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Paradise lost and paradise regained
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Z[
√
−5] is the standard example of a non-UFD:

6 = 2 · 3 = (1 +
√
−5)(1−

√
−5).

Despite its bad reputation, factorization in Z[
√
−5] is actually

reasonably well-behaved. Recall uniqueness means: If

π1 · · ·πk = ρ1 . . . ρℓ, with all πi and ρj irreducible, then

(a) k = ℓ,

(b) after rearranging, πi is a unit multiple of ρi for all
i = 1, 2, . . . , k .

Condition (a) turns out to be just fine!
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We say a domain D is a half-factorial domain (HFD) if every
nonzero nonunit element of D factors as a product of irreducibles,
and any two factorizations of the same element share the same
number of irreducible factors.

Theorem (Carlitz, 1960)

Let K be a number field. If #Cl(OK ) = 1 or 2, then OK is an
HFD, and vice-versa.

Example

Z[
√
−5] = OK for K = Q(

√
−5). For this K , we have

#Cl(OK ) = 2.
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Stretching, the truth aboutUFT
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Let D be a domain where every nonzero nonunit factors into
irreducibles. (This is true for all the OK .) For each nonzero
nonunit α ∈ D, we define the length spectrum of α by

L(α) = {all lengths k of irreducible factorizations α = π1 · · ·πk}.

We define the elasticity of α by

ρ(α) =
supL(α)
inf L(α)

.

Finally, we define the elasticity ρ(D) of D by

ρ(D) = sup
α

ρ(α).

So ρ(D) = 1 if and only if D is an HFD.
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Fun. Theoremof Stretchiness
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Let K be a number field.

Theorem (Valenza, Narkiewicz, Steffan)

Assume OK is not a UFD. Then

ρ(OK ) =
1

2
·Davenport constant of Cl(OK ).

Recall that for a finite abelian group G , the Davenport constant
D(G ) is the smallest positive integer D such that any length D
sequence g1, g2, . . . , gD of elements of G has some nonempty
subsequence whose product is the identity.

Paul Pollack E L A S T I C I T Y



Surveying our successes
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It is natural to ask how badly unique factorization fails (or fails to
fail) as one looks across families of number rings. Very little is
known here.

This is not for lack of trying!

Let’s zero in on the most well-studied case: Quadratic fields. The
questions here go back to Gauss (binary quadratic forms).
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Surveying our successes, ctd.
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For imaginary quadratic fields, meaning K = Q(
√
d) with d < 0,

we know that unique factorization holds only finitely often. The
largest in absolute value is d = −163 (Baker–Heegner–Stark).
Moreover, from work of Heilbronn, the size of the class group (class
number) tends to infinity as d → −∞. This implies the elasticity
also tends to infinity. So factorization gets “worse and worse”.

For d > 0, the situation is expected to be rather different. We
expect that the class group is trivial infinitely often. In fact,
heuristics of Cohen–Lenstra predict that the class number of
Q(

√
p) should be 1 for about 75.4% of all primes p.
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Surveying our successes, ctd.
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There’s been remarkable progress towards the Cohen–Lenstra
heuristics in recent years. But existing methods do not establish
even that

#Cl(Q(
√
d)) < 1010

10

for infinitely many squarefree d !

So it seems that if we want to find infinitely many UFDs, we’re out
of luck!
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Anewhope?
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Question (Coykendall): What about HFDs?
Can we find infinitely many half-factorial
domains by wandering in the land of quadratic
fields?

It’s tempting to answer no. For OK to be half-factorial, one needs
(Carlitz) that #Cl(OK ) ≤ 2. This inequality holds for only finitely
many imaginary quadratic fields K . And for all we can prove, it
happens for only finitely many real quadratic K too.

But . . .OK is not the only game in town. We can look at subrings
of OK !
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Orders in the court
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Let K be a quadratic field. An order in K is a subring of OK

properly containing Z. The ring OK itself is referred to as the
maximal order.

The orders in K are in one-to-one correspondence with positive
integers f . Each order has the form

Of = {α ∈ OK : α ≡ a (mod fOK ) for some a ∈ Z};

we call f the conductor of the order.

Nonmaximal orders cannot be UFDs (they are not integrally
closed) but can be HFDs!

Example

The orders in Q(
√
2) are the rings Z[f

√
2] for f = 1, 2, 3, . . . .
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Half-truths
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Conjecture (Coykendall, 2001)

(a) There are infinitely many HFDs as you vary over all
quadratic fields and all orders contained in those fields.

(b) There are infinitely many HFDs as you vary among the
orders in the quadratic field Q(

√
2).

Theorem (P., 2023)

(a) is true, and (b) is true assuming GRH.
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1 is the loneliest number
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What about elasticities larger than 1?

Proposition

Let K be a quadratic field. Then

ρ(Of ) =
1

2
sup
π

Ω(|Nπ|),

where the supremum runs over all irreducibles π of Of .

Here Ω(·) denotes the count of prime factors taken with
multiplicity. For instance, Ω(9) = Ω(35) = 2.

As a consequence, elasticities of quadratic orders are always
half-integers or infinite:

ρ(Of ) ∈ {1, 3/2, 2, 5/2, 3, 7/2, . . . } ∪ {∞}.
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Everything everywhere all at once

13/22

Call K universally elastic if OK is a UFD and every one of
1, 3/2, 2, 5/2, . . . and ∞ occurs as the elasticity of infinitely many
orders in K .

Theorem (P., 2023)

Assume GRH. Then Q(
√
2) is universally elastic.

One can also put forward a plausible conjecture as to which K are
universally elastic, but this seems hard to prove even under GRH !
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Half-factorial orders
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Half-factorial orders in quadratic fields were characterized
arithmetically by Halter-Koch and (independently) Coykendall.

Theorem (Coykendall, 2001)

If K is imaginary quadratic, and O is a half-factorial order in K not
the maximal order, then K = Q(

√
−3) and O = Z[

√
−3].

The characterization in the real quadratic case is not as simple.
We state only one consequence, noted by Coykendall: Suppose K
is real quadratic and OK is a half-factorial domain. If p is a prime
inert in K , then Op is an HFD if and only if Cl(Op) ∼= Cl(OK ).
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Example

Let K = Q(
√
2). Then OK is a UFD, so certainly an HFD. Here

Of = Z[f
√
2].

Let p be a prime inert in K . By the relative class number formula,
the class group of Op coincides with the class group of OK if and
only if the following holds: The least positive integer j with

(1 +
√
2)j ∈ Z[p

√
2]

is j = p + 1.

Empirically, approximately 3
8 of primes p inert in Q(

√
−2) satisfy

this last condition.
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Looking back, with a view forward
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What we are asking for is reminscent of a nearly century-old
conjecture of Emil Artin.

Conjecture

Let g be an integer, not −1 and not a square.
Then there are infinitely many primes p for
which (the image of) g generates the
multiplicative group (Z/pZ)×.

Artin’s conjecture is still open. However, in
1967 Hooley proved that Artin’s conjecture
follows from the Generalized Riemann
Hypothesis.
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Following the breadcrumbs. . .
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This is encouraging, but we need a particular quadratic field variant
of Artin’s conjecture, not Artin’s conjecture itself. Luckily, variants
of Artin’s conjecture for quadratic fields have been investigated by
several authors (Chen, Roskam, Yitaoka, and others). Chen’s work
in particular is easily adapted to yield what we want.
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And if you don’t believeGRH?
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The following is due to Murty–Srinivasan and Heath-Brown
(independently): There is an absolute constant M such that
among any M primes, at least one generates (Z/pZ)× for infinitely
many primes p.

Similar methods can be ported to the quadratic field setting. This
was done by Joseph Cohen in the early 2000s. Using similar
methods, one can show the following.

Theorem (P., 2023)

In any list of 46 viable linearly disjoint real quadratic fields, at least
one possesses infinitely many HFD orders.

viable: class number 1 or 2, fun. unit norm −1
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Corollary

There is a real quadratic field of the form Q(
√
d), with

1 < d < 1000, which possesses infinitely many HFD orders.
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Everything everywhere ctd.
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For the proof, one studies the interplay between the conductor f
and the class group in determining the elasticity. There is no
simple formula known for ρ(Of ) in terms of these quantities. But
for special f , direct analysis is possible.

For example, Picavet-L’Hermitte has a simple formula for ρ(Of )
(in terms of the factorization of f ) whenever Cl(Of ) is trivial.
Another result of this kind (used in the proof of the theorem) is . . .

Lemma
Let K be a quadratic field of class number 1. Suppose pk is a
power of the prime p inert in K . Let h be the class number of Opk .
Then

ρ(Opk ) = k +
1

2
(h − 1).
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ThankYou!
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I knew youwere trouble. . .

22/22

Determining the elasticity of a nonmaximal order is somewhat
delicate. In a perfect world, one might hope that ρ(O) was a
simple function of the class group of O, the way it is for maximal
orders O.

Troubling example

Z[5i ] has class number 2.

But ρ(Z[5i ]) = ∞ !

Exercises

(a) 5(2 + i)k is irreducible in Z[5i ] for every k , as is 5(2− i)k .

(b) 5(2 + i)k · 5(2− i)k = 5 · 5 · 5 · · · 5︸ ︷︷ ︸
k+2 times

.

Hence, ρ(Z[5i ]) ≥ k+2
2
.

Halter-Koch: order of conductor f has finite elasticity ⇐⇒ f is not
divisible by any prime split in K .
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