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Beginning at the beginning

Recall that a perfect number is a natural number N satisfying

o(N) =2N, where o(N)=> d
d|N

is the usual sum-of-divisors function.

Let V/(x) be the number of perfect N < x.

Write V(x) = Wo(x) + Vi(x), where Vp(x) is the number of even
perfect numbers < x, and V4(x) is the number of odd perfect
numbers < x.
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If N is even perfect, then (Euler)
N =2""1(2" - 1)
where 2" — 1 is prime, and conversely (Euclid).

So trivially, Vp(x) < log x.

Conjecture

As x — 00, we have

e'Y
Vo(x) ~

log| .
log 2 og log x

Conjecture
There are no odd perfect numbers.
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Theorem
We have the following estimates for V/(x):
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Theorem
We have the following estimates for V/(x):
Volkmann, 1955  V/(x) = O(x*/%)
Hornfeck, 1955  V(x) = O(x'/?)
Kanold, 1956  V/(x) = o(x*/?)
Erdés, 1956  V/(x) = O(x*/279)

log x

Kanold, 1957 V(x) = O(X1/4 )

log log x
Hornfeck & Wirsing, 1957  V/(x) = O(x°)
Wirsing, 1959 V(x) < 5 W/ log log x
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Euler’'s structure theorem

Theorem

Let N be an odd perfect number. Then N has the form p®M?, where
p=e=1 (mod 4) and gcd(p, M) = 1.

Proof (sketch).

Since o(N) = 2N, we have that 2 | o(N) but 22 { o(N).

If N=T]]p, then

o(N)=]Joe®) = [ +p+-+p%).

p

All but one factor here must be odd, and that factor must be divisible
by 2 but not 22.
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Hornfeck’'s bound

Again we estimate the number of odd perfect N < x. This time we
show the number is up to x is bounded by

x1/2,

Write
N = peM?.

Clearly M? < N < x, so M < x1/2,
We will show that M determines p€, and so also M.
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We have

2p°M? = 2N = o(N) = o(p®)o(M?)

and hence

o(p?) _, M
pe  To(M?)
Left-hand fraction is in lowest terms. So p€ is the denominator when
2M?/o(M?) is put in lowest terms. This depends only on M.
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Wirsing's method

Let N be a perfect number.
Let B > 1 be a unitary divisor of N, so that

N=AB with gcd(A B)=1.
Unapologetically vague goal
Show that N is determined by B and “a little bit more”.

Example

If N = peM? is odd perfect, and we take B = M?, then B by itself
determines N.
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The Wirsing algorithm

We now describe an algorithm which, given a perfect number N and a
unitary divisor B > 1 of N, generates a finite (possibly empty)
exponent sequence ey, ..., €/_1 of positive integers.

Moreover, there is a dual algorithm to reconstruct N from the pair
(B, exponent sequence). In fact,

N = (ppi*...p/7)B

for primes py, ..., pj—1 which are algorithmically determined by B and
the exponent sequence.
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The Wirsing algorithm

Given: N perfect, and B > 1 a unitary divisor of N.

Write N = AB, so that gcd(A, B) = 1.
If A=1, output the empty sequence and terminate.
Otherwise we have

o(N) =0(A)o(B) =2AB

and (A) B
g

1< ) _ 25

STA T 9B

So 2B/o(B) is not an integer.

< 2.
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If 2B/o(B) is not an integer, then let py be the least prime dividing
o(B) to a higher power than that to which it divides 2B. Then
po | A. Note that pg is entirely determined by B.

Suppose p° || A. Then
N =AB = (A/py’)(Bpg’) = A1B1.

Now B; > 1 is a unitary divisor of N. So either A; = 1, or we find
that 2B;/0(B1) is not an integer.

In the former case, output ey as the exponent sequence and quit.
Otherwise, 2B;1/0(Bi) is not an integer.
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If 2B1/o(B1) is not an integer, then let p; be the least prime dividing
o(B1) to a higher power than that to which it divides 2B;. Then

p1 | A1. Note that p; is determined by Bj, which was determined
entirely by B and eg.

Suppose p;* || Ai. Then
N = A1B; = (A1/p7*)(Bipit) = A2Bs.

Now By > 1 is a unitary divisor of N. So either Ay = 1, or we find
that 2B»/0(By) is not an integer.

In the former case, output ep, e; as the exponent sequence and quit.
Otherwise, 2B, /c(Bzy) is not an integer.
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If 2B1/o(B1) is not an integer, then let p; be the least prime dividing
o(B1) to a higher power than that to which it divides 2B;. Then

p1 | A1. Note that p; is determined by Bj, which was determined
entirely by B and eg.

Suppose p;* || Ai. Then
N = A1B; = (A1/p7*)(Bipit) = A2Bs.

Now By > 1 is a unitary divisor of N. So either Ay = 1, or we find
that 2B»/0(By) is not an integer.

In the former case, output ep, e; as the exponent sequence and quit.
Otherwise, 2B, /c(Bzy) is not an integer.

We could keep going but you get the idea. This algorithm terminates!
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Can we recover N7

This process eventually terminates with A; = 1: Then
N=AB =B =Bpyl - p"7]

Here the prime p; is determined by B and the exponents
€0, €1,---,€—_1. S0 N can be completely reconstructed by knowledge
of B and the exponent sequence eg, ..., €_1.

Note that if we wrote our original factorization as N = AB, then

A = pgo ...ple/_fll'
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Application

We will prove the following theorem:

Theorem (P.)

Let k > 2. Suppose x > e'?. The number of odd perfect N < x with
< k distinct prime factors is bounded by (log x)¥.
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Let N < x be odd perfect with < k distinct prime factors, and write
N = AB, where
plA= p>2k

and
p| B= p<2k.

Notice that B > 1. Otherwise N = A. But

oI ()

pPlA
1 1 k 1
> 1——|>1-— - >1- il
_H( p>_ Zp_ 2kl 2
plA plA

so A is not perfect.
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So apply the Wirsing algorithm to each pair (N, B) where N ranges
over odd perfects < x with at most k prime factors, and B is the
(2k)-smooth part of N. Each time we get an exponent sequence

€0,€15---5€/-1-
Moreover, B and the sequence ey, €1, 2, ... determines N.

To count the N, we count the possible values of the pair
(B, exponent sequence).
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Counting Bs

Recall that B has the form H3§p§2k p*?. For each 3 < p < 2k, we

have
3% < p» < B<N<x.

So 0 < v, < log x/ log 3.

The number of odd primes p < 2k is smaller than k. So the number
of choices for B is bounded by

(1 + log x/ log 3)* < (log x)¥.
Here we use that x > e!2.
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Counting exponent sequences

How many choices are there for the exponent sequence ey, €1, €,...7
At the end of the Wirsing process, we have a factorization of the form

A = pgo e ple/_fll'

Since A < x and each odd prime divisor of Ais > 2k +1 > 5, we have
59 < pf < A< x.

So 1 < e <logx/logh.

Moreover, the number of terms in the sequence eg, €1, ... is < k.

So the number of possibilities for eg, e1, e, ... is at most

k(log x/ log 5)% < (log x)*.
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Application to Dickson'’s theorem

Theorem (Dickson)

For each fixed k, there are finitely many odd perfect numbers with at
most k distinct prime factors.

So in place of our bound of (log x)?¥, Dickson says we can take
C(k)

for large x.
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Theorem (P.)

The number of odd perfect N with at most k distinct prime factors is

smaller than
2(2k)?

Proof.
By Heath-Brown et al., N < 22*.
Use the previous theorem to count the number of odd perfects

< x:= 22% \with k prime factors.
We get (log x)2k < (22K)2k = 2(2k)?,
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Wirsing's bound for V/(x)

Idea: For each perfect number N < x, write

N = AB,
where
pl|A= p>logx,
p| B= p<logx.
Then

1

plA

Since each p | A satisfies p > log x, the number of primes p dividing
Ais < logx/ loglog x. Hence A/o(A) >1—1/loglogx > 1/2 for
large x. So B > 1 and we get an exponent sequence e, €1, - . . .
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Bounding the number of Bs, take 2

Let W(x,y) be the number of n < x all of whose prime divisors are
<'y. Then each B is (log x)-smooth.

Theorem (Erdés)
We have W(x, log x) = x(1+o(1))log4/loglogx_

It is easy to give an elementary proof that
\U(X, Iogx) < XWO/IogIogx
for some constant W, which is all we need for Wirsing's theorem.
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Bounding the number of exponent sequences

This time we have
A=pypPrpy s

and
A > (log x)®oTert

Since A < x, we have

e+ e1+ -+ <logx/loglog x.

Lemma
Let M be a positive integer. The number of sequences of positive
integers ey, €1, e, ... with eg+ e + --- < M is precisely 2M.

As a consequence, the number of possible exponent sequences is
< 2|_Iogx/ log log x| < 2|ogx/ loglog x __ Xlog 2/ loglog x

23 of 28



Putting it together, we find that the number of perfect N < x is
bounded by

X(Iog 44-0(1))/ loglog xXIog 2/loglogx _ X(3 log 24+0(1))/ log log x

So for any W > 3log2, we have
V(X) < XW/ log log x

for all large enough x.
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Vistas

Question
“ ” - - - O'(N)
How “far away” from integrality is —~7

Idea 1: Look at the denominator — or amount of cancelation to get
to this denominator. Leads to the study of

Flx.y) = #{n < x : ged(n,o(n)) > y}.
One can show, e.g., that for fixed a € (0,1),

F(X,Xa) _ Xl—a—i—o(l)
as x — 00.
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Idea 2: Use continued fractions. Let L(«) denote the length of the
continued fraction expansion of the rational number «. How large is
L(o(N)/N)?

Leads one to study
G(x,k) =#{n < x:L(c(n)/n) = k}.

Clearly G(x,1) counts “multiply perfect numbers".

Theorem
We have G(x,1) < x"'/leglogx for x > 3.
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Clearly o(p)/p = 1+ 1/p has length 2.

Theorem
We have G(x,2) ~ m(x) as x — oo.

What is the situation with G(x, 3)? Note that if N = 28p with p > 7,

then
1

(P—1)/2+3

has length 3. Much we () don't know:

° Is G(x,3) < x/ log x.

e Is each G(x, k) < x/ logx for fixed k? What about > x/ log x?

e What is the average order of the arithmetic function L(o(N)/N)?
the normal order?

a(N)/N =2+
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Thanks for your attention!
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