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A remark on the number field analogue of Waring’s constant g(k)

Paul Pollack∗

Department of Mathematics, University of Georgia, Athens, Georgia 30602, United States of America

Received XXXX, revised XXXX, accepted XXXX
Published online XXXX

Key words Waring’s problem, Waring’s constant, Pythagoras number
MSC (2010) 11P05 (primary), 11R04, 11R47 (secondary)

Let K be a number field, and let k be an integer with k ≥ 2. Let O≥0 be the collection of totally nonnegative
integers in K (i.e., the totally positive integers together with zero). We let g(k,K) denote the smallest positive
integer with the following property: Every element of O≥0 that is a sum of kth powers of elements of O≥0 is
the sum of g such kth powers. Work of Siegel in the 1940s shows that g(k,K) is well-defined for all k and K.
In this note, we prove that g(k,K) cannot be bounded by a function of k alone: For each k ≥ 2,

sup
K

g(k,K) =∞.
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1 Introduction

Let R be a semiring. For each pair of positive integers k and s, we let Rk[s] denote the collection of elements of
R that can be written in the form

∑s
i=1 α

k
i with all αi ∈ R, and we let Rk[∞] =

⋃∞
s=1Rk[s]. The kth Waring

constant of R is the number

gR(k) := inf{s : Rk[s] = Rk[∞]}.

That is, gR(k) is the least positive integer s with the property that every sum of kth powers in R is a sum of s kth
powers, if any such s exists; otherwise, gR(k) =∞. An alternative notation, introduced by Joly [1], is w(k;R).
This same quantity is also sometimes called the kth Pythagoras number of R.

Waring’s original conjecture, proposed in 1770 [2, p. 336] and settled by Hilbert in 1909 [3], is that gZ≥0(k) <
∞ for every positive integer k. We now know several families of R for which gR(k) <∞ for all k. For instance,
this holds if R = F [x] for F a finite field (Paley [4]), for the matrix rings R = Mn(Z) (Richman [5]), and for
all p-adic rings R (Ramanujam [6]).1 In fact, in each of these families, the quantity gR(k) can be bounded by a
constant depending only on k and not on the particular R in question.

The subject of this note is Waring’s problem for rings of integers of number fields. The most important early
results in this direction are due to Siegel, with the following theorem proved in [7, 8]. For a number field K,
we let O denote its ring of integers. We use a superscript “≥ 0” to indicate a restriction to totally nonnegative
elements, meaning totally positive or zero.

Theorem A Let k ≥ 2. Let K be a number field, and let R denote the subring of O generated by the kth
powers of elements of O. There is a positive integer G = G(k,K) for which the following holds: Every totally
positive element of R of sufficiently large norm is the sum of G kth powers of elements of O≥0. In fact, if K is
not totally real, then the phrase “of sufficiently large norm” may be omitted.

On its face, Theorem A does not appear to fit into our notational framework for discussing Waring-type
problems. But in fact, it easily implies a result of this kind, namely that

gO≥0(k) <∞ for all pairs of K, k.

∗ Corresponding author E-mail: pollack@uga.edu, Phone: +01 706 621 3275, Fax: +01 706 542 5907
1 By a p-adic ring, we mean the ring of integers belonging to the completion of a number field at a finite place.
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(When K = Q, this is the Waring–Hilbert theorem.) To see this, given k and K, first choose G and C so that all
totally positive α ∈ R with Nα ≥ C are sums of G kth powers of elements of O≥0. Since (O≥0)k[∞] ⊂ R,
certainly all α ∈ (O≥0)k[∞] with norm exceeding C are sums of G kth powers of elements of O≥0. Now
consider those α ∈ (O≥0)k[∞] with Nα ≤ C. Let U denote the group of totally positive units in O. Then the
set of α being considered here is finite, up to multiplication by an element of U . Since U is finitely generated,
U/Uk is finite. This allows us choose a finite set of β’s such that any α under consideration is a multiple of some
β by the kth power of a totally positive unit. Now letting G0 be the maximum number of kth powers of elements
of O≥0 needed to represent any β, we have gO≥0(k) ≤ max{G0, G}.

Siegel conjectured in [7] that the G in Theorem A could be taken to depend only on k, and this was confirmed
by later results of Birch [9] and Ramanujam (op. cit.; see also [10]); according to their work, we may take
G = max{8k5, 2k + 1}. Here we prove the contrasting result that the Waring constants gO≥0(k) cannot be
bounded solely in terms of k.

Theorem 1.1 For every k ≥ 2, we have supK gO≥0(k) = ∞, where the supremum is taken over all number
fields K.

Remarks.

(i) We have already mentioned that gR(k) is bounded in terms of k uniformly across all p-adic rings R. It
follows that the phenomenon described in Theorem 1.1 is a genuinely global one.

(ii) Let K be an arbitrary number field. Siegel showed already in 1921 [11, Satz 2] that for any integer k ≥ 2,
every totally positive element ofK is a sum of kth powers of totally positive elements ofK, with the number
of summands bounded solely in terms of k.2 Consequently, supK gK≥0(k) <∞.

The proof of Theorem 1.1 is inspired by an argument of Scharlau [12], who showed (in our notation) that
supK gO(2) =∞. (This disproved a conjecture of Peters [13].) Scharlau’s theorem does not immediately imply
the case k = 2 of Theorem 1.1, nor does it appear to be trivially implied by it.

2 Proof of Theorem 1.1

Throughout this section, k ≥ 2 is fixed.
Let q1, q2, q3, . . . be a sequence of distinct primes congruent to 1 modulo 4. Put

Kt = Q(
√
q1,
√
q2, . . . ,

√
qt);

here, by
√
qi, we mean the positive square root of qi living inside R. Thus, each Kt is a subfield of R.

Since the discriminants of the fields Q(
√
qi) are pairwise relatively prime, [Kt : Q] = 2t, and Kt has ring of

integers Z[{ 1+
√
qi

2 : i = 1, 2, . . . , t}]. With Qi the smallest odd integer exceeding
√
qi, we let

ηt =

t∑
i=1

(
Qi +

√
qi

2

)k
.

Clearly, ηt is a sum of t kth powers of totally positive integers from Kt.
We will prove the following proposition.

Proposition 2.1 We can select the sequence q1, q2, q3, . . . in such a way that each ηt is not a sum of fewer
than t kth powers of totally nonnegative integers in Kt.

So with K = Kt and O the ring of integers of K, considering the element ηt reveals that gO≥0(k) ≥ t. Since
t can be taken arbitrarily large, Theorem 1.1 follows immediately.

2 Siegel used Hilbert’s method to prove this. The Birch–Ramanujam result implies the analogous (and stronger) theorem with O[1/k!]
replacing K: Indeed, let α be a totally positive element of O[1/k!]. If j is a large positive integer, then k!kjα is a totally positive element
of k!O. Since k!O ⊂ R (see top of p. 134 in [7]), the Birch–Ramanujam theorem implies that if j is large enough, then k!kjα is a sum of
max{2k +1, 8k5} kth powers inO≥0. Now divide this representation of k!kjα through by k!kj , absorbing this factor into the kth powers.
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Proof of Proposition 2.1. We let q1 = 5 and select q2, q3, q4, . . . inductively. Suppose that t ≥ 2 and that we
have already selected q1, . . . , qt−1 in such a way that ηt−1 is not a sum of fewer than t− 1 kth powers of totally
nonnegative integers in Kt−1. (Obviously, this is satisfied when t = 2.) We will show how to select qt so that ηt
is not a sum of fewer than t kth powers of totally nonnegative integers in Kt. In fact, we will prove that it suffices
to choose qt sufficiently large in terms of q1, . . . , qt−1.

To see what constraints on qt are necessary, let us suppose we have a representation

ηt =
∑
i

αki , (1)

where each αi is a totally nonnegative integer in Kt and the right-hand sum has fewer than t terms. We can (and
will) assume that no αi = 0; thus, each αi is totally positive.

To begin with, observe that for each i = 1, 2, . . . , t,(
Qi +

√
qi

2

)k
=

1

2k

(∑
` even

(
k

`

)
Qk−`i q

`/2
i +

∑
` odd

(
k

`

)
Qk−`i q

(`−1)/2
i

√
qi

)
.

Therefore, using Tr(·) for the trace from Kt down to Q,

Tr(ηt) =
2t

2k

t∑
i=1

∑
` even

(
k

`

)
Qk−`i q

`/2
i

= Ct−1 +
2t

2k

∑
` even

(
k

`

)
Qk−`t q

`/2
t ,

say. Here Ct−1 depends only on q1, . . . , qt−1. Noting that
√
qt < Qt < 2 +

√
qt, we see that

Tr(ηt) ≤ Ct−1 +
2t

2k

∑
` even

(
k

`

)
Qkt = Ct−1 + 2t−1Qkt ≤ Ct−1 + 2t−1q

k/2
t (1 + 2/

√
qt)

k. (2)

For comparison, we estimate the trace of the right-hand side of (1). Write each

αi =
1

2
(µi + νi

√
qt),

where µi, νi ∈ Kt−1. From our description of the integers of Kt, it follows that both µi and νi are integers of
Kt−1. Moreover,

αki =
1

2k

(∑
` even

(
k

`

)
µk−`i ν`i q

`/2
t +

∑
` odd

(
k

`

)
µk−`i ν`i q

(`−1)/2
t

√
qt

)
,

and so

Tr(αki ) =
1

2k

∑
` even

(
k

`

)
q
`/2
t Tr(µk−`i ν`i ).

To handle the trace terms on the right-hand side, we use that αi is totally positive. For any σ ∈ Gal(Kt−1/Q),
we can extend σ in two ways to an element of Gal(Kt/Q); one of these fixes

√
qt while the other sends it to

−√qt. Since the image of αi = 1
2 (µi + νi

√
qt) under both extensions is positive, it follows that

σ(µi) ≥ |σ(νi)|
√
qt. (3)

We proved this inequality for σ ∈ Gal(Kt−1/Q), but of course it remains valid for all σ ∈ Gal(Kt/Q), since
both sides depend only on the restriction of σ to Kt−1. For even ` ≤ k, we raise both sides of (3) to the power
k − ` and multiply by the (nonnegative) number σ(νi)` = |σ(νi)|` to find that

σ(µi
k−`ν`i ) ≥ |σ(νki )|q

(k−`)/2
t .
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Summing on σ,

Tr(µk−`i ν`i ) ≥ q
(k−`)/2
t · S(νki ),

where S : Kt → R is defined by

S(θ) =
∑
σ

|σ(θ)|.

(Unless otherwise specified, sums on σ run over all elements of Gal(Kt/Q).) Inserting this estimate above,

Tr(αki ) ≥
1

2k

∑
` even

(
k

`

)
q
k/2
t · S(νki )

=
1

2
q
k/2
t · S(νki ).

Hence,

Tr

(∑
i

αki

)
≥ 1

2
q
k/2
t

∑
i

S(νki ).

Recall that νi is an algebraic integer. So using N(·) for the norm from Kt to Q, we see that if νi 6= 0, then

S(νki ) =
∑
σ

|σ(νki )| ≥ 2t ·

(∏
σ

|σ(νki )|

)1/2t

≥ 2t · |N(νki )|1/2
t

≥ 2t.

In the first inequality, we used the so-called “AM-GM inequality” connecting the arithmetic and geometric means.
Since ηt /∈ Kt−1, there is at least one value of i with νi 6= 0. If there are at least two such values of i, then

Tr(ηt) = Tr

(∑
i

αki

)
≥ 2 · 1

2
q
k/2
t · 2t = 2tq

k/2
t .

If qt is sufficiently large in terms of q1, . . . , qt−1, then the final expression here exceeds the final term in (2).
Thus, assuming that qt is chosen sufficiently large, there must be exactly one index i with νi 6= 0, say i = j.

We consider further the value of νj . The conditions for equality in AM-GM imply that if S(νkj ) = 2t, then
|σ(νjk)| = 1 for all σ, and so νj = ±1. Turning it around, if νj 6= ±1, then S(νkj ) > 2t.

Claim 2.2 If νj 6= ±1, then S(νkj ) ≥ (1+δ)·2t, where δ is a positive constant depending only on q1, . . . , qt−1.

To see the claim, start by noting that for α ∈ Kt−1, we have

S(α) = 2
∑

σ∈Gal(Kt−1/Q)

|σ(α)|.

In particular, the value of S(α), for α ∈ Kt−1, does not depend on the choice of qt. If α is an integer of Kt−1
and S(α) lies below a given bound, then

∏
σ∈Gal(Kt−1/Q)(X − σ(α)) is a polynomial with bounded integer

coefficients having α as a root; hence, there are only finitely many possibilities for α. We quickly deduce that,
as α ranges over integers of Kt−1, there is a smallest value of S(α) exceeding 2t, and the claim follows. So if
νj 6= ±1, then

Tr(ηt) ≥
1

2
q
k/2
t · S(νkj ) ≥

1

2
q
k/2
t · (1 + δ)2t = (1 + δ)2t−1 · qk/2t .

But if qt is sufficiently large in terms of q1, . . . , qt−1, this contradicts (2).
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Hence, for large enough qt, the equality (1) forces νi = 0 for all i 6= j and νj = ±1. Therefore αi ∈ Kt−1
for i 6= j, and (1) assumes the form(

Q1 +
√
q1

2

)k
+ · · ·+

(
Qt +

√
qt

2

)k
=
∑
i 6=j

αki +

(
1

2
(µj ±

√
qt)

)k
, (4)

where the ± is the sign of νj . Comparing the Kt−1-coefficients of
√
qt on both sides,

∑
` odd

(
k

`

)
Qk−`t q

(`−1)/2
t =

∑
` odd

(
k

`

)
µk−`j ν`jq

(`−1)/2
t .

Recall that µj is nonnegative (in fact, from (3), totally nonnegative). If νj = −1, then the immediately preceding
right-hand side is nonpositive, whereas the left-hand side is clearly positive. So νj = +1, and

∑
` odd

(
k

`

)
Qk−`t q

(`−1)/2
t =

∑
` odd

(
k

`

)
µk−`j q

(`−1)/2
t .

Viewed as a function of the real variable µj , the right-hand side is strictly increasing for µj ≥ 0. So the displayed
equality forces µj = Qt. Putting these deductions together, we see that the final summand on the left-hand side
of (4) is the same as the final summand on its right-hand side. Subtracting this common value reveals that

ηt−1 =
∑
i 6=j

αki .

So we have expressed ηt−1 as a sum of fewer than t− 1 kth powers of totally positive integers from Kt−1. This
contradicts our induction hypothesis.

3 Concluding remarks

It seems reasonable to also consider the Waring numbers (or higher Pythagoras numbers) ofO and not onlyO≥0.
As remarked in the introduction, Scharlau showed [12] that supK gO(2) = ∞, and his construction was the
inspiration for our proof of Theorem 1.1. It is possible to modify his construction to prove that supK gO(k) =∞
for every positive even integer k. In fact, if q1, q2, q3, . . . is a suitably-chosen sequence of primes congruent to 1
mod 4, then

t∑
i=1

(
1 +
√
qi

2

)k
cannot be expressed as a sum of fewer than t kth powers of integers of Kt. The proof is similar to, but simpler
than, our proof of Theorem 1.1. By contrast, for odd values of k, it is known that

sup
K
gO(k) ≤ 2k−1 + 8k5.

This follows from elementary arguments of Stemmler [14], with the local analysis there replaced by the results
of Ramanujam alluded to previously (see also [15]).
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