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Everyone loves a good origin story

Every integer is a square or the sum of two, three, or four squares;
every integer is a cube or the sum of two, three, ... nine cubes;
every integer is also the square of a square, or the sum of up to
nineteen such; and so forth. — E. Waring

. . . and so forth?

Conjecture (Waring, 1770)

For every integer k ≥ 2, there is a positive integer g(k) such that
every nonnegative integer is the sum of g(k) kth powers of
nonnegative integers.

First proof by Hilbert in 1909.
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In 1920, Hardy and Littlewood gave a new solution to Waring’s
conjecture, developing a method Hardy and Ramanujan had utilized a
few years before in their study of the partition function — what is
now known as the circle method.

Almost all subsequent work on Waring’s problem goes through the
circle method, and for good reason. The method does much more
than prove Waring’s conjecture. For large s (s > s0(k)), it gives an
asymptotic formula for the number of representations as sums of kth
powers. And the method applies to many other problems than
Waring’s.

This program continues to yield fruit, with several new results coming
out of groundbreaking work of Wooley, Bourgain, Demeter, Guth and
others in just the past few years.
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This talk is not about any of that.

Rather, my goal is to make the case that approaches other than the
circle method — in which algebra plays a more central role — can
shed light on Waring-type problems.

This talk is largely a collection of examples. I warn the experts that
much of the first part of the talk is old hat. I will also confess that
there is not a satisfying unifying framework for these examples – but
maybe someone in the audience can get us closer to that.
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Notation

Let R be a semiring (not necessarily commutative). For each
m, s ∈ Z+, let

Rm[s] =

{
s∑

i=1

αm
i : αi ∈ R

}
.

Since 0 ∈ R, we have Rm[s] ⊂ Rm[s + 1]. We let

Rm[∞] =
⋃
s≥0

Rm[s].

We say Waring’s conjecture holds for mth powers in R if there is a
positive integer g with

Rm[g ] = Rm[∞].

5 of 20



An ‘easy’ example

The classical Waring problem has R = Z≥0, and m ≥ 1 arbitrary.

There is no easy proof of the Waring–Hilbert theorem. However, it is
easy to prove that Waring’s conjecture for mth powers holds in R = Z
when m is odd.

I give the proof for m = 3; the other cases are similar.

For any f (x) ∈ Z[x ], define ∆f (x) = f (x + 1)− f (x) (forward
difference operator). It is clear that if f (x) 6= 0, say with leading term
axn, then ∆f (x) has leading term naxn−1.

Now take f (x) = x3. Then ∆f (x) has leading term 3x2, and ∆2f (x)
has leading term 6x .
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Hence, ∆2f (x) = 6x + D, for some integer D.

(It is easy to compute that D = 6, but we won’t need this.) On the
other hand,

∆x3 = (x + 1)3 − x3,

∆2x3 = (x + 2)3 − (x + 1)3 − (x + 1)3 + x3.

Since 3 is odd, this can be rewritten as

∆2x3 = (x + 2)3 + (−(x + 1))3 + (−(x + 1))3 + x3.

Comparing the two expressions for ∆2f (x), we conclude that every
integer ≡ D (mod 6) is a sum of four cubes in Z.

Using this, we show that every integer is a sum of at most five cubes.
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Every integer is a cube mod 6 (in fact, the cube of itself). So given n,
we may choose an integer m with n −m3 ≡ D (mod 6). Then
n −m3 = a3 + b3 + c3 + d3 for some a, b, c , d , and so

n = a3 + b3 + c3 + d3 + m3.

Open problem: Is every integer the sum of 4 cubes?
If so, then ‘4’ is best possible, since integers ≡ ±4 mod 9 require at
least four cubes.

Developing our above argument further one finds that for every
positive integer m, there is a positive integer v(m) such that every
integer is the sum or difference of v(m) mth powers. Using v(m) now
for the smallest such integer, we are asking whether v(3) = 4 or
v(3) = 5.
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E.M. Wright published this (and more, which I am omitting) in a
1934 paper. He called this modified Waring problem, where one
allows differences as well as sums, the “easier Waring problem.”

Well, life is full of regrets. Nearly 50 years later (1979), Wright had
this to say:

So far from being “easier” (as I absurdly
named it in [8]), the determination of v(k)
has turned out to be substantially more
difficult than that of g(k), . . .

In fact, while g(k) is now known for all but finitely many k , we do
not know the value of v(k) for any k other than k = 2.

Exercise: v(2) = 3.
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Waring’s problem for R = C[T ]

Let m be any positive integer, and let f (x) = xm. Computing
∆m−1f (x) in the two ways we did for m = 3, we obtain a polynomial
identity

m!x + Dm = (x + m − 1)m + c1(x + (m − 2))m + · · ·+ cm−1x
m,

where Dm and the ci are integers.

Suppose we are given any polynomial in C[T ], say g(T ). We may
choose x = x(T ) ∈ C[T ] to make m!x + Dm = g(T ). The above
identity shows that g(T ) is a sum of m mth powers in C[T ].

Thus, Waring’s conjecture holds for R = C[T ] and any m ≥ 1.
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So m mth powers suffice in C[T ]. Can one get by with fewer?

Conjecture (Newman and Slater, 1979)

NO!

Heilbronn conjectured that T cannot be written as the sum of fewer
than m mth powers of entire functions of the complex variable T .

Theorem (ibid.)

The minimal number of mth powers needed to represent all elements
of C[T ] is > m1/2, for all integers m ≥ 2.

Their proof uses an argument with Wronskians, similar to one proof
of the polynomial abc-theorem (Mason–Stothers).
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One can also look at polynomials over rings other than C.

Let F be a finite field. If the characteristic of F is larger than m, the
argument on the last slide suffices to show that Waring’s conjecture
holds for the mth powers in F [T ].

In fact, the restriction on the characteristic is not necessary. This is a
1933 theorem of Paley — better known for his contributions to
analysis.

Theorem (Paley, 1933)

For any finite field F , and any positive integer m, Waring’s conjecture
for mth powers holds in F [T ].

Note: The set of elements representable need not be all of F [T ] !
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For the proof, Paley first finds polynomials G (T ),H(T ) ∈ F with the
property that

G (T )x + H(T )

is identically a sum of mth powers in F [T ][x ].

As an immediate consequence, every polynomial congruent to H(T )
modulo G (T ) is expressible as the sum of a bounded number mth
powers in F [T ]. It is then elementary to deduce Waring’s conjecture,
and that for all large s, the polynomials expressible as sums of mth
powers are exactly those polynomials that are sums of mth powers
modulo G (T ).
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To produce G (T ),H(T ), Paley relies on the following pretty lemma:

Lemma
Let F be a finite field of order q = ph, where p is prime. Let m be a
positive integer, and write m in base p:

m = pn1 + pn2 + · · ·+ pnk ,

where none of n1, n2, . . . occur more than p − 1 times. (So k is the
sum of the base p digits of m.) For every integer k ′ with
h(p − 1)k ′ > k , we have ∑

g(x)∈F [x]
g monic

deg g(x)=k ′

g(x)m = 0.
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The minimal number of mth powers needed has been studied recently
by Vaserstein, and Liu and Wooley.

Several other attractive “Waring problems” could be exhibited. I
would be remiss if I neglected to mention Hilbert’s original proof of
Waring’s original problem. This has a definite algbraic flair, relying on
certain complicated polynomial identities. Using these identities,
Ellison has shown that if K is any non-real field (meaning −1 is a
sum of squares) of characteristic 0, then Waring’s problem is true for
the mth powers in K , for all m.

It should also be mentioned that Vaserstein has proved very general
results for a large class of commutative rings. For example, if R is any
finitely generated commutative ring, and m is any prime, then
Waring’s conjecture holds for mth powers in R.
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Waring’s problem for integral quaternions

Let L be the ring of Lipschitz integral quaternions — those
quaternions of the form

a + bi + cj + dk,

where all of a, b, c , d ∈ Z.

Theorem (Niven, 1946)

Waring’s problem is true for squares in L.
The elements representable as sums of
squares are precisely those with b, c , d even.
Moreover, for all these elements, three
squares suffice (and this is sharp).
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Theorem (P.)

Let m be an integer with m > 2, and suppose 2r ‖ m. If r = 0 (i.e.,
m is odd), then all integral quaternions are sums of mth powers, while
if r > 0, then the integral quaternions that are sums of mth powers
are precisely those for which 2r | b, c , d and 2r+1 | b + c + d .
Moreover, all of these are expressible as a sum of gL(m) mth powers,
where gL(m) is a positive integer depending only on m.

17 of 20



The general strategy of the proof is along the same lines as Paley’s.
One uses various identities to show there is a positive integer G such
that all elements in a certain congruence class mod G are expressible
as the sum of a bounded number of of mth powers in L.

This more or less gives the theorem, while simultaneously showing
that the representable elements are those that are representable as
sums of mth powers mod G .

To determine which elements of L are sums of mth powers mod G ,
one factors G into prime powers. For an odd prime power pk , one has
that L/(pk) ∼= M2(Z/pk), and it is easy to see that everything in the
latter ring is a sum of mth powers. For the power of 2 in G , I have
only an ad hoc argument at the moment.
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How many mth powers do we need?

The number of such mth powers can be bounded in terms of the
numbers g(m) and G (m) that appear in the classical Waring problem.
This gives an upper bound of O(m logm).

It would seem an attractive question which I don’t know the answer
to is to get a “reasonable” lower bound on the number of required
mth powers.
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