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ABSTRACT. Let K/Q be an abelian extension and let D be the absolute value
of the discriminant of K. We show that for each € > 0, the smallest rational

1.,
prime that splits completely in K is O(DZJ”). Here the implied constant
depends only on ¢ and the degree of K. This generalizes a theorem of Elliott,
who treated the case when K/Q has prime conductor.

1. INTRODUCTION

Let K be a number field. Kronecker conjectured that the proportion of rational
primes p which split completely in K is well-defined and given exactly by 1/[L : Q],
where L is the normal closure of K/Q. This conjecture, and much more, follows
from the Frobenius (or Chebotarev) density theorem (see, e.g., [9]). Since split-
completely primes are plentiful in this sense, it is natural to ask for an estimate of
the least rational prime p that splits completely in K.

Suppose that K/Q is Galois, and let D denote the absolute value of the dis-
criminant of K. If one assumes the Generalized Riemann Hypothesis, then work
of Lagarias and Odlyzko on effective versions of the Chebotarev density theorem
[11] shows that there is a split-completely prime p < log?(2|D|) (see also [1], which
makes this numerically explicit in the abelian case). Unconditionally, we have
only much weaker results. From a general theorem of Lagarias, Montgomery, and
Odlyzko [10, Theorem 1.1], we know that there is a prime p < D* which splits
completely in K, for a certain absolute constant A (left unspecified in [10]). In this
note, we consider the special case when K/Q is abelian of fixed degree and we show
that one can take any A > i.

Theorem 1. Let K be an abelian extension of Q and let € > 0. The least prime p
which splits completely in K satisfies

p< Dite,

Here D is the absolute value of the discriminant of K, and the implied constant
depends only on € and the degree of K/Q.

Special cases of Theorem 1 are already in the literature in the guise of estimates
for the least prime kth power residue to a prime modulus. When K/Q is a quadratic
field of prime conductor, Theorem 1 reduces to an earlier result of Linnik and
Vinogradov [24]. An elementary version of their proof was later discovered by Pintz
[21]. More generally, if we restrict to extensions K/Q of prime conductor (which
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are necessarily cyclic), then Theorem 1 reduces to a theorem of Elliott [5]. Our
proof of Theorem 1 employs the same general strategy as these earlier papers, but
we have to modify the argument to account for the fact that the nontrivial Dirichlet
characters attached to K need not share the same conductor. As in Pintz’s work,
we arrange the details to avoid contour integration.

We discuss some preliminaries for the proof of Theorem 1 in §2. The proof itself
is presented in §3. In the final section, we compare Theorem 1 with what one
obtains from a direct application of the known results on the least prime in an
arithmetic progression.

The reader may wish to compare our results with those known for the comple-
mentary problem of estimating the least prime that does not split completely. For
this, see the papers of K. Murty [20], Vaaler and Voloch [23], and Li [13].

Notation. We employ the Landau—Bachmann o and O notations, as well as the asso-
ciated Vinogradov symbols < and >, with their usual meanings. Any dependence
of implied constants is indicated explicitly, usually with subscripts. Throughout,
the letter p is reserved for a prime variable. We use x for Dirichlet convolution, so
that (fx¢)(n) :=>,._, f(d)g(e). We let 1 denote the arithmetic function which
is identically 1. We write 7(n) for the k-fold Piltz divisor function, which is the
k-fold convolution of the function 1 with itself. Thus, 72(n) is the usual number-
of-divisors function, which we write simply as 7(n). The fractional part of the real
number z is denoted {x}.

2. PRELIMINARIES

The appearance of the exponent i in Theorem 1 suggests, correctly, that

Burgess’s estimates for short character sums ([2, Theorem 2| and [3]) will play a
key role in our proofs. In the original formulation of Burgess, these bounds achieve
their full strength only when the conductor of the character x is cubefree. In our
problem, this translates into the requirement that K/Q have cubefree conductor.
To avoid imposing this restriction, we use a variant of Burgess’s bounds, due to
Heath-Brown (see [8, Lemma 2.4]), which is effective whenever x has small order.

Proposition 2 (Heath-Brown). Let ¢ > 1, and suppose that x is a primitive
character mod q whose order divides the natural number k. Let € > 0, and let v be
a positive integer. Then for every pair of integers M and N with N > 0, we have

r+1

Z X(n)] e k2 NPHrgaE e,
M<n<M+N

Rather than work directly with Proposition 2, it will be more convenient for us
to use the following consequence of that result.

Lemma 3. Let ¢ > 1, and let x be a primitive character modulo q of order dividing
k. Suppose that 0 < § < % For N > q%'*"s, we have

3 x(n) <ok NP
n<N
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Proof. Suppose that N > q%*“s. Then with r and ¢ still to be determined, Propo-
sition 2 (with M = 0) gives

41 (r+1)/(4r?)+e 1/(@r?)t+e=s/r
(21) > x(n) Kpep N'HVrguzte <NV NTURS T = NANT 7

n<N

We choose r = [55] and € = g—z. Using that 0 < § < %, we sec that

1

20

1<r<1+1—1 1+5 <0
25 — 26 TH\2 -

so that
1§ 1/1 5 3,
T =)< —— < 262,
2 r r (47" 5) - 2r - 50
Since € = %, the numerator in the final exponent on N in (2.1) is at most —745%/12.

But the denominator in (2.1) is 4 + 4, which is at most 5. This proves the
lemma. d

The second essential component in our argument is a lower bound on the absolute
value of L(1, x).

Proposition 4. Let g > 1, and let x be a primitive character modulo q. Let £ > 0.
Then
[L(L,X)| >e g7

For quadratic characters, the assertion of Proposition 4 is “Siegel’s theorem”
(proved as [19, Theorem 11.14, p. 372]). For nonreal x, one has the much sharper
estimate |L(1,x)| > 1/logq (a special case of [19, Theorem 11.4, pp. 362-363]),
originally due to Landau [12].

3. PROOF OF THEOREM 1

Since Theorem 1 is trivial when K = Q, we will assume that K/Q is a nontrivial
extension, so that D > 1. Let (x(s) denote the Dedekind zeta function of K, and
let k := [K : Q]. By class field theory, there is a group of primitive Dirichlet

characters xo = 1, x1,.-., xx—1 of conductors ¢o = 1, q1, ..., qu_1, respectively,
with

k—1
(3.1) Ce(s) = C(s) T Essx0)-

i=1

For future applications of Lemma 3, note that each of the x; has order dividing k.
By the conductor-discriminant formula [25, Theorem 3.11, p. 27],

(32) D:ql"'qk_l.

We can (and do) assume in the sequel that the ¢ in Theorem 1 satisfies 0 < € < %
We now introduce some convenient notation. For each 1 <1i <k — 1, put

(33) Yi = ma’X{q?+%aDﬁ}a
and set

k—1
(3.4) Y= H Yi-

=1
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Note that from (3.2), we have
(3.5) Dits <y < Dite,

By definition, we can write (x(s) = > .7 %=, where a,, counts the number of

(integral) ideals of K of norm n. To prove Theorem 1, we will show that if no prime
up to Dite splits completely in K, then K has “too few” ideals of norm bounded
by y.

Lemma 5. Assume that every prime that splits completely in K exceeds Dite,
Then with y defined as in (3.4),

Z an <Lk y3/4.
n<y

Proof. Exploiting the Euler-factorization of (x(s), we see that

(3.6) 3 Z_n — [ -pTe) o,
n=1 P

where f, is the inertial degree of any prime ideal p of K lying above p and g, is the
number of such prime ideals. Let p be a prime with p < y. Since p does not split
completely in K, either p | D or f, > 1. It follows from (3.6) that if n < y and
a, # 0, then one can write n = niny, where n; is a squarefree divisor of D and ng
is squarefull. Since the number of squarefull ny < y is < y'/? (see, e.g., [6]) while
7(D) < D32 (in fact, 7(D) <. D?; see [7, Theorem 315, p. 343]), the number of
n < y with a, nonvanishing is

< yl/2DY/32 < L/2 18— 5/8,
On the other hand, (3.1) shows that for every natural number n,
an, = (Lxkx1xx2x % xp—1)(n) < 7%(n).

Since Tk(n) S T(n)k_l <Lk nl/g, we find that Z a, <k y5/8 . yl/g = y3/4, as

n<y
claimed. O
We proceed to estimate any a, in a different way. Using the convolution
identity a, = (1% x1 * X2 * -+ * Xkx—1)(n), we can write any a, as
(3.7) Z x1(di)xa(da) - Xx—1(d—1) {LJ
P dy-dp_1
10k —135Y
xi1(d1)  xw—1(dr—1)
= y Z dl e dk_l
dy-dg—1<y
. . Y
- Y xa(d)-xkea(de) {W}
dydi—1<y LTkl

We estimate the two right-hand-side terms in the next two lemmas.

Lemma 6. We have

d i (d_ )
3 Xl(; )Xk ;( k—1) — L(Lx))L(L.x2) - -- L(1, xi_1) + O (D~ 5%).
dy-de_1<y 1 k—1

E3
correction: error should be O, (D~ %)
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Proof. We partition the sum on the left-hand side according to the sizes of the
d;. For each (k — 1)-tuple (di,...,dp—1) with di---dp—1 < y, let g, 4, ) =
{1<i<k-—1:d; >y} Foreach subset . C {1,2,...,k — 1}, let () =
{(dl, e 7dk:—1) : €5ﬂ(d1,...7dk,1) = 5”} Clearly,
(3.8)
(d1)  xk-1(dk-1) xi(d1)  xw—1(dk-1)
Z X1 = Z Z )

d dp_ d di_—
dydpa<y 1 k-1 Z (diyendp)es () L k=1

We first estimate the contribution to the right-hand side of (3.8) from .7 = 0.
Since y = [] y;, we have

Z Xl(fl)” Xk;dkl :HZXZ

(d1,...,dr—1)€F (D) i=1d;<y;

For each 1 < i < k—1, put S;(t) := ant Xi(n). From Lemma 3 and the definition
(3.3) of y;, we have that S;(t) <. t1-3<" for t > y;. Thus,

. 12
d;<y; Yi

i

2

_eZ &3
Lk Y; t < D7EF

(We use here that y; > D3%.) So by Proposition 4 (with ¢ taken as %), we see
that

w
Sle
w

3
6k

|

Z’“ ) L1 x0)(1 + 0en (@FF D)) = L(1, x)(1 + O (D~ T

d;i<y;

Thus,

))-

El
|
—

L(1Lxa) -+ L(L xi) (1+ 0 p (D7)

H:j

1o

3
= L(lvxl) e L(17Xk—l) + OE_’]Q;(D_QO_k),

using in the second line the crude upper bound L(1,x;) < log¢; < log D (see, for
example, [19, Lemma 10.15, p. 350]).

Now we study the contribution to the right-hand side of (3.8) from those sets
& # (. Fix such an .. Then iy € ¥ for some 1 < iy < k — 1. By the triangle
inequality,

Z xi(dy)  Xe—1(de-1)

rontr Des() B i1

S 3 Xio (diy) | |
Hz;&z 4 diO ’
di: i#io 0 y10<d10§mmbl

here the outer sum is over all tuples {d; };-;, with the property that (di,...,dk_1)
€ J(&) for some d;,. Writing IT = [[,_,; d; and using S; with the same meaning
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as above,

Xio (dlo) _ Sio (y/H) Sio (ylo) v/ Sio (t)
Z Ty Yio +/y_ t2 dt

<d <y/Il dio 0
Yig<dig<y/

_e? —£2/4 —£2/4
<o (y/I) ==y <y

Thus,

o X et ¥ og

ds: iig Yip <dig<y/II o di: i#io

k—2
1
>3

d<y

&
w

IN

D-

ol
ES

w

£

3
<D (1 +logy)" % <., D™,

(Recall that each y; > D*/?* and that y < D.)
Adding our bound for . = () to our bounds for those . # () completes the proof
of Lemma 6. |

Lemma 7. We have
23
> xaldy) - xe-a(di-) {L} <Lk YD,
dy-dp_1< dy - dy—y
1 k—13Y

Proof. We start by throwing away those tuples for which dy ---di_1 < y’, where
y :=y/D/*. Such tuples make a contribution bounded in absolute value by
k-2
1
Yooy Y <y (1+logy)F >
dydr—1<y’ d<y’

<yD™/*(1 +log D)* 2 <« yD™e/5.

This is negligible compared to our target upper bound, and so we may restrict our

attention to bounding that portion of the initial sum where ¢y < dy---dg—1 < y.
From (3.5), we have y' > Dit%, Thus, ifdy - dp_1 > y’, then some d; > y!, where

r.o_ its p=
y; == max{q ¥, D%F}.

Also, if dy ---dr_1 > 3’, then clearly

Yy Yy
_— < —.
{dl'“dk—lJ Y

These observations suggest a convenient sorting of the remaining tuples (dy,...,
di—1). For each tuple (di,...,dp_1) with ¢/ < dy---dp_1 <y, let Sq, a4, ) =
{1 <i<k—-1:d; >y} Since some d; > y;, the set Hq, . 4, ,) is always
nonempty. For each nonempty subset . C {1,2,...,k — 1} and each positive
integer m < y/y', let

f(y,m) = {(dl, N 7dk—1) : f5ﬂ(d1,...,dk,1) = y, LLJ = m}
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Then

> xl<d1>...x,€_1<dk_1){d¢}

d
y'<di-di—1<y ! k-l

= Z Z Xl(dl)"'Xk—l(dk—l){#}-
Fm (dyyensdi—1)EI (S m) 1o k=1
We proceed to bound the contribution to the right-hand side from each pair ., m.
Fix a pair . and m, and fix an iy € .. Suppose we are given a tuple {d;};z;,
for which (dy,...,dx—1) € F(&, m) for some d;,. Then the set of d;, with this
property consists exactly of those integers satisfying

y y y'
M<di0 < m, where M := max {y;o,m,ﬁ} and II:= I;Idl
1F10
(Of course, M and II depend on the tuple {d;};+;,, but we suppress this for the
sake of readability.) Thus,

(3.9) > xa(dr) -+ Xe-1(d-1) {#}

(diyennsdp—1)EFL (L ,m)

Y
< > > Xioldiy) {ﬁ} :
dis iio | M<di, < %o
In the new inner sum, |7%;] = m is constant, so that {7z} is a decreasing
; io
function of d;,; now using Abel’s inequality, we find that

Y
Z Xio(dio) {_} < max Z Xio(dio) .
M<d;y <= di, 11 M<ussin M<d;y<u
£ . . 82
Since M > y; > qi‘*g, Lemma 3 gives that the final sum is <., u!~%, and thus
the maximum over u is
Y y /64 y .2 y .3
o ) < () < e
=k Il \mll mll mll
(We use that M > yi > Ds%.) Substituting back into (3.9), we find that the
contribution from the pair . and m is
k—2
Y o Y <l 1 Y oot k—2
X, 1. =D 312k ~Z D~ 512k — < Z D sk (1 + 1 .
ko Z " Zd s (1+logy)
d;: i#io d<y

=l =
IA

Now summing over all m < y/y" and over all O (1) possibilities for ., we obtain
an upper bound that is

&3 3
Lo yD7F (1 4 logy)F ! <.y yD~ 500k,
as desired. |

Proof of Theorem 1. By (3.7) and Lemmas 6 and 7, we have that

3
Z an = yL(1,x1) - L(1, xg—1) + Oc 1 (y D~ 500F ).

n<y
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Now suppose that the least split-completely prime in K exceeds Di+e. Then from
Lemma 5, we get that Zn<y an < y>/*. Putting these last two estimates together
shows that -

.3
L(Lx1) - L(1, xp—1) Ko y~/* + D~ 5008
< D~V16 4 D-wior « Do,

=3
But by Proposition 4, we have [L(1, x;)| - x ¢; " (say) for each 4, so that (3.2)
gives \
IL(1,x1) -+ L1, Xpe—1)| e D7 7007
Hence, D <. j; 1; that is, D is bounded (in terms of € and k). This proves Theorem 1
for large D, with an implied constant of 1. If D is bounded, then there are only
finitely many possibilities for the field K (for example, by Hermite’s theorem [22,
Theorem 3, p. 59]), and Theorem 1 still holds after adjusting the value of the
implied constant. O

Remark. The implied constant in Theorem 1 is in general ineffective because of the
appeal to Siegel’s theorem. However, if [K : Q] is odd, then all of the characters
X appearing in the factorization (3.1) of (x(s) have odd order and so are nonreal.
For nonreal x, one has an effective lower bound |L(1,x)| > 1/logq. (In fact, if
X has small odd order, one can get effective lower bounds that are significantly
larger than 1/log ¢; see [19, Exercise 4, p. 366] and compare with [5, Lemma 2(ii)].)
Since the implied constants in Burgess’s bounds are also effective, the estimate of
Theorem 1 can be made effective when K/Q has odd degree.

4. COMPARISON WITH LINNIK’S THEOREM

For an abelian extension K/Q, the splitting behavior of a prime p is governed by
the residue class of p modulo f, where f is the conductor of K. We conclude this
note by comparing our Theorem 1 with what one obtains from Linnik’s celebrated
theorem [14,15] on the least prime in an arithmetic progression:

Proposition 8 (Linnik). There is an absolute constant C' with the following prop-
erty: For every pair of coprime integers a and q with ¢ > 0, the smallest prime
p = a (mod q) satisfies p < q°.

Theorem 1 is superseded by Proposition 8 once the degree of K/Q is large. To see
this, observe that if K/Q is abelian with conductor f, then any prime p = 1 (mod f)
splits completely in K, and the least such p is O(f). One can show that for each
abelian extension, D > fIX:Ql/2 (compare with [4, Lemma 9.2.1, p. 431]). Thus,
the least prime that splits completely in K is O(D?¢/[K:Ql) which is superior to the
estimate of Theorem 1 once [K : Q] > 8C'. In the opposite direction, the conductor
f of K satisfies (in the notation of §3)

(41) lecm[qlv"'vqk—l]a
so that
k-1
D = H g < fIEQTL
i=1
This shows that Theorem 1 does better than a naive application of Linnik’s result
if [K:Q]<4C +1.
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Xylouris [26] has shown that C' = 5.18 is allowable in Proposition 8. For ¢ prime,
Meng has shown that C' = 4.5 is permissible [16], and he has claimed the same
result for all ¢ with an absolutely bounded cubefull part ([17], with a correction in
[18]). Now if K/Q is abelian of degree k, then the cubefull part of f divides (2k).
Indeed, Heath-Brown has observed (see the bottom of [8, p. 271]) that if x is any
primitive character of order dividing k, then its conductor ¢ has a cubefull part
dividing (2k)?; now apply (4.1). Thus, Meng’s claim would yield the existence of
a split-completely prime p <, f4®°. This is certainly better than Theorem 1 once
[K : Q] > 36.
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