

1

d
∏

p|d(1− p−2)
∏

p|gcd(a,d)
gcd(p2,d)|a

(
1− gcd(p2, d)

p2

)x+O(x1/2).

The estimate is uniform in all of a, d, and x.

The next lemma has the feel of a classical result, but it does not seem easy to
pinpoint its origins. It appears implicitly in work of Erdős, Luca, and Pomerance
[16, proof of Theorem 4] and explicitly as [31, Lemma 4.2].

Lemma 5.2. Suppose x ≥ 3, and let q ≤ x be a natural number. The number
of n ≤ x all of whose prime factors divide q is at most exp(O(log x/ log log x)),
uniformly in q.

The next lemma, due to Duke and Kowalski [11, eq. (1)], plays the role of Lemmas
2.1 and 2.2. The proof uses the ideas of Linnik (op. cit.) and the large sieve for
character sums.

Lemma 5.3. Fix A > 2. The number of primitive characters χ of conductor not
exceeding x for which nχ > (log x)A is at most x

2
A
+o(1), as x→∞.

Remark 5.4. Making small changes to the proof of a theorem of Baier [1], we could
obtain Lemma 5.3 with 2/A replaced by 1/(A− 1). However, we shall not need this
improvement.

Proof. Since the lemma is stated but not proved in [11], we include the proof here. For
Q ≥ 1, let X (Q) denote the set of primitive characters of conductor not exceeding
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Q. Let N ≥ 1, and suppose that {an} is any sequence of complex numbers supported
on n ≤ N . By the multiplicative large sieve [21, Theorem 7.13, p. 179],

∑
χ∈X (Q)

∣∣∣∣∣∑
n≤N

anχ(n)

∣∣∣∣∣
2

� (N +Q2)
∑
n≤N

|an|2. (5.1)

We take N = x2 and Q = x, and we let an be the indicator function of the y-smooth
numbers, with y := (log x)A. If nχ > y, then χ assumes only the values 0 and 1 on
the y-smooth integers. Thus, using ∗ to denote a sum over primitive characters χ
modulo q, (5.1) gives ∑

q≤x

∑∗

χ: nχ>y

Ψq(x
2, y)2 � x2 ·Ψ(x2, y). (5.2)

Each y-smooth number can be written as the product of a y-smooth number coprime
to q and a number supported on the primes dividing q. By Lemma 5.2,

#{m ≤ x2 : p | m⇒ p | q} = xo(1),

uniformly for q ≤ x. Thus, Ψq(x
2, y) ≥ xo(1)Ψ(x2, y). It now follows from (5.2) that

as x→∞, ∑
q≤x

∑∗

χ: nχ>y

1 ≤ x2+o(1)/Ψ(x2, y) ≤ x2
log log (x2)

log y
+o(1) = x2/A+o(1),

as claimed.

5.2. The least inert prime (Proof of Theorem 1.5)

It is well-known and easy to prove (cf. [9, §2]) that the denominator in (1.3) is
∼ x/ζ(2), as x→∞, so we may concentrate on estimating the numerator. We claim
that uniformly for k satisfying pk ≤ (log x)1/3,

#{D : |D| ≤ x, n(D) = pk} =

(
1

ζ(2)

pk
2(pk + 1)

k−1∏
i=1

pi + 2

2(pi + 1)

)
x+O(x2/3). (5.3)

The proof of (5.3) is straightforward but somewhat tedious and so we only give the
main ideas. Suppose k > 1, as the case when k = 1 can be checked directly. We
partition the values of D counted in the left-hand side of (5.3) according to the sign
of D and the residue class of D modulo 8. In this sketch, we only treat the case
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when D > 0 and D ≡ 1 (mod 8). If n(D) = pk for such a D, then χD(pi) = 1 or
0 for all indices 1 < i < k; let A consist of those indices i of the first type and B
consist of those of the second. For fixed A and B, the condition that n(D) = pk
places D into one of

pk − 1

2

∏
i∈A

pi − 1

2
(5.4)

residue classes modulo 4p1 · · · pk; now Lemma 5.1 shows that up to an error term (to
be discussed later), the number of such D ≤ x is(

1

ζ(2)

1

4p1 · · · pk
∏

1≤i≤k(1− p
−2
i )

∏
i∈B

(
1− 1

pi

))(
pk − 1

2

∏
i∈A

pi − 1

2

)
x

=
x

ζ(2)

(
k∏
i=2

pi − 1

2

)
1

4p1 · · · pk
∏

1≤i≤k(1− p
−2
i )

∏
i∈B

2

pi

=
x

2ζ(2)

(
k∏
i=1

pi
2(pi + 1)

)(∏
i∈B

2

pi

)
,

where in moving from the first line to the second we have used that the set {2, . . . , k−
1} is the disjoint union of A and B. Now sum over subsets B of {2, . . . , k − 1},
noting that ∑

B⊂{2,...,k−1}

∏
i∈B

2

pi
=
∏

1<i<k

(
1 +

2

pi

)
.

After some simplification, we find that the number of D counted above is (up to
error terms)

x

4

(
1

ζ(2)

pk
2(pk + 1)

k−1∏
i=1

pi + 2

2(pi + 1)

)
,

which may be recognized as one-quarter of the main term on the right-hand side of
(5.3). The error may be crudely estimated as

� x1/2 · 2π((log x)1/3)
 ∏
p≤(log x)1/3

p

� x2/3.

This completes the discussion of the contribution to (5.3) from positive D ≡ 1
(mod 8); the other cases for D may be handled similarly.

Now split
∑
|D|≤x n(D) into three parts, corresponding to
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(i) n(D) ≤ (log x)1/3,

(ii) (log x)1/3 < n(D) ≤ (log x)10,

(iii) n(D) > (log x)10.

The estimate (5.3) shows that (i) contributes Θ + o(1) to the average. For D in
(ii), one has

(
D
p

)
∈ {0, 1} for all p ≤ (log x)1/3. Thus, D avoids p−1

2
residue classes

modulo p for every odd prime p in this range. By the Chinese remainder theorem,
the number of such D with |D| ≤ x is

� x
∏

2<p≤(log x)1/3

(
1− p− 1

2p

)
� x/ exp((log x)1/4).

Hence, the contribution to the average from those D in (ii) is o(1). Finally, we
treat (iii). Note that n(D) �ε |D|0.55 (say), by Lemma 4.6. So to show that the
contribution from (iii) is o(1), it is enough to show that the number of D ∈ [−X,X]
with n(D) > (log x)10 is � x0.4 (say). But this follows from Lemma 5.3. This
completes the proof of Theorem 1.5 apart from the estimation of Θ, which was
carried out in Mathematica.

5.3. The least split prime (Proof of Theorem 1.6)

The proof in the split case follows precisely the same outline as that given for
Theorem 1.5. However, to treat the range (iii) now requires analogues of Lemmas
4.6 and 5.3 with nχ replaced by n′χ, defined as the least prime p with χ(p) 6∈ {0,−1}.

It is simple to obtain the desired analogue of Lemma 5.3: If χ(p) ∈ {0,−1} for
all p ≤ y, where y := (log x)A, then χ(n) = λ(n) (the Liouville λ-function) for all
y-smooth numbers n coprime to the conductor q. Now letting an be the twist by λ(n)
of the characteristic function of the y-smooth numbers, the above proof of Lemma
5.3 goes through for n′χ.

The situation for Lemma 4.6 is more complicated. When χ is the Legendre
symbol modulo p, the bound n′χ �ε p

1
4
+ε was proved by Linnik and A. I. Vinogradov

[34]; a more elementary proof was later given by Pintz [30]. This result is not general
enough for our purposes; however, a small modification of Pintz’s proof (using the
form of the Burgess bound appearing as [21, eq. (12.56), p. 326]) would show the
analogous bound for every real primitive χ. For completeness’ sake, we prove the
following weaker (but slightly more general) result, sufficient to complete the proof
of Theorem 1.6:
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Lemma 5.5. Let ε > 0, and let χ be a quadratic character modulo q. Then n′χ �ε

q
1
2
+ε.

Proof. We largely follow Pintz (ibid.). We can assume that q is sufficiently large
(larger than an absolute constant) and that ε < 1

2
. Let us suppose for the sake of

contradiction that n′χ > y, where y := q
1
2
+ε.

For each natural number n, put R(n) :=
∑

d|n χ(d). Take a y-smooth integer n,

and write n = AB, where A is supported on primes dividing q and gcd(B, q) = 1.
Then we have

R(n) =
∏
pe‖n

(1 + χ(p) + · · ·+ χ(pe)) =

{
1 if B is a square,

0 otherwise.

Hence,

∑
n≤y

R(n) ≤

 ∑
B≤y

B is a square

1


 ∑
A≤y: p|A⇒p|q

1

 ≤ y1/2 exp(O(log q/ log log q)), (5.5)

using Lemma 5.2 (with x = q) to estimate the sum on A. On the other hand,∑
n≤y

R(n) =
∑
d≤y

χ(d)
⌊y
d

⌋
= y

∑
d≤y

χ(d)

d
−
∑
d≤y

χ(d)
{y
d

}
.

By Polya–Vinogradov and partial summation,∑
d≤y

χ(d)

d
= L(1, χ)−

∑
d>y

χ(d)

d

= L(1, χ) +O(y−1
√
q log q).

Moreover, for any choice of z ≤ y,

∣∣∣∣∣∑
d≤y

χ(d)
{y
d

}∣∣∣∣∣ ≤
∣∣∣∣∣∑
d≤z

χ(d)
{y
d

}∣∣∣∣∣+
∑
m≤y/z

∣∣∣∣∣∣∣∣
∑

by/dc=m
d>z

χ(d)
{y
d

}∣∣∣∣∣∣∣∣
� z + (y/z)

√
q log q,
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where we use Abel’s inequality to estimate the second right-hand sum. Choosing
z = y1/2q1/4

√
log q to optimize this upper bound, and collecting our estimates, we

find that ∑
n≤y

R(n) = yL(1, χ) +O(
√
q log q) +O(y1/2q1/4

√
log q).

Comparing this with (5.5) and recalling the definition of y, we obtain

L(1, χ)� y−1/2 exp(O(log q/ log log q))

+O(
√
qy−1log q) +O(q1/4y−1/2

√
log q)� q−ε/3.

But for large q, this contradicts Siegel’s lower bound on L(1, χ) [25, Theorem 11.14,
p. 372].

Remark 5.6. In contrast with Theorems 1.5 and 1.6, it is simple to compute asymp-
totics for the average least ramified prime in Q(

√
D): Taken over fundamental dis-

criminants with |D| ≤ x, the average is asymptotic to ζ(2)
2

x
log x

, as x → ∞. Cf.

Kalecki’s estimation [22, Theorem 3] of the average least prime factor of n, as n
ranges over the natural numbers.
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