Counting perfect numbers

Paul Pollack

University of Illinois at
Urbana-Champaign
October 5, 2010

Beginning at the beginning

Recall that a perfect number is a natural number N satisfying

$$
\sigma(N)=2 N, \quad \text { where } \quad \sigma(N)=\sum_{d \mid N} d
$$

is the usual sum-of-divisors function.
Let $V(x)$ be the number of perfect $N \leq x$.
Write $V(x)=V_{0}(x)+V_{1}(x)$, where $V_{0}(x)$ is the number of even perfect numbers $\leq x$, and $V_{1}(x)$ is the number of odd perfect numbers $\leq x$.

If N is even perfect, then (Euler)

$$
N=2^{n-1}\left(2^{n}-1\right)
$$

where $2^{n}-1$ is prime, and conversely (Euclid).
So trivially, $V_{0}(x) \ll \log x$.
Conjecture
As $x \rightarrow \infty$, we have

$$
V_{0}(x) \sim \frac{e^{\gamma}}{\log 2} \log \log x
$$

Conjecture

There are no odd perfect numbers.

Theorem

We have the following estimates for $V(x)$:

Theorem

We have the following estimates for $V(x)$:
Volkmann, $1955 \quad V(x)=O\left(x^{5 / 6}\right)$

Theorem

We have the following estimates for $V(x)$:
Volkmann, $1955 \quad V(x)=O\left(x^{5 / 6}\right)$
Hornfeck, $1955 \quad V(x)=O\left(x^{1 / 2}\right)$

Theorem

We have the following estimates for $V(x)$:
Volkmann, $1955 \quad V(x)=O\left(x^{5 / 6}\right)$
Hornfeck, $1955 \quad V(x)=O\left(x^{1 / 2}\right)$
Kanold, $1956 \quad V(x)=o\left(x^{1 / 2}\right)$

Theorem

We have the following estimates for $V(x)$:
Volkmann, $1955 \quad V(x)=O\left(x^{5 / 6}\right)$
Hornfeck, $1955 \quad V(x)=O\left(x^{1 / 2}\right)$
Kanold, $1956 \quad V(x)=o\left(x^{1 / 2}\right)$
Erdős, $1956 \quad V(x)=O\left(x^{1 / 2-\delta}\right)$

Theorem

We have the following estimates for $V(x)$:
Volkmann, $1955 \quad V(x)=O\left(x^{5 / 6}\right)$
Hornfeck, $1955 \quad V(x)=O\left(x^{1 / 2}\right)$
Kanold, $1956 \quad V(x)=o\left(x^{1 / 2}\right)$
Erdős, $1956 \quad V(x)=O\left(x^{1 / 2-\delta}\right)$
Kanold, 1957

$$
V(x)=O\left(x^{1 / 4} \frac{\log x}{\log \log x}\right)
$$

Theorem

We have the following estimates for $V(x)$:
Volkmann, $1955 \quad V(x)=O\left(x^{5 / 6}\right)$
Hornfeck, $1955 \quad V(x)=O\left(x^{1 / 2}\right)$
Kanold, $1956 \quad V(x)=o\left(x^{1 / 2}\right)$
Erdős, $1956 \quad V(x)=O\left(x^{1 / 2-\delta}\right)$
Kanold, 1957

$$
V(x)=O\left(x^{1 / 4} \frac{\log x}{\log \log x}\right)
$$

Hornfeck \& Wirsing, $1957 \quad V(x)=O\left(x^{\epsilon}\right)$

Theorem

We have the following estimates for $V(x)$:
Volkmann, $1955 \quad V(x)=O\left(x^{5 / 6}\right)$
Hornfeck, $1955 \quad V(x)=O\left(x^{1 / 2}\right)$
Kanold, $1956 \quad V(x)=o\left(x^{1 / 2}\right)$
Erdős, $1956 \quad V(x)=O\left(x^{1 / 2-\delta}\right)$
Kanold, 1957
$V(x)=O\left(x^{1 / 4} \frac{\log x}{\log \log x}\right)$
Hornfeck \& Wirsing, $1957 \quad V(x)=O\left(x^{\epsilon}\right)$
Wirsing, $1959 \quad V(x) \leq x^{W / \log \log x}$

Euler's structure theorem

Theorem

Let N be an odd perfect number. Then N has the form $p^{e} M^{2}$, where $p \equiv e \equiv 1(\bmod 4)$ and $\operatorname{gcd}(p, M)=1$.

Proof (sketch).
Since $\sigma(N)=2 N$, we have that $2 \mid \sigma(N)$ but $2^{2} \nmid \sigma(N)$.
If $N=\prod p^{e_{p}}$, then

$$
\sigma(N)=\prod \sigma\left(p^{e_{p}}\right)=\prod_{p}\left(1+p+\cdots+p^{e_{p}}\right) .
$$

All but one factor here must be odd, and that factor must be divisible by 2 but not 2^{2}.

Hornfeck's bound

Again we estimate the number of odd perfect $N \leq x$. This time we show the number is up to x is bounded by

$$
x^{1 / 2}
$$

Write

$$
N=p^{e} M^{2}
$$

Clearly $M^{2}<N \leq x$, so $M \leq x^{1 / 2}$.
We will show that M determines p^{e}, and so also N.

We have

$$
2 p^{e} M^{2}=2 N=\sigma(N)=\sigma\left(p^{e}\right) \sigma\left(M^{2}\right)
$$

and hence

$$
\frac{\sigma\left(p^{e}\right)}{p^{e}}=2 \frac{M^{2}}{\sigma\left(M^{2}\right)}
$$

Left-hand fraction is in lowest terms. So p^{e} is the denominator when $2 M^{2} / \sigma\left(M^{2}\right)$ is put in lowest terms. This depends only on M.

Wirsing's method

Let N be a perfect number.
Let $B>1$ be a unitary divisor of N, so that

$$
N=A B \quad \text { with } \quad \operatorname{gcd}(A, B)=1
$$

Unapologetically vague goal
Show that N is determined by B and "a little bit more".

Example

If $N=p^{e} M^{2}$ is odd perfect, and we take $B=M^{2}$, then B by itself determines N.

The Wirsing algorithm

We now describe an algorithm which, given a perfect number N and a unitary divisor $B>1$ of N, generates a finite (possibly empty) exponent sequence e_{0}, \ldots, e_{I-1} of positive integers.

Moreover, there is a dual algorithm to reconstruct N from the pair (B, exponent sequence). In fact,

$$
N=\left(p_{0}^{e_{0}} p_{1}^{e_{1}} \ldots p_{l-1}^{e_{l-1}}\right) B
$$

for primes p_{0}, \ldots, p_{I-1} which are algorithmically determined by B and the exponent sequence.

The Wirsing algorithm

Given: N perfect, and $B>1$ a unitary divisor of N.
Write $N=A B$, so that $\operatorname{gcd}(A, B)=1$.
If $A=1$, output the empty sequence and terminate.
Otherwise we have

$$
\sigma(N)=\sigma(A) \sigma(B)=2 A B
$$

and

$$
1<\frac{\sigma(A)}{A}=\frac{2 B}{\sigma(B)}<2
$$

So $2 B / \sigma(B)$ is not an integer.

If $2 B / \sigma(B)$ is not an integer, then let p_{0} be the least prime dividing $\sigma(B)$ to a higher power than that to which it divides $2 B$. Then $p_{0} \mid A$. Note that p_{0} is entirely determined by B.

Suppose $p_{0}^{e_{0}} \| A$. Then

$$
N=A B=\left(A / p_{0}^{e_{0}}\right)\left(B p_{0}^{e_{0}}\right)=A_{1} B_{1} .
$$

Now $B_{1}>1$ is a unitary divisor of N. So either $A_{1}=1$, or we find that $2 B_{1} / \sigma\left(B_{1}\right)$ is not an integer.

In the former case, output e_{0} as the exponent sequence and quit. Otherwise, $2 B_{1} / \sigma\left(B_{1}\right)$ is not an integer.

If $2 B_{1} / \sigma\left(B_{1}\right)$ is not an integer, then let p_{1} be the least prime dividing $\sigma\left(B_{1}\right)$ to a higher power than that to which it divides $2 B_{1}$. Then $p_{1} \mid A_{1}$. Note that p_{1} is determined by B_{1}, which was determined entirely by B and e_{0}.

Suppose $p_{1}^{e_{1}} \| A_{1}$. Then

$$
N=A_{1} B_{1}=\left(A_{1} / p_{1}^{e_{1}}\right)\left(B_{1} p_{1}^{e_{1}}\right)=A_{2} B_{2} .
$$

Now $B_{2}>1$ is a unitary divisor of N. So either $A_{2}=1$, or we find that $2 B_{2} / \sigma\left(B_{2}\right)$ is not an integer.

In the former case, output e_{0}, e_{1} as the exponent sequence and quit. Otherwise, $2 B_{2} / \sigma\left(B_{2}\right)$ is not an integer.

If $2 B_{1} / \sigma\left(B_{1}\right)$ is not an integer, then let p_{1} be the least prime dividing $\sigma\left(B_{1}\right)$ to a higher power than that to which it divides $2 B_{1}$. Then $p_{1} \mid A_{1}$. Note that p_{1} is determined by B_{1}, which was determined entirely by B and e_{0}.

Suppose $p_{1}^{e_{1}} \| A_{1}$. Then

$$
N=A_{1} B_{1}=\left(A_{1} / p_{1}^{e_{1}}\right)\left(B_{1} p_{1}^{e_{1}}\right)=A_{2} B_{2} .
$$

Now $B_{2}>1$ is a unitary divisor of N. So either $A_{2}=1$, or we find that $2 B_{2} / \sigma\left(B_{2}\right)$ is not an integer.

In the former case, output e_{0}, e_{1} as the exponent sequence and quit. Otherwise, $2 B_{2} / \sigma\left(B_{2}\right)$ is not an integer.

We could keep going but you get the idea. This algorithm terminates!

Can we recover N ?

This process eventually terminates with $A_{I}=1$: Then

$$
N=A_{l} B_{l}=B_{l}=B p_{0}^{e_{0}} \cdots p_{l-1}^{e_{l-1}}
$$

Here the prime p_{i} is determined by B and the exponents $e_{0}, e_{1}, \ldots, e_{i-1}$. So N can be completely reconstructed by knowledge of B and the exponent sequence e_{0}, \ldots, e_{l-1}.

Note that if we wrote our original factorization as $N=A B$, then

$$
A=p_{0}^{e_{0}} \cdots p_{l-1}^{e_{l-1}}
$$

Application

We will prove the following theorem:
Theorem (P.)
Let $k \geq 2$. Suppose $x>e^{12}$. The number of odd perfect $N \leq x$ with $\leq k$ distinct prime factors is bounded by $(\log x)^{2 k}$.

Let $N \leq x$ be odd perfect with $\leq k$ distinct prime factors, and write $N=A B$, where

$$
p \mid A \Longrightarrow p>2 k
$$

and

$$
p \mid B \Longrightarrow p \leq 2 k .
$$

Notice that $B>1$. Otherwise $N=A$. But

$$
\begin{aligned}
\frac{A}{\sigma(A)} & =\prod_{p^{v_{p}} \| A}\left(1+\frac{1}{p}+\cdots+\frac{1}{p^{v_{p}}}\right)^{-1} \\
& \geq \prod_{p \mid A}\left(1-\frac{1}{p}\right) \geq 1-\sum_{p \mid A} \frac{1}{p} \geq 1-\frac{k}{2 k+1}>\frac{1}{2},
\end{aligned}
$$

so A is not perfect.

So apply the Wirsing algorithm to each pair (N, B) where N ranges over odd perfects $\leq x$ with at most k prime factors, and B is the $(2 k)$-smooth part of N. Each time we get an exponent sequence $e_{0}, e_{1}, \ldots, e_{I-1}$.

Moreover, B and the sequence $e_{0}, e_{1}, e_{2}, \ldots$ determines N.
To count the N, we count the possible values of the pair (B, exponent sequence).

Counting Bs

Recall that B has the form $\prod_{3 \leq p \leq 2 k} p^{v_{p}}$. For each $3 \leq p \leq 2 k$, we have

$$
3^{v_{p}} \leq p^{v_{p}} \leq B \leq N \leq x .
$$

So $0 \leq v_{p} \leq \log x / \log 3$.
The number of odd primes $p \leq 2 k$ is smaller than k. So the number of choices for B is bounded by

$$
(1+\log x / \log 3)^{k} \leq(\log x)^{k}
$$

Here we use that $x>e^{12}$.

Counting exponent sequences

How many choices are there for the exponent sequence $e_{0}, e_{1}, e_{2}, \ldots$? At the end of the Wirsing process, we have a factorization of the form

$$
A=p_{0}^{e_{0}} \cdots p_{l-1}^{e_{l-1}}
$$

Since $A \leq x$ and each odd prime divisor of A is $\geq 2 k+1 \geq 5$, we have

$$
5^{e_{i}} \leq p_{i}^{e_{i}} \leq A \leq x
$$

So $1 \leq e_{i} \leq \log x / \log 5$.
Moreover, the number of terms in the sequence e_{0}, e_{1}, \ldots is $<k$.
So the number of possibilities for $e_{0}, e_{1}, e_{2}, \ldots$ is at most

$$
k(\log x / \log 5)^{k} \leq(\log x)^{k}
$$

Application to Dickson's theorem

Theorem (Dickson)

For each fixed k, there are finitely many odd perfect numbers with at most k distinct prime factors.

So in place of our bound of $(\log x)^{2 k}$, Dickson says we can take $C(k)$
for large x.

Theorem (P.)

The number of odd perfect N with at most k distinct prime factors is smaller than

$$
2^{(2 k)^{2}}
$$

Proof.

By Heath-Brown et al., $N<2^{2^{2 k}}$.
Use the previous theorem to count the number of odd perfects $\leq x:=2^{2^{2 k}}$ with k prime factors.
We get $(\log x)^{2 k}<\left(2^{2 k}\right)^{2 k}=2^{(2 k)^{2}}$.

Wirsing's bound for $V(x)$

Idea: For each perfect number $N \leq x$, write

$$
N=A B
$$

where

$$
\begin{aligned}
& p \mid A \Longrightarrow p>\log x, \\
& p \mid B \Longrightarrow p \leq \log x .
\end{aligned}
$$

Then

$$
\frac{A}{\sigma(A)}>\prod_{p \mid A}(1-1 / p)>1-\frac{1}{\log x} \sum_{p \mid A} 1
$$

Since each $p \mid A$ satisfies $p>\log x$, the number of primes p dividing A is $\leq \log x / \log \log x$. Hence $A / \sigma(A)>1-1 / \log \log x>1 / 2$ for large x. So $B>1$ and we get an exponent sequence e_{0}, e_{1}, \ldots.

Bounding the number of $B \mathrm{~s}$, take 2

Let $\Psi(x, y)$ be the number of $n \leq x$ all of whose prime divisors are $\leq y$. Then each B is $(\log x)$-smooth.
Theorem (Erdős)
We have $\Psi(x, \log x)=x^{(1+o(1)) \log 4 / \log \log x}$.

It is easy to give an elementary proof that

$$
\Psi(x, \log x) \leq x^{W_{0} / \log \log x}
$$

for some constant W_{0}, which is all we need for Wirsing's theorem.

Bounding the number of exponent sequences

This time we have

$$
A=p_{0}^{e_{0}} p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots,
$$

and

$$
A \geq(\log x)^{e_{0}+e_{1}+\ldots} .
$$

Since $A \leq x$, we have

$$
e_{0}+e_{1}+\cdots \leq \log x / \log \log x
$$

Lemma

Let M be a positive integer. The number of sequences of positive integers $e_{0}, e_{1}, e_{2}, \ldots$ with $e_{0}+e_{1}+\cdots \leq M$ is precisely 2^{M}.
As a consequence, the number of possible exponent sequences is

$$
\leq 2^{[\log x / \log \log x\rfloor} \leq 2^{\log x / \log \log x}=x^{\log 2 / \log \log x} .
$$

Putting it together, we find that the number of perfect $N \leq x$ is bounded by

$$
x^{(\log 4+o(1)) / \log \log x} x^{\log 2 / \log \log x}=x^{(3 \log 2+o(1)) / \log \log x}
$$

So for any $W>3 \log 2$, we have

$$
V(x)<x^{W / \log \log x}
$$

for all large enough x.

Vistas

Question

How "far away" from integrality is $\frac{\sigma(N)}{N}$?
Idea 1: Look at the denominator - or amount of cancelation to get to this denominator. Leads to the study of

$$
F(x, y):=\#\{n \leq x: \operatorname{gcd}(n, \sigma(n))>y\} .
$$

One can show, e.g., that for fixed $\alpha \in(0,1)$,

$$
F\left(x, x^{\alpha}\right)=x^{1-\alpha+o(1)}
$$

as $x \rightarrow \infty$.

Idea 2: Use continued fractions. Let $L(\alpha)$ denote the length of the continued fraction expansion of the rational number α. How large is $L(\sigma(N) / N)$?

Leads one to study

$$
G(x, k)=\#\{n \leq x: L(\sigma(n) / n)=k\}
$$

Clearly $G(x, 1)$ counts "multiply perfect numbers".
Theorem
We have $G(x, 1) \leq x^{W^{\prime} / \log \log x}$ for $x>3$.

Clearly $\sigma(p) / p=1+1 / p$ has length 2 .
Theorem
We have $G(x, 2) \sim \pi(x)$ as $x \rightarrow \infty$.
What is the situation with $G(x, 3)$? Note that if $N=28 p$ with $p>7$, then

$$
\sigma(N) / N=2+\frac{1}{(p-1) / 2+\frac{1}{2}}
$$

has length 3. Much we (I) don't know:

- Is $G(x, 3) \ll x / \log x$.
- Is each $G(x, k) \ll x / \log x$ for fixed k ? What about $\gg x / \log x$?
- What is the average order of the arithmetic function $L(\sigma(N) / N)$? the normal order?

Thanks for your attention!

