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Abstract. A (Lipschitz) integral quaternion is a Hamiltonian quaternion of the
form a+ bi+ cj + dk with all of a, b, c, d ∈ Z. In 1946, Niven showed that the integral
quaternions expressible as a sum of squares of integral quaternions are precisely those
for which 2 | b, c, d; moreover, all of these are expressible as sums of three squares.
Now let m be an integer with m > 2, and suppose 2r ‖ m. We show that if r = 0
(i.e., m is odd), then all integral quaternions are sums of mth powers, while if r > 0,
then the integral quaternions that are sums of mth powers are precisely those for
which 2r | b, c, d and 2r+1 | b + c + d. Moreover, all of these are expressible as a sum
of g(m) mth powers, where g(m) is a positive integer depending only on m.

1. Introduction

In 1770, Edward Waring asserted in his Meditationes Arithmeticæ [25, p. 336] that
“Every [positive] integer is a square, or the sum of two, three, or four squares. Every
integer is a cube, or the sum of two, three, . . . , nine cubes; every integer is also the
square of a square, or the sum of up to nineteen such; and so forth.” It has become
traditional to interpret the phrase “and so forth” as a statement of the following
conjecture.

Waring’s problem. Let m ∈ Z>0. There is a g ∈ Z>0 with the property that every
nonnegative integer is a sum of g mth powers of nonnegative integers.

The first solution to Waring’s problem — meaning a proof of the existence of g for all m
— was given by Hilbert in 1909 [7]. Hilbert’s argument had a strong algebraic flavor and
depended on the existence of certain remarkable polynomial identities. Around 1920,
Hardy and Littlewood realized that Waring’s problem could be attacked analytically
by the circle method, and this approach led to significantly better understanding of
admissible values of g. With g(m) denoting smallest admissible value of g for a given
m, it is now known that

g(m) = 2m + b(3/2)mc − 2

except when the fractional part of (3/2)m is extraordinarily close to 1. This exceptional
case probably never occurs; Mahler proved that it happens only finitely often, while
Kubina and Wunderlich have shown that it never happens for m ≤ 471 600 000. (Con-
tained here are the results that g(2) = 4, g(3) = 9, and g(4) = 19, in agreement with
Waring’s conjectures.) For a precise definition of “extraordinary close to 1” as well as
further references, see the surveys [3, 23].

Several authors have considered generalizations of Waring’s problem of the following
kind. Let R be a (not necessarily commutative) semiring. For each pair of positive
integers m and s, let

Rm[s] =

{
s∑
i=1

αmi : αi ∈ R

}
.
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Note that Rm[s] ⊂ Rm[s+ 1], since 0 ∈ R. We let

Rm[∞] =
⋃
s≥0

Rm[s].

We say that Waring’s conjecture holds for the pair R,m if Rm[g] = Rm[∞] for some
positive integer g. Thus, Hilbert’s 1909 theorem is the assertion that Waring’s conjecture
holds for R = Z≥0 and every m ∈ Z>0.

Let us list some more recent examples of “Waring problems” from the literature. To
begin with, let m = 2. The minimal g with R2[g] = R — when it exists! — is known
as the Pythagoras number of R. When R is a field of rational functions, the study of
these Pythagoras numbers is closely linked with Hilbert’s 17th problem; here important
contributions were made by Artin, Cassels, Colliot-Thélène, Ellison, Jannsen, Landau,
Pfister, Pourchet, and others. (For an introduction to this material see, e.g., the
expository monograph of Rajwade [13].) Next, suppose that R = k[X], with k a finite
field. In this situation, Paley [12] proved in 1933 that Waring’s conjecture holds for
every m. More recently, Vaserstein has obtained remarkably far-reaching results for
algebras over fields [19, 22] (containing, in particular, Paley’s theorem). For k[X], see
also [9], and for general commutative rings, see [8] and [20]. Results of Siegel [15, 16]
imply that Waring’s conjecture holds for every m when R is the ring of integers in an
arbitrary number field or the semiring of totally nonnegative integers. For matrix rings,
see [6, 10, 18, 14]; to quote just one result, it is shown in [14] that if n ≥ m ≥ 2, then
every element of R = Mn(Z) is a sum of seven mth powers in R.

In this paper, we consider the case of R = L, the ring of (Lipschitz) integral quaternions,
those Hamiltonian quaternions of the form a + bi + cj + dk with all of a, b, c, d ∈ Z.
Our main result is the following.

Theorem 1.1. Let m ∈ Z>0.

(i) Waring’s conjecture is true for L,m.

(ii) Suppose 2r | m but 2r+1 - m. If r = 0, then Lm[∞] = L. If r = 1 and m = 2,
then Lm[∞] = {a+ bi+ cj + dk : a, b, c, d ∈ Z, 2 | b, c, d}. In all other cases,

Lm[∞] = {a+ bi+ cj + dk : a, b, c, d ∈ Z, 2r | b, c, d, and 2r+1 | b+ c+ d}.

Our proof of Theorem 1.1 is similar in overall structure to the proof of Paley cited
above; there are also several parallels with the works of Stemmler [17], Cohn [1], and
Vaserstein (again see above).

The case m = 2 of Theorem 1.1 was treated by Niven [11]; in fact, Niven proves that
every a+ bi+ cj + dk ∈ L with b, c, d even is a sum of three squares and that 6 + 2i
is not a sum of two squares. (See the recent paper [2] for analogous results in other
rational quaternion algebras.) Thus, if we define

gR(m) = inf{m ∈ Z>0 : Rm[g] = Rm[∞]},

then gL(2) = 3. Our proof of Theorem 1.1, while sufficient to show that gL(m) <∞ for
each m, yields only a very crude upper bound. In §5, we describe how to modify the
argument to prove that gL(m) = O(m logm) for all m ≥ 2.

2. A warm-up: the easier Waring problem

Our argument hinges on the following 1933 result of V. Veselý [24].
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Proposition 2.1. Fix m ∈ Z>0. There is a v ∈ Z>0 such that every integer n can be
written as a sum or difference of v mth powers. More precisely, we can always write

n =

v∑
`=1

±xm`

for some integers x1, . . . , xv and some choice of signs.

For completeness, and for ease of reference in §6, we include Wright’s short proof of
Proposition 2.1 [26].

Proof. We let ∆: R[X] → R[X] denote the forward-difference operator defined by
∆F (X) = F (X + 1)− F (X). It is easy to check that if F has degree n with leading
coefficient an, then ∆F has degree n − 1 and leading coefficient nan. Applying this
observation m− 1 times, we find that

∆(m−1)(Xm) = m!X + Cm

for some integer Cm. (In fact, Cm = 1
2(m − 1)m!, but this will not be needed.) On

the other hand, directly from the definition of ∆, we find that ∆(j)Xm, for each j, is
the sum/difference of 2j terms of the form Xm, (X + 1)m, . . . , (X + j)m. For instance,

∆(2)(Xm) has the 4-term expansion

(X + 2)m − (X + 1)m − (X + 1)m +Xm.

In particular, ∆(m−1)(Xm) is the sum/difference of 2m−1 terms of the formXm, (X+1)m,
. . . , (X +m− 1)m.

Replacing X by an element of Z, we deduce from the results of the last paragraph
that all integers congruent to Cm modulo m! are the sum or difference of 2m−1 mth
powers. If n is any integer, the least absolute remainder R of n−Cm modulo m! satisfies
|R| ≤ m!

2 . Since n−R ≡ Cm modulo m!, we can write n−R as a sum or difference of

2m−1 mth powers. Since |R| ≤ m!
2 , we can write R as a sum or difference of m!

2 terms

of the form 0k and 1k. Concatenating the representations of n−R and R gives us a
representation of n as a sum or difference of 2m−1 + m!

2 mth powers. �

Let v(m) be the smallest positive integer for which the conclusion of Proposition 2.1
holds. From the above proof,

v(m) ≤ 2m−1 +
m!

2
.

In [26], Wright termed the problem of determining the value of v(m) the “easier Waring
problem”, on the basis of the ease with which Proposition 2.1 is proved in comparison to
Hilbert’s theorem. While it is indeed easy to prove that v(2) = 3, we still do not know
the precise value of v(m) for any m > 2. Considerations such as these led Wright himself
to eventually repudiate the name “easier Waring problem” as “absurd” [27].

3. A local-global principle for representations as sums of powers, and
the proof of Theorem 1.1(i)

Henceforth, m ≥ 2 is fixed, and r is the nonnegative integer for which 2r | m and
2r+1 - m. In this section, we begin in earnest our study of representations of elements
of L as sums of mth powers.
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We let
√
−2 denote a fixed complex square root of −2, and we define integers U and V

by the equation

(1) (1 +
√
−2)m = U + V

√
−2.

Lemma 3.1. We have 2r | V and 2r+1 - V . In particular, V 6= 0.

Proof. Noting that (1 +
√
−2)2 ≡ 1 (mod 2) in the ring Z[

√
−2], and that m′ := m/2r

is odd, we see that (1 +
√
−2)m

′ ≡ 1 +
√
−2 (mod 2). Thus, if we write (1 +

√
−2)m

′
=

U0 + V0

√
−2, then U0 and V0 are odd. For ` ≥ 1, define U`, V` by the equation

U` + V`
√
−2 = (U0 + V0

√
−2)2` . A straightforward induction shows that for each ` ≥ 0,

the integer V` is divisible by 2` but not 2`+1. Since V = Vr, the lemma follows. �

Lemma 3.2. Every element of L congruent to an integer modulo 2V can be written as
a sum of w mth powers in L, where w ∈ Z>0 depends only on m.

Proof. Starting from the observation that (i+ j)2 = −2, it is easy to see that there is
an embedding Z[

√
−2] ↪→ L determined by sending

√
−2 to i+ j. Hence,

(2) (1± (i+ j))m = U ± V (i+ j),

where U and V are the integers defined in (1) and the signs on both sides agree.
Similarly,

(3) (1± (i+ k))m = U ± V (i+ k),

and

(4) (1± (j + k))m = U ± V (j + k).

Let b be an arbitrary integer. With v as in Proposition 2.1, we can write b =
∑v

`=1±xm` .
Hence, the nonreal component (pure part) of

v∑
`=1

(x`(1± (i+ j)))m +
v∑
`=1

(x`(1± (i+ k)))m +
v∑
`=1

(x`(1∓ (j + k)))m

is exactly 2bV i. Similarly, for any integers c, d, one can find elements of Lm[3v] with
nonreal components 2cV j and 2dV k. Thus, there is an element of Lm[9v] with pure
part 2V (bi+ cj + dk).

Next, we fix integers A,B with A > 0 for which Re((A+Bi)m) < 0. It is easy to see
that this is always possible. For instance, if m = 2, we may choose any pair of positive
integers A and B with A < B. If m > 2, the real part of (A + Bi)m will certainly
be negative if π

2m < Arg(A+ Bi) < π
m . For a given A > 0, this condition is satisfied

when A tan π
2m < B < A tan π

m . For large enough A, the interval (A tan π
2m , A tan π

m)
has length at least 1, and so we can certainly find an integer B contained therein.

Let a1 = Re((A+Bi)m) and notice that

(5) (A+Bi)m + (A−Bi)m = 2a1.

For any x ∈ Z, Proposition 2.1 allows us to write x =
∑v

`=1±xm` . Then

2a1x =
v∑
`=1

±2a1x
m
` .

For those ` where the plus sign holds, +2a1x
m
` = ((A+Bi)x`)

m+((A−Bi)x`)m, so 2a1x
m
`

is a sum of 2 mth powers in L. On the other hand, −2a1x
m
` = 2|a1|xm` = xm` + · · ·+xm`

is a sum of 2|a1| mth powers. It follows that every integer multiple of 2a1 belongs to
Lm[2|a1|v].
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With this preparation out of the way, we can quickly complete the proof of the lemma.
Let α be any element of L congruent to an integer modulo 2V . Then α = a+ 2V (bi+
cj + dk) for some a, b, c, d ∈ Z. Select β ∈ Lm[9v] with pure part 2V (bi+ cj + dk), so
that α− β = a0 for some a0 ∈ Z. Let M be the largest multiple of 2a1 not exceeding
a0, so that a0 = M +R where 0 ≤ R < 2|a1|. Then

α = β +M +R ∈ Lm[9v] + Lm[2|a1|v] + Lm[2|a1| − 1].

So we may take w = 9v + 2|a1|v + 2|a1| − 1. �

The next proposition is a local-global principle for sums of mth powers in L.

Proposition 3.3. An α ∈ L is a sum of mth powers if and only if it is congruent to a
sum of mth powers modulo 2V .

Proof. The “only if” direction is trivial. Now suppose that α ≡ αm1 +· · ·+αms (mod 2V ).
By Lemma 3.2, β := α−

∑s
`=1 α

m
` is a sum of mth powers. But then α =

∑s
`=1 α

m
` +β

is also a sum of mth powers. �

Proof of Theorem 1.1(i). We must show that any α ∈ L that is a sum of mth powers
is a sum of g mth powers, for some finite g depending only on m. Since α is a sum of
mth powers in L, it is certainly a sum of mth powers in the quotient L/(2V ), say

(6) α ≡ αm1 + · · ·+ αms (mod 2V ).

Choose a representation of this kind where s is minimal. If s > (2V )4 = #L/(2V ), then
the sequence of partial sums αm1 , α

m
1 +αm2 , . . . , α

m
1 +· · ·+αms contains a repetition modulo

2V , say
∑t

`=1 α
s
` ≡

∑t′

`=1 α
s
` (mod 2V ), where 1 ≤ t < t′ ≤ s. Hence,

∑t′

`=t+1 α
s
` ≡ 0

(mod 2V ). But then the representation of α in (6) can be shortened by deleting the
t′ − t summands αst+1, . . . , α

s
t′ , contradicting the minimality of s. Thus, s ≤ (2V )4. By

Lemma 3.2, α −
∑s

`=1 α
m
` is a sum of w = w(m) mth powers, and so α is a sum of

s+ w mth powers. So we may take g = (2V )4 + w. �

4. Proof of Theorem 1.1(ii)

According to Proposition 3.3, an α ∈ L belongs to Lm[∞] if and only if α mod 2V ∈
(L/(2V ))m[∞]. In this section, we determine when this local condition is satisfied.

Write the prime factorization of 2V in the form

2V = ±
∏
p|2V

pep .

The Chinese remainder theorem implies that

(7) L/(2V ) ∼=
⊕
p|2V

L/(pep);

consequently, α ∈ L is a sum of mth powers modulo 2V if and only if α is a sum of mth
powers modulo pep for all p | 2V . The next lemma, which is contained in [5, Proposition
4], will imply that the odd primes p | 2V impose no restriction.

Lemma 4.1. Let p be an odd prime, and let e be a positive integer. Then L/(pe) is
isomorphic to M2(Z/peZ).

Proof (sketch). One shows that there are integers a and b with a2 + b2 ≡ −1 (mod pe).
Then one checks that the homomorphism ϕ : L/(pe) → M2(Z/peZ) determined by

mapping i mod pe to
(

0̄ −1̄
1̄ 0̄

)
and j mod pe to

(
ā b̄
b̄ −ā

)
is in fact an isomorphism. �
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Lemma 4.2. For each odd prime p | 2V , every element of L/(pep) is a sum of mth
powers.

Proof. In view of Lemma 4.1, it suffices to prove that every element
(
ā b̄
c̄ d̄

)
∈ M2(Z/pepZ)

is a sum of mth powers. Clearly, we may assume that a ≥ 0 and d ≥ 2. Then(
ā b̄
c̄ d̄

)
= a

(
1̄ 0̄
0̄ 0̄

)m
+

(
0̄ b̄
0̄ 1̄

)m
+

(
0̄ 0̄
c̄ 1̄

)m
+ (d− 2)

(
0̄ 0̄
0̄ 1̄

)m
∈ (M2(Z/pepZ))m[a+ d] ⊂ (M2(Z/pepZ))m[∞].

(Cf. the proof of Theorem 3 in [21].) �

Recall that r is defined by the conditions that 2r | m but 2r+1 - m. By Lemma 3.1, 2
appears in the prime factorization of 2V with exponent e2 = r + 1. So by Proposition
3.3, the decomposition (7), and Lemma 4.2, α is a sum of mth powers precisely when it
is a sum of mth powers modulo 2r+1. Therefore, the next lemma completes the proof
of Theorem 1.1(ii).

Lemma 4.3. The following conditions are necessary and sufficient for α = a + bi +
cj + dk ∈ L to be congruent, modulo 2r+1, to a sum of mth powers in L.

(i) when r = 0: α ∈ L. (That is, all α ∈ L are congruent to sums of mth powers.)

(ii) r = 1 and m = 2: 2 | b, c, d.

(iii) r = 1 and m > 2, or r > 1: 2r | b, c, d and 2r+1 | b+ c+ d.

Proof. We first prove necessity in every case and then turn to sufficiency.

For (i), necessity is trivial. Turning to (ii), note that for any A+Bi+ Cj +Dk ∈ L,

(A+Bi+ Cj +Dk)2 = A2 + 2A(Bi+ Cj +Dk) + (Bi+ Cj +Dk)2

= A2 −B2 − C2 −D2 + 2A(Bi+ Cj +Dk).(8)

So every square (mth power) in L has even components for i, j, k, which implies the
same for every sum of squares in L.

Finally we treat (iii). To start with, suppose r = 1, so that m = 2m′ with m′ odd and
greater than 1. For an arbitrary integral quaternion A+Bi+ Cj +Dk ∈ L,

(A+Bi+ Cj +Dk)m = (A2 −B2 − C2 −D2 + 2A(Bi+ Cj +Dk))m
′

≡ (A2−B2−C2−D2)m
′
+2Am′(A2−B2−C2−D2)m

′−1(Bi+Cj+Dk) (mod 4).

It is clear from this last expression that the i, j, k components of (A+Bi+Cj +Dk)m

are even. Moreover, the sum of these components is congruent, modulo 4, to twice

Am′(A2 −B2 − C2 −D2)m
′−1(B + C +D).

Notice that modulo 2,

Am′(A2 −B2 − C2 −D2)m
′−1(B + C +D) ≡ A(A2 −B2 − C2 −D2)(B + C +D)

≡ A(A+B + C +D)(B + C +D) ≡ 0;

in the last step, we used that a product of three integers such that one factor is
the sum of the other two is always even. Thus, the sum of the i, j, k components
of (A + Bi + Cj + Dk)m is a multiple of 4. The property having i, j, k components
individually divisible by 2 and with sum divisible by 4 is preserved under addition,
which finishes the proof of necessity for this half of case (iii).
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Finally, suppose that r ≥ 2. For any A+Bi+ Cj +Dk ∈ L,

(A+Bi+ Cj +Dk)4 =

(A2−B2−C2−D2)2−4A2(B2 +C2 +D2)+4A(A2−B2−C2−D2)(Bi+Cj+Dk).

Clearly, the i, j, k components on the right-hand side are all divisible by 4, and an
argument essentially identical to one we have just seen shows that their sum is a
multiple of 8. When an integral quaternion has its i, j, k components divisible by 2t and
their sum divisible by 2t+1, for a certain t, it follows from (8) that its square has i, j, k
components divisible by 2t+1 with a sum divisible by 2t+2. By induction, we deduce
that every 2rth power of an element of L has each of its i, j, k components divisible by
2r and their sum divisible by 2r+1. Since sums of mth powers are sums of 2rth powers,
necessity in the remaining half of case (iii) follows.

We turn now to sufficiency. In case (i), m is odd, and sufficiency is easy. Indeed,
every element of L is congruent, modulo 2, to a sum of terms from the list 1m =
1, im = ±i, jm = ±j, km = ±k. Case (ii) is also easy; every quaternion with even i, j, k
components is congruent, modulo 4, to a sum of terms from the list 12 = 1, (1+ i)2 = 2i,
(1 + j)2 = 2j, and (1 + k)2 = 2k.

Wrapping up, suppose that we are in case (iii). For each α = a+ bi+ cj + dk ∈ L, let

ψ(α) = (b̄, c̄, d̄) ∈ (Z/2r+1Z)3.

Let H0 be the 2-torsion subgroup of (Z/2r+1Z)3, and let H be the subgroup of H0

consisting of triples whose components sum to 0 in Z/2r+1Z. Then #H0 = 8 and
#H = 4. Showing sufficiency amounts to proving that if ψ(α) ∈ H, then α is congruent
to a sum of mth powers modulo 2r+1. But if ψ(α) ∈ H, then ψ(α) is one of

(0, 0, 0) = ψ(0m),

(2r, 2r, 0) = ψ((1 + i+ j)m),

(2r, 0, 2r) = ψ((1 + i+ k)m),

(0, 2r, 2r) = ψ((1 + j + k)m).

(These equalities come from (2)–(4) together with the fact that 2r | V while 2r+1 - V .)
Thus, for β = 0, 1 + i+ j, 1 + i+ k, or 1 + j + k, we have that α− βm is congruent to
an integer modulo 2r+1. Since every integer is congruent mod 2r+1 to a sum of fewer
than 2r+1 terms 1m, we conclude that α is congruent modulo 2r+1 to a sum of 2r+1

mth powers. �

5. Economizing mth powers

Keeping track of the estimates in the proof of Theorem 1.1(i) would lead one to a quan-
titative bound of the shape log gL(m) = O(m logm). We now describe modifications to
our argument that yield the following much sharper upper bound.

Theorem 5.1. For all integers m ≥ 2, we have gL(m) = O(m logm).

While the arguments thus far have been essentially self-contained, the proof of Theorem
5.1 rests on the deep result of Vinogradov that G(m) = O(m logm), where G(m) is
the minimal number of nonnegative mth powers required to additively represent all
sufficiently large positive integers. (See [23] for references.)

As before, let v(m) denote the minimal v for which the conclusion of Proposition 2.1
holds. As observed in [4], it is essentially trivial that v(m) ≤ G(m) + 1: Indeed, for
any n ∈ Z, and all sufficiently large x0 ∈ Z>0 (depending on n,m), we can write
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xm0 − n = xm1 + xm2 + · · ·+ xmG , where G = G(m). Hence, n = xm0 − xm1 − · · · − xmG is a
sum/difference of G+ 1 mth powers.

We can use the same idea to optimize the proof of Lemma 3.2. Suppose α ∈ L is
congruent to an integer modulo 2V , so that

α = a+ 2V (bi+ cj + dk)

with a, b, c, d ∈ Z. As in the current proof, for some a0 ∈ Z, we have

β = a0 + 2V (bi+ cj + dk) ∈ Lm[9v].

With A,B, a1 as in eq. (5) of Lemma 3.2, we select z ∈ Z>0 so large that

(9) 2|a1|zm + a− a0 = xm1 + · · ·+ xmG

for some nonnegative integers x1, . . . , xG. Then (recall that a1 < 0)

a− a0 = 2a1z
m + xm1 + · · ·+ xmG

= ((A+Bi)z)m + ((A−Bi)z)m + xm1 + · · ·+ xmG ∈ Lm[G+ 2].(10)

Hence,

α = (a− a0) + β ∈ Lm[G+ 2 + 9v].

As we saw in the last paragraph, it is permissible to take v = G+ 1. So this reasoning
shows that the conclusion of Lemma 3.2 holds with w = 10G+ 11.

The proof of Theorem 1.1(i) shows that

gL(m) ≤ gL/(2V )(m) + w.

By the Chinese remainder theorem, with pep the exact power of p dividing 2V ,

gL/(2V )(m) = max
p|2V

gL/(pep )(m).

Suppose first that p is odd, so that gL/(pep)(m) = gM2(Z/pepZ)(m). Vaserstein has shown

[21, Theorem 3] that every element of M2(Z) is a sum of at most 1
2(G(m) + 9) mth

powers. It follows immediately that gM2(Z/pepZ)(m) ≤ 1
2(G(m) + 9), so that

(11) gL/(pep )(m)� G(m).

Now suppose that p = 2. For e2 ≤ 2, the pigeonhole argument seen in the proof of
Theorem 1.1(i) implies that every element of L/(2e2) that is a sum of mth powers is a
sum of at most #L/(2e2) = 24e2 ≤ 28 mth powers. So assume that e2 > 2. Let α ∈ L
and suppose that α is congruent to a sum of mth powers modulo 2e2 . By the proof
of Lemma 4.3, we can choose β ∈ L with α− βm congruent to an integer modulo 2e2 .
(Notice that e2 = r + 1, and that the condition e2 > 2 forces us to be in case (iii) of
that lemma.) That integer is congruent, modulo 2e2 , to a sum of G(m) mth powers.
Hence, α is congruent mod 2e2 to a sum of G(m) + 1 mth powers. We conclude that
(11) holds for p = 2 as well. Therefore, gL/(2V )(m)� G(m). Since also w � G(m), it
follows that

gL(m)� G(m)� m logm,

as desired.
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6. A concluding word on generalizations

The proof of Theorem 1(i) is reasonably robust. For example, let a and b be arbitrary
nonzero integers. Consider the generalized Lipschitz quaternion ring La,b (say) with
Z-basis elements 1, i, j, k satisfying i2 = a, j2 = b, ij = −ji = k. (Thus, k2 = −ab.).
The proof of Theorem 1(i) can be adapted to prove Waring’s conjecture for all these
rings. In fact, as we now demonstrate, gLa,b(m) is bounded by a constant depending
only on m (and not on the choice of a, b).

We will show that every element of La,b that is congruent to an integer modulo m! can
be written as the sum of w mth powers, where w is bounded entirely in terms of m.
Once this is proved, following the proof of Theorem 1(i) gives that

gLa,b(m) ≤ w + gLa,b/(m!)(m) ≤ w + #La,b/(m!) = w +m!4,

and so gLa,b(m) is also bounded in terms of m. In what follows, we use Im for the pure
part of an element of La,b and Re for the real component.

In the course of proving Proposition 2.1, we showed the existence of a polynomial
identity

m!X + Cm =

2m−1∑
`=1

±(s` +X)m,

where Cm ∈ Z and each s` ∈ {0, 1, 2, . . . ,m − 1}. Suppose that α ∈ La,b and that α
is congruent to an integer modulo m!. Then α = A + m!(Bi + Cj + Dk) for some
A,B,C,D ∈ Z. Plugging X = Bi+Cj +Dk into the above identity, we see that

m!(Bi+ Cj +Dk) = Im
2m−1∑
`=1

±(s` +Bi+ Cj +Dk)m

=

2m−1∑
`=1

Im(±(s` +Bi+ Cj +Dk)m) =

2m−1∑
`=1

Im((s` ± (Bi+ Cj +Dk))m).

Therefore

β :=
2m−1∑
`=1

(s` ± (Bi+ Cj +Dk))m

has the same pure part as α, and β ∈ La,bm [2m−1]. Write

β = A0 +m!(Bi+ Cj +Dk).

At least one of a, b,−ab is negative. Suppose a < 0; the other cases are similar. Then Z[i]

is isomorphic to the ring Z[
√
|a| ·
√
−1] ⊂ C. Reasoning with complex arguments as in

the proof of Lemma 3.2, we can find an A1 +B1i ∈ Z[i] with a1 := Re((A1 +B1i)
m) < 0.

Arguing as in the last section (cf. equations (9), (10)),

A−A0 ∈ La,bm [G+ 2],

where G = G(m). Thus,

α = A−A0 + β ∈ La,bm [G+ 2 + 2m−1],

and we may take w = G+ 2 + 2m−1.

What about part (ii) of Theorem 1.1? For general a, b, we do not have as satisfactory a

characterization of La,bm [∞] as in the special case a = b = −1. We still have the local-

global principle: An element of La,b belongs to La,bm [∞] precisely when its reduction mod
pe belongs to (La,b/(pe))m[∞] for all prime powers pe. (The proof is the same as before,
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with m! now replacing 2V .) The results of [5, §4] show that La,b/(pe) ∼= M2(Z/peZ)
when p - 2ab, which implies (see the proof of Lemma 4.2) that those primes do not
contribute any restriction. It would seem an interesting problem to determine the
restrictions imposed by those primes p | 2ab.
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