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Beginning at the beginning

Recall that a perfect number is a natural number N satisfying

σ(N) = 2N, where σ(N) =
∑
d |N

d

is the usual sum-of-divisors function.

Let V (x) be the number of perfect N ≤ x .
Write V (x) = V0(x) + V1(x), where V0(x) is the number of even
perfect numbers ≤ x , and V1(x) is the number of odd perfect
numbers ≤ x .
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If N is even perfect, then (Euler)

N = 2n−1(2n − 1)

where 2n − 1 is prime, and conversely (Euclid).

So trivially, V0(x)� log x .

Conjecture

As x →∞, we have

V0(x) ∼ eγ

log 2
log log x .

Conjecture

There are no odd perfect numbers.

3 of 28



Theorem
We have the following estimates for V (x):

Volkmann, 1955 V (x) = O(x5/6)

Hornfeck, 1955 V (x) = O(x1/2)

Kanold, 1956 V (x) = o(x1/2)

Erdős, 1956 V (x) = O(x1/2−δ)

Kanold, 1957 V (x) = O(x1/4 log x

log log x
)

Hornfeck & Wirsing, 1957 V (x) = O(xε)

Wirsing, 1959 V (x) ≤ xW / log log x
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Euler’s structure theorem

Theorem
Let N be an odd perfect number. Then N has the form peM2, where
p ≡ e ≡ 1 (mod 4) and gcd(p,M) = 1.

Proof (sketch).

Since σ(N) = 2N, we have that 2 | σ(N) but 22 - σ(N).
If N =

∏
pep , then

σ(N) =
∏

σ(pep) =
∏
p

(1 + p + · · ·+ pep) .

All but one factor here must be odd, and that factor must be divisible
by 2 but not 22.
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Hornfeck’s bound

Again we estimate the number of odd perfect N ≤ x . This time we
show the number is up to x is bounded by

x1/2.

Write
N = peM2.

Clearly M2 < N ≤ x , so M ≤ x1/2.
We will show that M determines pe , and so also N.
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We have
2peM2 = 2N = σ(N) = σ(pe)σ(M2)

and hence
σ(pe)

pe
= 2

M2

σ(M2)
.

Left-hand fraction is in lowest terms. So pe is the denominator when
2M2/σ(M2) is put in lowest terms. This depends only on M.
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Wirsing’s method

Let N be a perfect number.
Let B > 1 be a unitary divisor of N, so that

N = AB with gcd(A,B) = 1.

Unapologetically vague goal

Show that N is determined by B and “a little bit more”.

Example

If N = peM2 is odd perfect, and we take B = M2, then B by itself
determines N.
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The Wirsing algorithm

We now describe an algorithm which, given a perfect number N and a
unitary divisor B > 1 of N, generates a finite (possibly empty)
exponent sequence e0, ..., el−1 of positive integers.

Moreover, there is a dual algorithm to reconstruct N from the pair
(B, exponent sequence). In fact,

N = (pe0
0 pe1

1 . . . p
el−1

l−1 )B

for primes p0, . . . , pl−1 which are algorithmically determined by B and
the exponent sequence.
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The Wirsing algorithm

Given: N perfect, and B > 1 a unitary divisor of N.

Write N = AB, so that gcd(A,B) = 1.
If A = 1, output the empty sequence and terminate.
Otherwise we have

σ(N) = σ(A)σ(B) = 2AB

and

1 <
σ(A)

A
=

2B

σ(B)
< 2.

So 2B/σ(B) is not an integer.

10 of 28



If 2B/σ(B) is not an integer, then let p0 be the least prime dividing
σ(B) to a higher power than that to which it divides 2B. Then
p0 | A. Note that p0 is entirely determined by B.

Suppose pe0
0 ‖ A. Then

N = AB = (A/pe0
0 )(Bpe0

0 ) = A1B1.

Now B1 > 1 is a unitary divisor of N. So either A1 = 1, or we find
that 2B1/σ(B1) is not an integer.

In the former case, output e0 as the exponent sequence and quit.
Otherwise, 2B1/σ(B1) is not an integer.
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If 2B1/σ(B1) is not an integer, then let p1 be the least prime dividing
σ(B1) to a higher power than that to which it divides 2B1. Then
p1 | A1. Note that p1 is determined by B1, which was determined
entirely by B and e0.

Suppose pe1
1 ‖ A1. Then

N = A1B1 = (A1/pe1
1 )(B1pe1

1 ) = A2B2.

Now B2 > 1 is a unitary divisor of N. So either A2 = 1, or we find
that 2B2/σ(B2) is not an integer.

In the former case, output e0, e1 as the exponent sequence and quit.
Otherwise, 2B2/σ(B2) is not an integer.

We could keep going but you get the idea. This algorithm terminates!
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Can we recover N?

This process eventually terminates with Al = 1: Then

N = AlBl = Bl = Bpe0
0 · · · p

el−1

l−1 .

Here the prime pi is determined by B and the exponents
e0, e1, . . . , ei−1. So N can be completely reconstructed by knowledge
of B and the exponent sequence e0, . . . , el−1.

Note that if we wrote our original factorization as N = AB, then

A = pe0
0 · · · p

el−1

l−1 .
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Application

We will prove the following theorem:

Theorem (P.)

Let k ≥ 2. Suppose x > e12. The number of odd perfect N ≤ x with
≤ k distinct prime factors is bounded by (log x)2k .
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Let N ≤ x be odd perfect with ≤ k distinct prime factors, and write
N = AB, where

p | A =⇒ p > 2k

and
p | B =⇒ p ≤ 2k .

Notice that B > 1. Otherwise N = A. But

A

σ(A)
=
∏

pvp‖A

(
1 +

1

p
+ · · ·+ 1

pvp

)−1
≥
∏
p|A

(
1− 1

p

)
≥ 1−

∑
p|A

1

p
≥ 1− k

2k + 1
>

1

2
,

so A is not perfect.
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So apply the Wirsing algorithm to each pair (N,B) where N ranges
over odd perfects ≤ x with at most k prime factors, and B is the
(2k)-smooth part of N. Each time we get an exponent sequence
e0, e1, . . . , el−1.

Moreover, B and the sequence e0, e1, e2, . . . determines N.

To count the N, we count the possible values of the pair
(B, exponent sequence).
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Counting Bs

Recall that B has the form
∏

3≤p≤2k pvp . For each 3 ≤ p ≤ 2k , we
have

3vp ≤ pvp ≤ B ≤ N ≤ x .

So 0 ≤ vp ≤ log x/ log 3.

The number of odd primes p ≤ 2k is smaller than k . So the number
of choices for B is bounded by

(1 + log x/ log 3)k ≤ (log x)k .

Here we use that x > e12.
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Counting exponent sequences

How many choices are there for the exponent sequence e0, e1, e2, . . . ?
At the end of the Wirsing process, we have a factorization of the form

A = pe0
0 · · · p

el−1

l−1 .

Since A ≤ x and each odd prime divisor of A is ≥ 2k + 1 ≥ 5, we have

5ei ≤ pei
i ≤ A ≤ x .

So 1 ≤ ei ≤ log x/ log 5.
Moreover, the number of terms in the sequence e0, e1, . . . is < k.
So the number of possibilities for e0, e1, e2, . . . is at most

k(log x/ log 5)k ≤ (log x)k .
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Application to Dickson’s theorem

Theorem (Dickson)

For each fixed k, there are finitely many odd perfect numbers with at
most k distinct prime factors.

So in place of our bound of (log x)2k , Dickson says we can take

C (k)

for large x .
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Theorem (P.)

The number of odd perfect N with at most k distinct prime factors is
smaller than

2(2k)
2
.

Proof.
By Heath-Brown et al., N < 22

2k
.

Use the previous theorem to count the number of odd perfects
≤ x := 22

2k
with k prime factors.

We get (log x)2k < (22k)2k = 2(2k)
2
.
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Wirsing’s bound for V (x)

Idea: For each perfect number N ≤ x , write

N = AB,

where
p | A =⇒ p > log x ,

p | B =⇒ p ≤ log x .

Then
A

σ(A)
>
∏
p|A

(1− 1/p) > 1− 1

log x

∑
p|A

1.

Since each p | A satisfies p > log x , the number of primes p dividing
A is ≤ log x/ log log x . Hence A/σ(A) > 1− 1/ log log x > 1/2 for
large x . So B > 1 and we get an exponent sequence e0, e1, . . . .
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Bounding the number of Bs, take 2

Let Ψ(x , y) be the number of n ≤ x all of whose prime divisors are
≤ y . Then each B is (log x)-smooth.

Theorem (Erdős)

We have Ψ(x , log x) = x (1+o(1)) log 4/ log log x .

It is easy to give an elementary proof that

Ψ(x , log x) ≤ xW0/ log log x

for some constant W0, which is all we need for Wirsing’s theorem.
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Bounding the number of exponent sequences

This time we have
A = pe0

0 pe1
1 pe2

2 · · · ,

and
A ≥ (log x)e0+e1+....

Since A ≤ x , we have

e0 + e1 + · · · ≤ log x/ log log x .

Lemma
Let M be a positive integer. The number of sequences of positive
integers e0, e1, e2, . . . with e0 + e1 + · · · ≤ M is precisely 2M .

As a consequence, the number of possible exponent sequences is

≤ 2blog x/ log log xc ≤ 2log x/ log log x = x log 2/ log log x .
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Putting it together, we find that the number of perfect N ≤ x is
bounded by

x (log 4+o(1))/ log log xx log 2/ log log x = x (3 log 2+o(1))/ log log x .

So for any W > 3 log 2, we have

V (x) < xW / log log x

for all large enough x .
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Vistas

Question
How “far away” from integrality is σ(N)

N ?

Idea 1: Look at the denominator – or amount of cancelation to get
to this denominator. Leads to the study of

F (x , y) := #{n ≤ x : gcd(n, σ(n)) > y}.

One can show, e.g., that for fixed α ∈ (0, 1),

F (x , xα) = x1−α+o(1)

as x →∞.
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Idea 2: Use continued fractions. Let L(α) denote the length of the
continued fraction expansion of the rational number α. How large is
L(σ(N)/N)?

Leads one to study

G (x , k) = #{n ≤ x : L(σ(n)/n) = k}.

Clearly G (x , 1) counts “multiply perfect numbers”.

Theorem
We have G (x , 1) ≤ xW ′/ log log x for x > 3.
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Clearly σ(p)/p = 1 + 1/p has length 2.

Theorem
We have G (x , 2) ∼ π(x) as x →∞.

What is the situation with G (x , 3)? Note that if N = 28p with p > 7,
then

σ(N)/N = 2 +
1

(p − 1)/2 + 1
2

has length 3. Much we (I) don’t know:

• Is G (x , 3)� x/ log x .

• Is each G (x , k)� x/ log x for fixed k? What about � x/ log x?

• What is the average order of the arithmetic function L(σ(N)/N)?
the normal order?
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Thanks for your attention!
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