Big doings with small gaps

The University of Georgia

Paul Pollack

AIM Bounded gaps between primes

November 19, 2014

The fundamental theorems of ZMT-ology

Theorem (Zhang for m = 2, Maynard–Tao for m > 2)

For each integer $m \ge 2$, there is a finite number $k_0(m)$ with the following property: Let $\mathcal{H} = \{h_1, h_2, \dots, h_k\}$ be an admisible k-tuple with $k \ge k_0(m)$. Here admissible means that

$$\#\{n \bmod p: \prod_{i=1}^k (n+h_i) \equiv 0 \pmod p\} < p$$

for every prime p. There are infinitely many n for which the list $n + h_1, \ldots, n + h_k$ contains at least m prime numbers.

The fundamental theorems of ZMT-ology

Theorem (Zhang for m = 2, Maynard–Tao for m > 2)

For each integer $m \geq 2$, there is a finite number $k_0(m)$ with the following property: Let $\mathcal{H} = \{h_1, h_2, \dots, h_k\}$ be an admisible k-tuple with $k \geq k_0(m)$. Here admissible means that

$$\#\{n \bmod p: \prod_{i=1}^k (n+h_i) \equiv 0 \pmod p\} < p$$

for every prime p. There are infinitely many n for which the list $n + h_1, \ldots, n + h_k$ contains at least m prime numbers.

Conjecture (Hardy-Littlewood)

Can take $k_0(m) = m$.

Theorem

For each integer $m \ge 2$, there is a finite number $k_0(m)$ with the following property: Let $a_1n + b_1, \ldots, a_kn + b_k$ be an admissible colletion of linear polynomials with $k \ge k_0(m)$. Here admissible means that

$$\#\{n \bmod p : \prod_{i=1}^k (a_i n + b_i) \equiv 0 \pmod p\} < p$$

for every prime p. There are infinitely many n for which the list $a_1n + b_1, \ldots, a_kn + b_k$ contains at least m prime numbers.

Theorem

For each integer $m \ge 2$, there is a finite number $k_0(m)$ with the following property: Let $a_1n + b_1, \ldots, a_kn + b_k$ be an admissible colletion of linear polynomials with $k \ge k_0(m)$. Here admissible means that

$$\#\{n \bmod p: \prod_{i=1}^k (a_i n + b_i) \equiv 0 \pmod p\} < p$$

for every prime p. There are infinitely many n for which the list $a_1 n + b_1, \ldots, a_k n + b_k$ contains at least m prime numbers.

Conjecture (Dickson's *k*-tuples conjecture)

Can take $k_0(m) = m$.

B-F-T-B

Theorem (Banks-Freiberg-Turnage-Butterbaugh)

Suppose in the last theorem that all the a_i coincide, say each $a_i = A$. Assume the sequence b_1, \ldots, b_k is monotonic. There are infinitely many n for which the list $An + b_1, \ldots, An + b_k$ contains at least m **consecutive** prime numbers.

Main idea of the proof.

Introduce extra congruence conditions on n forcing An + b composite for each b between b_1 and b_k not among the b_i .

Example

Suppose we really did know that every pair of admissible linear forms assumed simultaneous prime values.

And say we wanted n and n + 6 to be consecutive primes.

Replace n with 15n + 1: we apply the result to 15n + 1 and 15n + 7.

Proof and consequences

For each k, put $d_k = p_{k+1} - p_k$.

Conjecture (Erdős and Turán, 1948)

The sequence $\{d_k\}$ contains arbitrarily long (strictly) increasing runs and arbitrarily long (strictly) decreasing runs.

Proof (BFTB).

Let's treat the increasing case first. Given m, let $k = k_0(m)$, and apply BFTB to the collection $n + 2, n + 2^2, \ldots, n + 2^k$. Let's check admissibility.

Checking admissibility: If $p \neq 2$, then

$$\left. \prod_{i=1}^k (n+2^i) \right|_{n=0} \not\equiv 0 \pmod{p}.$$

whereas if p = 2, then

$$\left. \prod_{i=1}^k (n+2^i) \right|_{n=1} \not\equiv 0 \pmod{p}.$$

Thus, the list $n+2,...,n+2^k$ contains at least m consecutive primes. The sequence of gaps between them is increasing.

The decreasing case is similar, with the theorem applied to $n-2, \ldots, n-2^k$.

Open problem: Show that there are infinitely many runs of consecutive prime gaps in the order LOW HIGH LOW. In other words, $d_k < d_{k+1}$ but $d_{k+1} > d_{k+2}$.

(If I remember correctly...) C. Spiro has shown this would follow if there is at least one $m \ge 4$ with $k_0(m) < 2^m$.

Shiu strings

Theorem (D.K.L. Shiu, 2000)

Each coprime residue class a mod q contains arbitrarily long runs of consecutive primes.

These runs of primes are called "Shiu strings."

Shiu strings

Theorem (D.K.L. Shiu, 2000)

Each coprime residue class a mod q contains arbitrarily long runs of consecutive primes.

These runs of primes are called "Shiu strings."

Theorem (BFTB)

Shiu's theorem is still true fourteen years later. Moreover, it remains true even if one restricts the primes to lie in a bounded length interval. ("Bounded" means bounded in terms of q and the length of the run.)

For the proof, again let m be given, and let $k = k_0(m)$. We apply the BFTB theorem to a collection of the form

$$qn + a_1, \ldots, qn + a_k$$

where each $a_i \equiv a \pmod{q}$.

Why is there an admissible collection like this?

Choose each $a_i \equiv a \pmod{q}$. If p is an obstruction to admissibility, then considering n = 0, we get $p \mid a_1 \cdots a_k$.

For the proof, again let m be given, and let $k = k_0(m)$. We apply the BFTB theorem to a collection of the form

$$qn + a_1, \ldots, qn + a_k$$

where each $a_i \equiv a \pmod{q}$.

Why is there an admissible collection like this?

Choose each $a_i \equiv a \pmod q$. If p is an obstruction to admissibility, then considering n=0, we get $p \mid a_1 \cdots a_k$. Since each $(a_i,q)=1$, the prime $p \nmid q$. So $(qn+a_1)\cdots(qn+a_k)\equiv 0 \pmod p$ has at most k solutions mod p, and hence $p \leq k$.

For the proof, again let m be given, and let $k = k_0(m)$. We apply the BFTB theorem to a collection of the form

$$qn + a_1, \ldots, qn + a_k$$

where each $a_i \equiv a \pmod{q}$.

Why is there an admissible collection like this?

Choose each $a_i \equiv a \pmod q$. If p is an obstruction to admissibility, then considering n=0, we get $p \mid a_1 \cdots a_k$. Since each $(a_i,q)=1$, the prime $p \nmid q$. So $(qn+a_1)\cdots(qn+a_k)\equiv 0 \pmod p$ has at most k solutions mod p, and hence $p \leq k$.

Consequence: We get admissibility if we choose each $a_i \equiv a \pmod{q}$ to have no prime factors $\leq k$.

Some questions of Sierpiński

Let s(n) denote the sum of the decimal digits of n. For example, s(2014) = 2 + 1 + 4 = 7. We can observe that s(1442173) = s(1442191) = s(1442209) = s(1442227).

11 of 35

Some questions of Sierpiński

Let s(n) denote the sum of the decimal digits of n. For example, s(2014) = 2 + 1 + 4 = 7. We can observe that

$$s(1442173) = s(1442191) = s(1442209) = s(1442227).$$

Question (Sierpiński, 1961)

Given m, are there infinitely many m-tuples of consecutive primes p_n, \ldots, p_{n+m-1} with

$$s(p_n) = s(p_{n+1}) = \cdots = s(p_{n+m-1})?$$

Some questions of Sierpiński

Let s(n) denote the sum of the decimal digits of n. For example, s(2014) = 2 + 1 + 4 = 7. We can observe that

$$s(1442173) = s(1442191) = s(1442209) = s(1442227).$$

Question (Sierpiński, 1961)

Given m, are there infinitely many m-tuples of consecutive primes p_n, \ldots, p_{n+m-1} with

$$s(p_n) = s(p_{n+1}) = \cdots = s(p_{n+m-1})?$$

Answer (Thompson and P.): Yes.

We sketch the proof. We let $k = k_0(m)$. We seek an admissible collection of the form

$$10^{\ell}n + b_1$$
, $10^{\ell}n + b_2$, ..., $10^{\ell}n + b_k$,

where $0 < b_1 < b_2 < \dots < b_k < 10^{\ell}$ and $s(b_1) = \dots = s(b_k) = s$, say.

Given such a collection, BFTB says we get at least m consecutive primes, each of which has digit sum s(n) + s.

How do we ensure admissibility? If p is an obstruction to admissibility, then $p \mid b_1 \cdots b_k$. Moreover, either $p \mid 10$ or $p \leq k$.

Consequence: We get admissibility if we choose each b_i coprime to 10 and all primes $p \le k$.

Can we choose distinct positive integers b_1, \ldots, b_k coprime to $10 \prod_{p < k} p$ and all possessing the same digit sum?

Yes, by a direct elementary argument.

OR: Using a 2009 result of Mauduit and Rivat, one can actually pick the b_i to be primes. Their result shows there are "many" ℓ -digit primes p with s(p)=s, for all integers s "near" the expected mean sum-of-digits $\frac{9}{2}\ell$. (More precisely, they prove a "local central limit theorem" for sums of digits of primes.)

Another question of Erdős

Let $\sigma(\cdot)$ be the usual sum-of-divisors function, so $\sigma(n) = \sum_{d|n} d$.

Question

If $\sigma(a) = \sigma(b)$, what can be said about the ratio a/b?

Example

$$\sigma^{-1}(8960) = \{3348, 5116, 5187, 6021, 7189, 7657\}.$$

Another question of Erdős

Let $\sigma(\cdot)$ be the usual sum-of-divisors function, so $\sigma(n) = \sum_{d|n} d$.

Question

If $\sigma(a) = \sigma(b)$, what can be said about the ratio a/b?

Example

$$\sigma^{-1}(8960) = \{3348, 5116, 5187, 6021, 7189, 7657\}.$$

Conjecture (Erdős, 1959)

Nothing. More precisely, the set of ratios $\{a/b : \sigma(a) = \sigma(b)\}$ is dense in $\mathbb{R}_{>0}$.

Theorem (P.)

Erdős's conjecture is true.

In this talk we focus on a special case.

Theorem

For every B, there is a pair of integers a and b with $\sigma(a) = \sigma(b)$ and a/b > B.

The proof uses ideas of Schinzel, who proved this special case assuming Dickson's conjecture.

Proof.

Let $k = k_0(2)$.

Notice that the ratio $\sigma(m)/m$ gets arbitrarily large as m ranges over the natural numbers, since

$$\sigma(m)/m=\sum_{d|m}\frac{1}{d},$$

and the harmonic series diverges.

Now choose integers a_1, \ldots, a_k where each

$$\sigma(a_1)/a_1 > B,$$

$$\sigma(a_2)/a_2 > B \cdot \sigma(a_1)/a_1,$$

$$\vdots$$

$$\sigma(a_k)/a_k > B \cdot \sigma(a_{k-1})/a_{k-1}.$$

Now choose integers a_1, \ldots, a_k where each

$$\sigma(a_1)/a_1 > B,$$

$$\sigma(a_2)/a_2 > B \cdot \sigma(a_1)/a_1,$$

$$\vdots$$

$$\sigma(a_k)/a_k > B \cdot \sigma(a_{k-1})/a_{k-1}.$$

Consider the admissible collection $\sigma(a_1)n-1,\ldots,\sigma(a_k)n-1$. For infinitely many n, at least two of $\sigma(a_1)n-1,\ldots,\sigma(a_k)n-1$ are prime, say

$$p_i = \sigma(a_i)n - 1$$
 and $p_j = \sigma(a_j)n - 1$.

For infinitely many n, at least two of $\sigma(a_1)n-1,\ldots,\sigma(a_k)n-1$ are prime, say

$$p_i = \sigma(a_i)n - 1$$
 and $p_j = \sigma(a_j)n - 1$.

We can assume n is large enough that these primes are bigger than any of a_1, \ldots, a_k .

For infinitely many n, at least two of $\sigma(a_1)n-1,\ldots,\sigma(a_k)n-1$ are prime, say

$$p_i = \sigma(a_i)n - 1$$
 and $p_j = \sigma(a_j)n - 1$.

We can assume n is large enough that these primes are bigger than any of a_1, \ldots, a_k .

Notice $\sigma(p_i a_j) = \sigma(a_i)\sigma(a_j)n = \sigma(p_j a_i)$. The ratio

$$\frac{p_j a_i}{p_i a_j} = \frac{p_j}{p_i} \cdot \frac{a_i}{a_j} = \frac{\sigma(a_j)n - 1}{\sigma(a_i)n - 1} \cdot \frac{a_i}{a_j}$$

$$> \frac{\frac{1}{2}\sigma(a_j)n}{\sigma(a_i)n} \cdot \frac{a_i}{a_j} 1 = \frac{1}{2}\frac{\sigma(a_j)/a_j}{\sigma(a_i)/a_i} \ge \frac{B}{2}.$$

Bounded gaps between primes in special sets

Say a set of primes $q_1, q_2,...$ has the **bounded gaps property** if $\lim \inf_{n\to\infty} q_{n+m} - q_n < \infty$, for every m.

Theorem (Thorner)

Chebotarev sets have the bounded gaps property.

Bounded gaps between primes in special sets

Say a set of primes $q_1, q_2,...$ has the **bounded gaps property** if $\lim \inf_{n\to\infty} q_{n+m} - q_n < \infty$, for every m.

Theorem (Thorner)

Chebotarev sets have the bounded gaps property.

Example

- The set of primes p

 1 (mod 3) for which 2 is a cube mod p
 has the bounded gaps property.
- Fix a positive integer n. The set of primes expressible in the form $x^2 + ny^2$ has the bounded gaps property.

Bounded gaps between primes in special sets

Say a set of primes $q_1, q_2,...$ has the **bounded gaps property** if $\lim \inf_{n\to\infty} q_{n+m} - q_n < \infty$, for every m.

Theorem (Thorner)

Chebotarev sets have the bounded gaps property.

Example

- The set of primes $p \equiv 1 \pmod{3}$ for which 2 is a cube mod p has the bounded gaps property.
- Fix a positive integer n. The set of primes expressible in the form $x^2 + ny^2$ has the bounded gaps property.

Key input provided by an analogue of Bombieri-Vinogradov proved by Murty-Murty.

Theorem (Baker–Zhao)

Fix real numbers α and β with $\alpha > 1$ and α irrational. Then the set of primes of the form $|\alpha n + \beta|$ has the bounded gaps property.

cf. earlier work of Benatar and Chua-Park-Smith

Artin's primitive root conjecture

Conjecture (Artin, 1927)

Fix g not a square and $\neq -1$. There are infinitely many primes p for which g is a primitive root mod p.

Theorem (Hooley, 1967)

GRH for Dedekind zeta functions implies Artin's conjecture.

Theorem (P.)

Assume GRH for Dedekind zeta functions. The set of primes p with g as a primitive root has the bounded gaps property.

Sketch of Hooley's proof

For simplicity, we consider only g=2. We look for such primes $p \le N$. Let $W=4\prod_{p\le D_0} p$, where $D_0=\log\log\log N$.

First, we hit the problem with the W-trick:

Fix $p \equiv \nu \mod W$, so that $p \equiv 3 \pmod 8$ (so 2 is **not** a square mod p) and p-1 has no odd prime factors $\leq D_0$.

There are $\approx \pi(N)/\phi(W)$ such $p \leq N$.

If 2 is not a primitive root mod p, then for some prime ℓ ,

$$p \equiv 1 \pmod{\ell}$$
 and $2^{\frac{p-1}{\ell}} \equiv 1 \pmod{p}$. (P_{ℓ})

From 1., we must have $\ell > D_0$. Consider three ranges of remaining ℓ :

$$D_0 < \ell < N^{1/2}/\log^3 N$$
 $N^{1/2}/\log^3 N \le \ell < N^{1/2}\log^3 N$ $\ell \ge N^{1/2}\log^3 N.$

We will show that the number of p possessing P_{ℓ} for ℓ in each of these three ranges is $o(\pi(N)/\phi(W))$.

Range I: $D_0 < \ell < N^{1/2}/\log^3 N$

Reinterpret P_{ℓ} as a splitting condition: it says p splits completely in $\mathbb{Q}(\zeta_{\ell}, \sqrt[\ell]{2})$. By GRH Chebotarev, the number of such $p \leq N$ is

$$\frac{1}{\ell(\ell-1)}\pi(N)+O(N^{1/2}\log N).$$

We will show that the number of p possessing P_{ℓ} for ℓ in each of these three ranges is $o(\pi(N)/\phi(W))$.

Range I: $D_0 < \ell < N^{1/2}/\log^3 N$

Reinterpret P_{ℓ} as a splitting condition: it says p splits completely in $\mathbb{Q}(\zeta_{\ell}, \sqrt[\ell]{2})$. By GRH Chebotarev, the number of such $p \leq N$ is

$$\frac{1}{\ell(\ell-1)}\pi(N)+O(N^{1/2}\log N).$$

Summming over ℓ gives a bound

$$\ll \frac{\pi(N)}{D_0} + N/(\log N)^2 = o(\pi(N)/\phi(W)).$$

Range II: $N^{1/2}/\log^3 N \le \ell < N^{1/2}\log^3 N$

From P_{ℓ} , keep only the condition that $p \equiv 1 \pmod{\ell}$. By Brun–Titchmarsh, the number of such $p \leq N$ is

$$\ll \frac{\pi(N)}{\ell}$$
.

Summing on ℓ in our range gives

$$\ll \pi(N) \cdot \frac{\log \log N}{\log N}$$

which is $o(\pi(N)/\phi(W))$.

Range III: $\ell \geq N^{1/2} \log^3 N$

 P_{ℓ} implies that p divides $2^{j} - 1$, where

$$j = \frac{p-1}{\ell} < N^{1/2}/\log^3 N.$$

For each $j < N^{1/2}/\log^3 N$, we count the number of such p. This is O(j).

Summing on j gives $O(N/\log^6 N)$ such p. This is $o(\pi(N)/\phi(W))$.

Maynard—Tao-ification

Fix an admissible set $\{h_1, \ldots, h_k\}$. We look for primes p among $n + h_1, \ldots, n + h_k$ belonging to $\tilde{\mathcal{P}}$: primes with 2 as a primitive root.

Maynard—Tao-ification

Fix an admissible set $\{h_1, \ldots, h_k\}$. We look for primes p among $n + h_1, \ldots, n + h_k$ belonging to $\tilde{\mathcal{P}}$: primes with 2 as a primitive root.

We W-trick-it-out:

Let $W = 4 \prod_{p \le D_0} p$. Choose $\nu \pmod{W}$ so that whenever $n \equiv \nu \pmod{W}$,

- each $n + h_i$ is coprime to W,
- each $n + h_i \equiv 3 \pmod{8}$,
- each $n + h_i 1$ has no odd prime factors $\leq D_0$.

This can be done if 8 divides every h_i .

Maynard's method depends on making S_2/S_1 large, where

$$egin{aligned} S_1 &= \sum_{\substack{N \leq n < 2N \ n \equiv
u \pmod W}} w(n), \ S_2 &= \sum_{\substack{N \leq n < 2N \ n \equiv
u \pmod W}} (\sum_{i=1}^k \mathbf{1}_{n+h_i ext{ prime}}) w(n). \end{aligned}$$

Let $\tilde{\mathcal{P}}$ be the primes with 2 as a primitive root.

Claim: $\tilde{S}_2 := \sum_{\substack{N \leq n < 2N \\ n \equiv \nu \pmod{W}}} \left(\sum_{i=1}^k \mathbf{1}_{n+h_i \in \tilde{\mathcal{P}}} \right) w(n)$ obeys the same asymptotic as S_2 .

Looking at the difference $S_2 - \tilde{S}_2$, it is enough to make

$$\sum_{\substack{N \leq n < 2N \\ n \equiv \nu \pmod{W}}} (\mathbf{1}_{n+h_i \text{ prime}} - \mathbf{1}_{n+h_i \text{ in } \tilde{\mathcal{P}}}) w(n)$$

small, for each fixed $1 \le i \le k$. Fix i = k (notational convenience).

If $p = n + h_k$ is prime but 2 is not a primitive root, then p has P_ℓ for some ℓ .

By our *W*-tricking, we know $\ell > D_0$.

Split into 4 ranges for ℓ :

- I. $D_0 < \ell \le (\log N)^{100k}$,
- II. $(\log N)^{100k} < \ell \le N^{1/2} (\log N)^{-100k}$,
- III. $N^{1/2}(\log N)^{-100k} < \ell \le N^{1/2}(\log N)^{100k}$,
- IV. $N^{1/2}(\log N)^{100k} < \ell$.

We estimate the contribution to $\sum_{n} (\mathbf{1}_{n+h_k \text{ prime}} - \mathbf{1}_{n+h_k \text{ in } \tilde{\mathcal{P}}}) w(n)$ from n with $p = n + h_k$ satisfying P_ℓ for an ℓ in each of these ranges.

Split into 4 ranges for ℓ :

- I. $D_0 < \ell \le (\log N)^{100k}$,
- II. $(\log N)^{100k} < \ell \le N^{1/2} (\log N)^{-100k}$,
- III. $N^{1/2}(\log N)^{-100k} < \ell \le N^{1/2}(\log N)^{100k}$,
- IV. $N^{1/2}(\log N)^{100k} < \ell$.

We estimate the contribution to $\sum_{n} (\mathbf{1}_{n+h_k \text{ prime}} - \mathbf{1}_{n+h_k \text{ in } \tilde{\mathcal{P}}}) w(n)$ from n with $p = n + h_k$ satisfying P_ℓ for an ℓ in each of these ranges.

Ranges II and and IV we treat by Cauchy–Schwarz, using that there are not too many $p \le 3N$ having P_{ℓ} for some ℓ in that range.

Example

For each ℓ , we get in II an upper bound $\ll \frac{N/\log N}{\ell(\ell-1)} + N^{1/2} \log N$, and summing on ℓ gives

$$\ll N(\log N)^{-100k}$$
.

In other words,

$$\sum_{n} \mathbf{1}_{p=n+h_k}$$
 one of these primes $\ll N(\log N)^{-100k}$.

We now use the easy bound $\sum_{n} w(n)^2 \ll N(\log N)^{20k}$.

We get

$$\sum_{n} \mathbf{1}_{p=n+h_k}$$
 one of these primes $W(n)$

is negligible compared to S_1 and S_2 .

In other words,

$$\sum_{n} \mathbf{1}_{p=n+h_k \text{ one of these primes}} \ll N(\log N)^{-100k}.$$

We now use the easy bound $\sum_{n} w(n)^2 \ll N(\log N)^{20k}$.

We get

$$\sum_{n} \mathbf{1}_{p=n+h_k}$$
 one of these primes $W(n)$

is negligible compared to S_1 and S_2 .

Range IV is similarly easy.

Range I: $D_0 < \ell \le (\log N)^{100k}$

To estimate

$$\sum_{n} \mathbf{1}_{p=n+h_k \text{ one of these primes } W(n),$$

open up the sum. Have to estimate

$$\sum_{\substack{\ell \\ d_k = e_k = 1}} \sum_{\substack{\mathbf{d}, \mathbf{e} \\ n \equiv \nu \pmod{W} \\ [d_i, e_i] | n + h_i \ \forall i}} \mathbf{1}_{p = n + h_k} \text{ is prime, has } P_\ell \cdot$$

Inner sum has main term $\approx \frac{N/\log N}{\ell(\ell-1)\phi(W)\prod_{i=1}^{K}[d_i,e_i]}$; error is under control because outer sum on ℓ is small.

Range I: $D_0 < \ell \le (\log N)^{100k}$

Inner sum has main term $\approx \frac{N/\log N}{\ell(\ell-1)\phi(W)\prod_{i=1}^{k}[d_i,e_i]}$; error is under control because outer sum on ℓ is small.

Summing the main term on ℓ works out similarly to S_2 , except we gain a factor of

$$\sum_{\ell} \frac{1}{\ell(\ell-1)}$$

over $D_0 < \ell \le (\log N)^{100k}$, and this is o(1).

So this is negligible compared to S_1 and S_2 .

Range III: $N^{1/2}(\log N)^{-100k} < \ell \le N^{1/2}(\log N)^{100k}$

To estimate

$$\sum \mathbf{1}_{p=n+h_k}$$
 one of these primes $w(n)$,

replace

$$\mathbf{1}_{p=n+h_k}$$
 one of these primes

with

$$\mathbf{1}_{n+h_k\equiv 1\pmod{\ell}}$$
.

Opening it up gives a sum similar to S_1 , but we gain a factor of

$$\sum_{N^{1/2}(\log N)^{-100k}<\ell\leq N^{1/2}(\log N)^{100k}}\frac{1}{\ell}=o(1).$$

Further examples of Maynard-Tao-ification

Theorem (Thompson and P.)

For each function f among d(n), $\phi(n)$, $\sigma(n)$, $\omega(n)$, $\Omega(n)$, one can find arbitrarily long runs of consecutive primes p on which f(p-1) is increasing. Same for decreasing.

Further examples of Maynard-Tao-ification

Theorem (Thompson and P.)

For each function f among d(n), $\phi(n)$, $\sigma(n)$, $\omega(n)$, $\Omega(n)$, one can find arbitrarily long runs of consecutive primes p on which f(p-1) is increasing. Same for decreasing.

Theorem

There are arbitrarily long runs of primes p for which p-1 is squarefree.

Further examples of Maynard-Tao-ification

Theorem (Thompson and P.)

For each function f among d(n), $\phi(n)$, $\sigma(n)$, $\omega(n)$, $\Omega(n)$, one can find arbitrarily long runs of consecutive primes p on which f(p-1) is increasing. Same for decreasing.

Theorem

There are arbitrarily long runs of primes p for which p-1 is squarefree.

Theorem (Baker and P.)

Assume GRH. Fix an elliptic curve E/\mathbb{Q} . There are arbitrarily long runs of primes p for which $E(\mathbb{F}_p)$ is cyclic.

Thank you very much!