
Unique Factorization
What Not Everyone Knows

Paul Pollack

University of Georgia

September 26, 2023

1 of 34



We start with the layperson’s definition of prime: a number > 1 not
a product of two smaller positive integers.

Fundamental Theorem of Arithmetic
Every positive integer can be written as a product of primes. This
expression is unique up to the order of the factors.
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The standard narrative: what “everyone” knows

When it’s proved in courses, the Fundamental Theorem is usually
established by something isomorphic to the following chain of
reasoning.

First, one shows existence of prime factorizations, by descent. The
smallest number with no prime factorization couldn’t be prime, so
must factor. But then those factors are smaller and so they
themselves have prime factorizations. . .

Uniqueness is trickier.
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Suppose we have two different factorizations of the same positive
integer n, say

n = p1 · · · pk = q1 . . . qℓ.

To proceed, we call upon the wisdom of the ancients.

Euclid’s Lemma
If p is prime and p | ab, then p | a or
p | b.

Continuing from above, we can assume n > 1, so k , ℓ > 0. Then
p1 | q1 . . . qℓ, so p1 | qj for some j . Relabeling, we can assume j = 1.
But p1 | q1 implies p1 = q1. Canceling,

n/p1 = p2 · · · pk = q2 · · · qℓ.

Then n/p1 is a smaller counterexample, etc. . .
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But where does Euclid’s lemma come from?
Chain of reasoning:

1. Z has a division algorithm, so is a Euclidean domain.

2. Every ideal in Z is principal; in fact, it consists precisely of all
Z-multiples of its smallest nonnegative element.

3. For any positive integers a, b, the set {ax + by : a, b ∈ Z} is an
ideal. Then its least nonnegative element d is the greatest
common divisor of a and b. In particular, the greatest common
divisor of a, b is a linear combination of a, b.
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We can now prove Euclid’s lemma.
Suppose p | ab, where p is prime and a and b are positive integers. If
p | a, we are done. Otherwise, the only common divisors of p and a
are ±1. It follows that

1 = ax + py for some x , y ∈ Z.

Multiplying through by b gives

b = abx + pby .

Since p | ab and p | pb, we deduce that p divides the RHS, and so p
also divides the LHS, so p divides b. Done!
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Think deeply of simple things.
Arnold Ross

Answer the questions, then question
the answers.
Glenn Stevens

7 of 34



A few of my favorite proofy things

Over the summer, I tracked down about 30 papers either offering new
proofs of the Fundamental Theorem or collecting existing arguments.

Perhaps surprisingly, the first explicit
statement of the unique factorization
theorem is due to Gauss in the
Disquisitiones. Gauss deduces the
theorem from Euclid’s lemma, for
which he gives a beautiful,
self-contained proof. Dressed up a bit
using the language of groups, Gauss’s
proof goes as follows.

8 of 34



Euclid’s Lemma
If p is prime and p | ab, then p | a or p | b.
Let G be a group, written additively. If x ∈ G and n is a nonzero
integer with nx = 0, then the order of x is a divisor of n.

Gauss’s proof, revisited.

Look at the order of a mod p, as an element of the group (Z/pZ,+).
Clearly, pa = 0 in this group, and so the order of a mod p is a divisor
of p. Hence, this order is 1 or p.
If the order of a mod p is 1, then a mod p is the identity of Z/pZ, so
a mod p = 0 mod p and p | a.
Now suppose the order is p. Since p | ab, we have in Z/pZ that
ba = 0. Thus, the order of a divides b. That is, p | b.
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There is a beautiful geometric approach
of Louis Poinsot that I learned about
from an old text of Bachmann.

Let n be a positive integer. We envision Z/nZ as Z wrapped around
a circle of circumference n.

Let a be a positive integer with a < n (inessential restriction).
Mark the points ma, with m ∈ Z, on the circumference of the circle.
It’s enough to mark m = 0, 1, 2, . . . , n− 1, and sometimes even fewer.
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6 · 0

6 · 1

6 · 2

6 · 3

6 · 4

6 · 5

6 · 6

Example:
n = 14,
a = 6
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Observe:

• Diagram is homogeneous: you have the same view from any vertex.

• As a consequence, the distance along the circle between
neighboring vertices is constant; let’s call this d .

• The distance along the circle from a · 0 to a · 1 has to be a multiple
of d . That is, d divides a.

• The entire circumference is a multiple of d also, so d divides n.

• Look at the nearest point to a · 0, counterclockwise (say). This is
d units away and has the form a · x for some x ∈ Z. Hence,

ax ≡ d (mod n).

Therefore: ax + ny = d for some x , y ∈ Z. It follows that d is
divisible by every common divisor and so is a gcd of a, b.

From here, our proof sketch of UFT can be completed as before.
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Here’s looking at Euclid

Euclid never stated unique factorization, but he got close.

In Book IX, Proposition 14, Euclid writes

If a number be the least that is measured [divisible] by prime
numbers, it will not be measured by any other prime number
except those originally measuring it.

The Proposition is deduced from Euclid’s lemma.
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Euclid’s lemma, in turn, is deduced from the following proposition.

Proposition (Common reduction lemma)

Suppose a/b = c/d is an equation of rational numbers, where
a, b, c , d are positive integers. Then a/b and c/d have a common
reduction s/u.

Somewhat remarkably, there is widespread (but not universal)
consensus that Euclid’s proof of the common reduction lemma
doesn’t quite work. Barry Mazur writes (diplomatically):

Now I don’t quite follow Euclid’s proof of this pivotal proposition,
and I worry that there may be a tinge of circularity in the brief
argument given in the text.

For a detailed analysis, see the 2006 Monthly article ‘Did Euclid Need
the Euclidean Algorithm to Prove Unique Factorization?’ by David
Pengelley and Fred Richman.
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Example:
The line
x = αy for
α = 12

9 = 8
6 .
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A common
reduction is
4/3.
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[In mathematics,] a picture is worth a thousand
words, but it takes another thousand words to
justify the picture.
Harold Stark
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Unique factorization’s greatest hits and misses

Stating unique factorization explicitly, as Gauss did, makes it natural
to consider when unique factorization fails.

Let D be a domain and let π be a nonzero, nonunit element of D. We
say π is irreducible if π cannot be written as a product of nonunits.

A domain D is a unique factorization domain (UFD) if every
nonzero nonunit is a product of irreducibles and this expression is
unique up to order and up to unit factors.
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In a first course on algebraic number theory, one studies “rings of
integers of number fields”. A number field is a finite extension K/Q.
For each number field K , we set

ZK := {α ∈ K : f (α) = 0 for some monic polynomial f (x) ∈ Z[x ]}.

While not obvious at first glance, ZK is a ring, and Dedekind realized
that it is somehow the “correct” analogue of the integers inside the
number field K .

Ex: ZQ( 3√2) = Z[ 3
√
2], ZQ(i) = Z[i ], ZQ(

√
5) = Z[(1 +

√
5)/2].

The rings ZK are not always UFDs. Dedekind showed though that
they always enjoy unique factorization into ideals.
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How could we quantify the failure of elementwise unique
factorization?

Well, we don’t have unique factorization into elements of ZK , but we
do have unique factorization into ideals. So we could introduce a
gadget that measures how far away ideals are from being elements.
This motivates something called the class group: this is defined as a
kind of quotient∗ of the monoid of nonzero ideals of ZK by the
monoid of nonzero principal ideals. This is always be a finite abelian
group (a big deal!), and it is trivial precisely when ZK is a UFD.

If you ask most number theorists how to measure the failure of
non-uniqueness, they would tell you to read about the class group.
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There’s a lowbrow way we might try to quantify nonunique
factorization. Our starting point a well-known example of
nonuniqueness: In Z[

√
−5],

(1 +
√
−5)(1−

√
−5) = 2 · 3.

These are genuinely different factorizations. . . but they have the same
length.

It’s tempting to not make much of this one example, but it turns out
that in Z[

√
−5], any two irreducible factorizations of the same

element share the same length.
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Let’s say factorization is half-unique in a domain D (or D is an
HFD) if every nonzero nonunit element of D factors as a product of
irreducibles, and any two factorizations of the same element share the
same number of irreducibles.

Theorem (Carlitz, 1960)

Let K be a number field. If #Cl(ZK ) = 1 or 2, then factorization is
half-unique in ZK . The converse also holds.

Since Q(
√
−5) has class number 2, its ring of integers Z[

√
−5] is an

HFD, as claimed.

On the other hand, Q(
√
−23) has class number 3. Here

3 · 3 · 3 = (2 +
√
−23)(2−

√
−23), showing half-uniqueness fails.
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Stretching the truth about unique factorization

Let D be a domain where every nonzero nonunit factors into
irreducibles. (This is true for all the ZK .) For each nonzero nonunit
α ∈ ZK , we define the length spectrum of α by

L(α) = {all lengths k of irreducible factorizations α = π1 · · ·πk}.

We define the elasticity of α by

ρ(α) =
supL(α)
inf L(α)

.

Finally, we define the elasticity ρ(D) of D by

ρ(D) = sup
α

ρ(α).

So ρ(D) = 1 if and only if D is an HFD.
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Let K be a number field.

Theorem (Valenza, Narkiewicz, Steffan)

Assume ZK is not a UFD. Then

ρ(ZK ) =
1

2
·Davenport constant of Cl(ZK ).

OK, but what is the Davenport constant? For a finite abelian group
G , the Davenport constant D(G ) is the smallest D for which every
length D sequence

g1, g2, . . . , gD

of elements of G contains a nonempty subsequence whose product is
the identity. Not hard: D(G ) ≤ #G and D(G ) → ∞ as #G → ∞.
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The proof that ρ(ZK ) ≤ 1
2D(Cl(ZK )) is not so bad, once one knows

to try to prove it! The key idea is that D(Cl(ZK )) is the largest
number of prime ideals that can contain (equivalently, divide) an
irreducible element of ZK .

The inequality ρ(ZK ) ≥ 1
2D(Cl(ZK )) lies deeper; this depends on

analytic results of class field theory.

One blemish of the above result is that we don’t understand how to
compute Davenport constants. The answer is known for finite abelian
groups of rank ≤ 2, but the general rank 3 case is still open.
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Let’s make all of this even more concrete.

We’ll zero in on quadratic fields: extensions K/Q with [K : Q] = 2.
The family of quadratic fields has the virtue of being easily
describable by a single integer parameter: each such K = Q(

√
d) for

a unique squarefree integer d .

In this family of K (equivalently, family of d), how good (or how bad)
does factorization look in ZK?
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It is an open problem, going back essentially to Gauss, to decide
whether ZK has unique factorization (equivalently, whether Cl(ZK ) is
trivial) for infinitely many quadratic fields K .

For imaginary quadratic fields, meaning K = Q(
√
d) with d < 0, we

know that unique factorization holds only finitely often. The largest
(in absolute value) is d = −163 (Baker–Heegner–Stark). Moreover,
from work of Heilbronn, #Cl(Q(

√
d)) → ∞ as d → −∞. So

factorization gets “worse and worse”.

For d > 0, the situation is expected to be rather different. We expect
that Cl(Q(

√
d)) = 1 infinitely often. In fact, heuristics of

Cohen–Lenstra predict that the class of Q(
√
p) should be 1 for about

75.4% of all primes p.
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There’s been remarkable progress towards the Cohen–Lenstra
heuristics in recent years. But existing methods do not establish even
that

#Cl(Q(
√
d)) < 1010

10

for infinitely many squarefree d !

So it seems that if we want to find infinitely many UFDs, we have to
look beyond quadratic fields.
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Question (Coykendall): What about HFDs?
Can we find infinitely many half-factorial
domains by wandering in the land of quadratic
fields?

It’s tempting to answer no. And if we restrict attention to the rings
ZK , we run into the same problems as before. For ZK to be
half-factorial, one needs (Carlitz) that hK ≤ 2. This inequality
happens for only finitely many imaginary quadratic fields K . And for
all we can prove, it happens for only finitely many real K too.

But . . .ZK is not the only game in town. We can look at subrings of
ZK .
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Let K be a quadratic field. An order in K is a subring of ZK properly
containing Z. The ring ZK itself is referred to as the maximal order.

For example, Z[2023i ] is an order in Q(i), the maximal order being
Z[i ]. And Z[

√
5] is an order in Q(

√
5) (there the maximal order is

Z[(1 +
√
5)/2]).

It’s elementary to show that nonmaximal orders can never be UFDs.
(UFDs are integrally closed.) But they can still be HFDs!
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Conjecture (Coykendall)

(a) There are infinitely many HFDs as you vary over all quadratic fields
and all orders contained in those fields.

(b) There are infinitely many HFDs as you vary among the orders in
the quadratic field Q(

√
2).

Theorem (P., 2023)

(a) is true, and (b) is true assuming GRH.
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Perhaps surprisingly, the method of proof builds on techniques used
to study a seemingly unrelated question.

Observe that 1/7 = 0.142857 has period length 7− 1, and
1/19 = 0.052631578947368421 has period length 19− 1 = 18. On
the other hand, 1/13 = 0.076923, so the period length is 13−1

2 .

It’s not so hard to prove that for a prime p ̸= 2, 5, the period length is
always a divisor of p − 1 — in fact, it’s nothing other than the order
of 10 in the multiplicative group (Z/pZ)×. Is it equal to p − 1
infinitely often?

Artin conjectured YES. He gave a heuristic argument that this should
happen ≈ 37.4% of the time.
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Artin’s conjecture is still open. However, in
1967 Hooley proved that Artin’s conjecture
follows from the Generalized Riemann
Hypothesis.

In 1984, Gupta and Murty found a clever proof that there is some
base b > 2 for which infinitely many primes p have repeating period
p − 1. In fact, their method produces many such bases; Heath-Brown
has shown that one of the bases 2, 3, or 5 works (though the method
does not allow one to decide which).
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The theorem about HFDs is proved by similar methods but in the
quadratic field setting. Here the connection is provided by the relative
class number formula, and the role of the base is played by the
“fundamental unit” of the quadratic field.

To make this all explicit. It turns out that proving conjecture (b) is
equivalent to showing there are infinitely many primes p inert in
Z[
√
2] for which ℓ = p + 1 is the least positive integer ℓ with

(1 +
√
2)ℓ ≡ (some rational integer) (mod p).
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Thank You!
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