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Unique factorization?

2/24

Let D be an integral domain. A nonzero, nonunit element π ∈ D is
irreducible if π cannot be written as a product of two nonunits.

A domain D is a unique factorization domain (UFD) if every
nonzero nonunit is a product of irreducibles and this expression is
unique up to order and up to unit factors.

More precisely, we require that if π1 · · ·πk = ρ1 . . . ρℓ, with all the

πi and ρj irreducible, then

(a) k = ℓ,

(b) after rearranging, πi is a D-unit multiple of ρi for all
i = 1, 2, . . . , k .
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Hits andmisses
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In a first algebra course, one sees many examples of UFDs. These
can lull one into a false sense of security!

The following near-canonical example of non-unique factorization
is helpful to keep students on their toes: In the ring Z[

√
−5],

2 · 3 = (1 +
√
−5)(1−

√
−5).

This is a genuine example of non-unique factorization: all of 2, 3,
1 +

√
−5 and 1−

√
−5 are irreducible in Z[

√
−5]. Furthermore,

the only units in Z[
√
−5] are ±1, so there is no chance that the

irreducibles on the left are unit multiples of those on the right.

Thus, Z[
√
−5] is not a UFD! However, it’s not that from being

one. There are two irreducibles involved in both of our
factorizations of 6. And this is the case for all counterexamples to
uniqueness. We call Z[

√
−5] a half-factorial domain (HFD).
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S t r e t c h i n g, the truth about unique factorization
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Let D be a domain where every nonzero nonunit factors into
irreducibles. For each nonzero nonunit α ∈ D, we define the
length spectrum of α by

L(α) = {all lengths k of irreducible factorizations α = π1 · · ·πk}.

We define the elasticity of α by

ρ(α) =
supL(α)
inf L(α)

.

Finally, we define the elasticity ρ(D) of D by

ρ(D) = sup
α

ρ(α).

So ρ(D) = 1 if and only if D is an HFD.
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Fun. Theoremof Stretchiness
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When K be a number field (finite extension of Q), it is known that
the elasticity of the ring of integers OK is a finite number
expresible in terms of a certain combinatorial constant associated
to the class group.

Definition
Let G be a finite abelian group. The Davenport constant of G is
the smallest positive integer D = D(G ) with the following
property:

Every sequence g1, g2, . . . , gD of elements of G contains a
nonempty subsequence multiplying to the identity.
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Fun. Theoremof Stretchiness, ctd.
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Fun Theorem of Stretchiness (Narkiewicz, Steffan, Valenza)

Whenever OK is not a unique factorization domain,

ρ(OK ) =
1

2
D,

where D = Dav Cl(OK ).

This has some nice corollaries. For example, OK is a HFD precisely
when Cl(OK ) has size 1 or 2 (Carlitz, 1960). In particular,
Z[
√
−5] (of class number 2) is an HFD.

Davenport introduced these constants by means of the following
observation, which is central to the proof of the Fun Stretchiness
Theorem: The Davenport constant of the class group of K is the
maximum number of prime ideals appearing (with multiplicity) in
the prime ideal factorization of an irreducible element of OK .
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Don’t expect theworst; bePleasant
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The Fun Elasticity Theorem tells us is that

sup
α

ρ(α) =
1

2
D,

where α here ranges over all nonzero nonunits.

Taking a sup means looking at the worst case. But we could also
consider what we expect to happen!

That is: What is the usual size of ρ(α), for nonzero nonunits
α ∈ OK?

The answer is another constant ρ̃(OK ), strictly smaller than
ρ(OK ) when OK is not an HFD (Narkiewicz, Allen & Pleasants).
E.T. and I are working on computing these constants.
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And now for something different
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. . . but not completely different. . . .

So far we have been thinking about elasticities of rings of integers
of number fields. For the rest of this talk, we will switch gears.

Rather than look at the full ring of integers of K , we will consider
subrings. And rather than look at all K , we will restrict to
quadratic fields K — fields one can write in the form Q(

√
d),

where d is a squarefree integers.
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Orders in the court
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Let K be a quadratic field. An order in K is a subring of OK

properly containing Z. The ring OK itself is referred to as the
maximal order.

The orders in K are in one-to-one correspondence with positive
integers f . Each order in K has finite index as a subgroup of OK ,
and for each f ∈ Z+, there is a unique order whose index is f .
This is denoted Of , and f is called the conductor of the order.

It is easy to be (even more) explicit about the order of conductor f
inside a given quadratic field. For example, in Q(i), it is just Z[fi ],
while in Q(

√
5), it is Z[f 1+

√
5

2 ].

Our problem: How do elasticities vary among orders in a fixed
quadratic field?
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There be dragons here. . .
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Example

Let’s think about the order of conductor 5 in Z[i ], that is, Z[5i ].

Exercise

(a) 5(2 + i)k is irreducible in Z[5i ] for every k , as is 5(2− i)k .

(b) 5(2 + i)k · 5(2− i)k = 5 · 5 · 5 · · · 5︸ ︷︷ ︸
k+2 times

.

Hence, ρ(Z[5i ]) ≥ k+2
2
.

But k is arbitrary! Hence, ρ(Z[5i ]) = ∞. Infinite elasticity cannot
happen for a full ring of integers!

Halter-Koch: order of conductor f has finite elasticity ⇐⇒ f is not
divisible by any prime split in K . (In Q(i): not divisible by any
prime 1 mod 4.)
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Half truths
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An order of conductor > 1 cannot be a UFD. But it can be an
HFD!

Theorem (Coykendall, 2001)

Z[
√
−3] is the unique nonmaximal HFD order in an imaginary

quadratic field.

Conjecture (Coykendall, 2001)

(a) There are infinitely many HFDs as you vary over all
quadratic fields and all orders contained in those fields.

(b) There are infinitely many HFDs as you vary among the
orders in the quadratic field Q(

√
2).
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Conjecture (Coykendall, 2001)

(a) There are infinitely many HFDs as you vary over all
quadratic fields and all orders contained in those fields.

(b) There are infinitely many HFDs as you vary among the
orders in the quadratic field Q(

√
2).

Theorem (P., 2023)

(a) is true, and (b) is true assuming GRH.

By contrast, we do not know how to prove there are infinitely many
number fields (quadratic or not) whose rings of integers are HFDs!
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Whydo I go to extremes?
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We have seen examples where the elasticity is infinite and
examples where the elasticity is 1.

What is the “typical” elasticity of an order in a fixed quadratic
field K?

For most f , the elasticity is infinite. Asymptotically half the
rational primes split in K . Most f are divisible by at least one of
those primes.

Call an f not divisible by any prime that splits in K a split-free
integer.

New question: Fix a quadratic field K . What is the “typical” size
of ρ(Of ) as f varies among split-free positive integers?
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Number theory→ lumber theory
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Theorem (Fan and P., 2024)

If K is real quadratic, then under GRH,

ρ(Of ) ≈ (log f )1/2

for almost all split-free f . If K is imaginary quadratic, then

ρ(Of ) ≈ f /(log f )
1
2
log log log f+CK

for almost all split-free f (unconditionally).

Approximately : Fix ϵ > 0. Both estimates are accurate to within
multiplicative factors of (log f )ϵ.

Almost-all : The relative frequency of counterexamples among
split-free f in [1, x ] tends to 0, as x → ∞.
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Extremal split-free elasticities
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In a more recent paper, Steve and I study the extremal size of
order elasticities. In the interests of time, I give our result only for
the minimal size of elasticities in the imaginary quadratic case.

Theorem (minimal size, imaginary case)

Let K be a fixed imaginary quadratic field. There are absolute
constants c1, c2 > 0 for which the following holds. For all
sufficiently large split-free f ,

ρ(Of ) > (log f )c1 log log log f .

On the other hand, there is a sequence of split-free f tending to
infinity along which

ρ(Of ) < (log f )c2 log log log f .
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Where does all this come from?
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Perhaps surprisingly, the proofs builds on techniques used to study
seemingly unrelated questions.

Observe that 1/7 = 0.142857 has period length 7− 1, and
1/19 = 0.052631578947368421 has period length 19− 1 = 18. On
the other hand, 1/13 = 0.076923, so the period length is 13−1

2 .

It’s not so hard to prove that for a prime p ̸= 2, 5, the period
length is always a divisor of p − 1 — in fact, it’s nothing other
than the order of 10 in the multiplicative group (Z/pZ)×. Is it
equal to p − 1 infinitely often?

Artin conjectured YES. He gave a heuristic argument that this
should happen ≈ 37.4% of the time.
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Hooley, Gupta, andMurty, ohmy!
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Artin’s conjecture is still open. However, in
1967 Hooley proved that Artin’s conjecture
follows from the Generalized Riemann
Hypothesis.

In 1984, Gupta and Murty found a clever proof that there is some
base b ≥ 2 for which infinitely many primes p have repeating
period p − 1. In fact, their method produces many such bases;
Heath-Brown has shown that one of the bases 2, 3, or 5 works
(though the method does not allow one to decide which).
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Quadratic Artin to the rescue
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The theorem about HFDs (towards Coykendall’s conjectures) is
proved by similar methods but in the quadratic field setting. Here
the connection is provided by the order class number formula, and
the role of the base is played by the “fundamental unit” of the
quadratic field.

To make this all explicit. It turns out that proving conjecture (b)
— that Z[

√
2] has infinitely many half-factorial orders — is

equivalent to showing there are infinitely many primes p inert in
Z[
√
2] for which ℓ = p + 1 is the least positive integer ℓ with

(1 +
√
2)ℓ ≡ (some rational integer) (mod p).

This can be shown under GRH (almost implicit in work of Chen
and Roskam).
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Typical and extremal elasticites?
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The other elasticity results are consequences of new theorems on
the distribution of Davenport constants of class groups of
quadratic orders.

These Davenport constants do not tell all of the story — unlike in
the case of the maximal order, the elasticity of an order is not a
function of the isomorphism class of the class group! But (we are
able to show) they tell most of the story.

For our purposes: When K is imaginary quadratic, one can model
the family of class groups of the orders Of by the unit groups
(Z/f Z)×.

When K is real quadratic, one can model the family of class
groups of the orders Of by the unit groups (Z/f Z)×/⟨2⟩, where f
ranges only over odd integers.
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On the shoulders of a giant
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The Davenport constant of a finite abelian group is usually not too
far off from the exponent of that group (the largest order of any
element) — by a theorem of van Emde Boas/Kruyswijk.

Quite a lot is known about the distribution of orders of elements in
(Z/f Z)×.

There is one mathematician in particular whose work studying
these orders was particularly influential in formulating — and
estabishing — our class group results.

It was difficult to find a recent photo of this man, but I was able to
track one down with the help of my colleague Dino Lorenzini.

Paul Pollack How nonunique is your factorization?



21/24

Paul Pollack How nonunique is your factorization?



On the shoulders of a giant

22/24

Carl’s role in shaping these results is ‘hidden in plain sight’.

In a 1991 paper, Erdős, Pomerance, and Schmutz show that
‘typically’ the group (Z/f Z)× has exponent

≈ f /(log f )log log log f+C .

This looks an awful lot like the result we claimed for the typical
elasticity of an imaginary quadratic order!

In that same article, Carl and his coauthors show that

Exp (Z/f Z)× > (log f )c log log log f

for all large f , and that this result is best possible up to the choice
of c . Look familiar?
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Giants, ctd.
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Where does GRH enter the picture? Recall that when K is real
quadratic, our model suggests the class groups are “similar” to the
quotiented unit groups (Z/f Z)×/⟨2⟩.

Understanding the size of this group requires coming to terms with
the order of 2 modulo f . GRH implies that the order of 2 modulo
f is usually ‘close’ in size to the exponent of the group (Z/f Z)×
(Li and Pomerance). These ideas play a crucial role in our handling
of the real quadratic case.
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