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Our theme will be‘’ the distribution of integer-valued arithmetic
functions, i.e., functions from Z>0 to Z.

“Function from Z>0 to Z” is a fancy way of saying “integer
sequence”. So you should think of this as being about integer
sequences, with special attention to sequences that arise naturally in
number theory.

What “distribution” means can be interpreted in many ways. We will
be interested in questions about digits, both leading and trailing.
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PART I. Trailing digits

If we work in base q, the rightmost digit of a positive integer n is
simply the least nonnegative remainder when n is divided by q.

Thus, if f is an integer-valued arithmetic function, understanding the
rightmost digit of f (n) mod q amounts to understanding the
distribution of f (n) mod q.

Furthermore, we can access the last several digits by replacing the
modulus q with a higher power of q.

Hence, the fundamental question is: How is f distributed in
residue classes to a given modulus?
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Definition
Let f be an integer-valued arithmetic function; that is, f is a function
from Z>0 to Z. Let q be a positive integer. We say f is uniformly
distributed modulo q (or equidistributed mod q) if, for each
integer a,

1

x
#{n ≤ x : f (n) ≡ a (mod q)} → 1

q
, as x → ∞.

Example (trivial): n 7→ n is equidistributed mod q for every q.

Example (not so trivial): n 7→ Fn (nth Fibonacci number) is
equidistributed mod q if and only if q = 5k for some k .

(Niederreiter, Kuipers–Shiue)
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Let A(n) =
∑

pk∥n kp be the sum of the prime factors of n, counted
with multiplicity; e.g.,

A(20) = 2 + 2 + 5 = 9.

Theorem (Alladi–Erdős)

A(n) is equidistributed modulo 2. In fact,

#{n ≤ x : A(n) ≡ a (mod 2)} =
x

2
+O(x exp(−c

√
log x log log x)).

Theorem (Delange, Goldfeld)

A(n) is equidistributed mod q for each fixed q. In fact,

#{n ≤ x : A(n) ≡ a (mod q)} =
x

q
+ O(x/

√
log x).
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Approach.
The philosophy is: If you want to show a sequence is equidistributed
in a finite abelian group, show that it averages to zero when hit with
any nontrivial character of the group.

Here, we project the integer sequence down to the corresponding
sequence mod q. The q characters of the group Z/qZ are the
functions e2πih·/q, for each h mod q. So to show A(n) is
equidistributed mod q, it is enough to show that each of the averages

1

x

∑
n≤x

e2πihA(n)/q

tends to 0 (for h = 1, 2, . . . , q − 1).
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It is enough to show that each of the averages

1

x

∑
n≤x

e2πihA(n)/q

tends to 0 (for h = 1, 2, . . . , q − 1).

The function A(n) is additive: A(nm) = A(n) + A(m) whenever n
and m are coprime. (In fact, coprimality is not needed here.) Hence,
the function e2πihA(n)/q is multiplicative, meaning

e2πihA(nm)/q = e2πihA(n)/qe2πihA(m)/q

whenever n,m are coprime. So our sum represents the average value
of a multiplicative function taking values on the unit circle. Sums of
this kind are well-studied and there are powerful tools available
(Halász’s theorem, the Landau–Selberg–Delange method).
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Hubert Delange Dorian Goldfeld
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Equidistribution of f (n) mod q is not always the right notion, even for
“nice” functions f .

For example, suppose

f (n) = pn, nth prime number.

If a mod q is a residue class with gcd(a, q) > 1, then f (n) hits the
residue class a mod q at most once. So equidistribution mod q fails
for every q > 1.

On the other hand, it is well-known — and incredibly useful — that
each coprime residue class mod q gets its fair share of the values pn.

You might object that f (n) = pn is not so natural. . .
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Let φ(n) denote Euler’s totient; that is, φ(n) = #(Z/nZ)×.

It is certainly not the case that φ(n) is equidistributed modulo each
fixed q. For example,

φ(n) is even once n > 2.

In general, φ(n) is divisible by q whenever p | n for some prime p ≡ 1
(mod q). For each fixed q, a positive proportion of primes p satisfy
p ≡ 1 mod q. Moreover, most numbers n have many prime factors.
So it should be rare for φ(n) to not be 0 mod q.

Proposition (Landau? Erdős?)

Fix q. The limiting proportion of n with φ(n) ̸≡ 0 (mod q) is 0.
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Definition (Narkiewicz)

Let f be an integer-valued arithmetic function;
that is, f is a function from Z>0 to Z. Let q be
a positive integer. We say f is weakly
uniformly distributed modulo q if there are
infinitely many n with gcd(f (n), q) = 1 and if,
for each a coprime to q,

#{n ≤ x : f (n) ≡ a (mod q)}
#{n ≤ x : gcd(f (n), q) = 1}

→ 1

φ(q)
,

as x → ∞.
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Perhaps φ(n) is usually weakly equidistributed mod q. We need q
odd to satisfy gcd(φ(n), q) = 1. But this is not enough. For example,

#{n ≤ x : φ(n) ≡ 1 (mod 3)} ∼ c1x/
√
log x ,

while

#{n ≤ x : φ(n) ≡ −1 (mod 3)} ∼ c−1x/
√
log x ,

whereas
c1 = 0.6109 . . . , c−1 = 0.3284 . . .

(see Dence and Pomerance).

Thus, we can only hope for weak equidistribution modulo q when
gcd(q, 6) = 1.
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Theorem (Narkiewicz)

Let q be any positive integer with gcd(q, 6) = 1. Then φ(n) is weakly
equidistributed modulo q.

What goes wrong with q = 3? The numbers p − 1, for p prime and
p ̸= 3, either fail to be coprime to 3 or are “trapped” in the trivial
subgroup of (Z/3Z)×.

Approach. Similar in spirit to the A(n) proof (and to the proof of
Dirichlet’s theorem on primes in progressions). One hits φ(n) with
the characters of the multiplicative group (Z/qZ)×.
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Specifically, if χ is a nontrivial Dirichlet character mod q, one needs
to show that ∑

n≤x

χ(φ(n))

exhibits cancelation relative to∑
n≤x

χ0(φ(n)),

(with χ0 the trivial character) as x → ∞.

Again, the sums here are sums of multiplicative functions of modulus
≤ 1. With some elbow grease, this can be deduced from a special
case of Halász’s theorem due to Wirsing (or by following
Landau–Selberg–Delange).
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For general integer-valued additive arithmetic functions, Delange has
a practical necessary and sufficient condition for uniform distribution.
For “polynomial-like” multiplicative functions, Narkiewicz has a
practical condition for weak uniform distribution.

These generalizations can all be thought of as working in the f -aspect.

Question. What about the q-aspect? Can we prove (weak)
equidistribution theorems when q is allowed to vary with our stopping
point x?
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Model. Prime numbers, again!

Theorem (Siegel–Walfisz)

As x → ∞,
#{p ≤ x : p ≡ a (mod q)}

1
φ(q)#{p ≤ x}

→ 1,

uniformly in coprime residue classes a mod q, as long as q ≤ (log x)A

(any fixed A).

Probably more is true. Under GRH, (log x)A can be replaced with

x
1
2
−ϵ. It is plausible q can even be taken as large as x1−ϵ, but this is

far beyond reach.
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Theorem (Singha-Roy, P., 2022+)

Fix K > 0. As x → ∞,

#{n ≤ x : A(n) ≡ a (mod q)}
x/q

→ 1,

uniformly for residue classes a mod q with q ≤ (log x)K .

Theorem (Singha-Roy, P., 2022+)

Fix K > 0. As x → ∞,

#{n ≤ x : φ(n) ≡ a (mod q)}
1

φ(q)#{n ≤ x : gcd(φ(n), q) = 1}
→ 1,

uniformly for coprime residue classes a mod q with gcd(q, 6) = 1 and
q ≤ (log x)K .
(w/ Lebowitz-Lockard: special case q = p, prime)
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A word on the proofs

What we don’t do: We don’t use characters! Reducing the problem
to one about mean values of multiplicative functions is the right thing
to do for fixed q. But the standard methods for estimating these
sums (such as Landau–Selberg–Delange, or quantitative versions of
Halász’s theorem) seem to yield the desired asymptotics only in much
more limited ranges of q.

Instead, we develop a quasi-elementary method suggested by work of
Banks–Harman–Shparlinski, who proved a theorem of the same kind
on the weak-equidistribution of P+(n), the largest prime factor of n.
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I restrict attention to the case of A(n), which is simpler here than
φ(n). I also make things easier on myself by assuming q is odd.

We split off the K largest prime factors of n, say n = mPK · · ·P1,
where

PK ≤ PK−1 ≤ · · · ≤ P2 ≤ P1.

Observe that
A(n) = A(m) + PK + · · ·+ P1.

The idea is to fix m and obtain the equidistribtuion from the ‘mixing’
in Z/qZ coming from PK + · · ·+ P1.

Using the Siegel–Walfisz theorem, one can model the Pi as random
coprime residue classes mod q. One then calculates that P1 + . . .PK

is close to uniformly distributed mod Z/qZ. Here we mean that one
approaches uniform distribution whenever K → ∞, uniformly in q.
(This step uses that q is odd.)
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The argument for φ is similar. In this case, one looks at products

(PK − 1) · · · (P1 − 1)

and shows that these approach equidistribution in (Z/qZ)×.

Here each Pi is modeled as a random residue class a mod q subject to
the condition that a(a− 1) relatively prime to q.
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PART II: Leading digits

Our interest in this half of the talk will be on arithmetic functions
whose values follow (or fail to follow) Benford’s law.

To a first approximation, Benford’s law asserts that for many natural
data sets, the initial digits are not uniformly distributed. Rather,
smaller initial digits appear more frequently than larger ones.

This phenomenon was observed by Simon Newcomb in 1881 and
rediscovered by Frank Benford in 1938.
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table taken from The Law of Anomalous Numbers (1938)
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Benford claims: The digit d ∈ {0, . . . , 9} should appear with
frequency log10

d+1
d . For example, 1 should appear as the leading digit

log10 2 = 0.301029995 . . . ,

and 2 should appear with frequency

log10
3

2
= 0.176091259 . . . .

The same should hold (in large data sets) for longer strings of digits.
For example, 2022 should be the leading 4 digits with frequency

log10
2023

2022
= 0.000214731515 . . . .

For finite data sets, one can expect only approximate conformance to
Benford’s law.
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Definition
Let f be a positive integer-valued arithmetic function. We say f
obeys Benford’s law (or f is Benford) if, for any positive integer D,
the limiting proportion n for which f (n) begins with the digits of D is

log10
D + 1

D
.

Reminder: The “limiting proportion” of the set of integers with
property P is

lim
x→∞

1

x
#{n ≤ x : n has P}.

(natural density/asymptotic density)
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Where does Benford’s law come from?

Observe that the leading digits do not depend on where one places
the decimal point! That is, the leading digit of α is a function of the
fractional part of its base 10 logarithm.

For example, a positive real number α has leading digit 3 precisely
when

log10 α ∈ [log10 3, log10 4) + Z.

Proposition (Diaconis)

A positive integer-valued arithmetic function f is Benford ⇐⇒
log10 f (n) is uniformly distributed modulo 1.
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Simon Newcomb
Frank Benford

Persi Diaconis
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An unlikely criminal

Which arithmetic functions obey Benford’s law?

Obeying Benford’s law is a more delicate condition that is apparent
on first glance.

Proposition

The identity function f (n) = n is not Benford.

Proof.
Up to x = 10k , there are 10k−1 + 10k−2 + · · ·+ 101 + 1 integers
beginning with 1, which is ≈ x/9. Up to x ′ = 2 · 10k , there are
10k + 10k−1 + 10k−2 + · · ·+ 101 + 1 such integers, and this is
≈ 5x ′/9. These oscillations mean that there is no limiting frequency
of n beginning with the digit 1.
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Proposition

The identity function f (n) = n is not Benford.

In a similar way, one can show ....

Proposition

The function n → pn (nth prime) is not Benford.

On the other hand. . .

Proposition (Diaconis)

The function n! is Benford.

Proposition (Massé-Schneider)

The primorial function
∏n

k=1 pk is Benford.
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Chandee, Li, Singha-Roy, and I investigate ‘Benfordness’ for positive
integer-valued multiplicative functions.

Here is our strategy:

f is Benford ⇐⇒ log10 f is uniformly distributed mod 1.

By Weyl’s criterion for uniform distribution,

log10 f is uniformly distributed mod 1

⇐⇒ 1

x

∑
n≤x

e2πih log10 f (n) → 0, for all nonzero integers h.

For each fixed h, the function n 7→ e2πih log10 f (n) is a multiplicative
function taking values on the complex unit circle. Halász has a
criterion for when such functions have mean value 0.
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Let F ,G be multiplicative functions taking values in the complex unit
disc. The pretentious distance between F ,G , denoted D(F ,G ), is
defined by

D(F ,G )2 =
∑
p

1−ℜ(F (p)G (p))

p
(∈ [0,∞]).

Theorem (Halász)

Let F be a multiplicative arithmetic function with |F (n)| ≤ 1 for all n.
If D(F , niα) = ∞ for every real α, then F has mean value 0.
Otherwise, there is a unique α ∈ R with D(F , niα) < ∞. In that case,
F has mean value 0 if and only if F (2k) = −2ikα for every positive
integer k.

We apply this to our functions Fh(n) = e2πih log10 f (n). This gives a
criterion for f to be Benford (solely) in terms of the values of f at
primes p.
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While it may seem unwieldy at first, the pretentious distance is
actually a well-behaved quantity. For example, it obeys a triangle
inequality:

D(FF ′,GG ′) ≤ D(F ,G ) +D(F ′,G ′).

This makes it feasible to assess the Benfordity of f whenever we
understand the distribution of f at prime numbers p.
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Theorem (C-L-P-SR)

Euler’s φ function and the classical sum of divisors function σ are not
Benford.

Theorem (C-L-P-SR)

The k-fold divisor function

dk(n) = #{(d1, . . . , dk) ∈ (Z>0)
k : d1 · · · dk = n}

is Benford if and only if k is not a power of 10.

These functions are “trivial” to access on the primes: φ(p) = p − 1,
σ(p) = p + 1, and dk(p) = k.
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Define Ramanujan’s τ -function, τ(n), by the power series identity

∑
n≥1

τ(n)qn = q
∞∏
n=1

(1− qn)24.

It was known to Ramanujan that τ(n) is multiplicative. These are the
coefficients of a holomorphic cusp form of weight 12 and level 1.

In 1974, Deligne proved that |τ(p)| ≤ 2p11/2 for all primes p.
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As of about 10 years ago, it is known that the numbers

τ(p)

2p11/2

are distributed in [−1, 1] according to the Sato-Tate measure

2

π

√
1− x2 dx .

This is a special case of the Sato–Tate conjecture, proved by
Barnet-Lamb, Geraghty, Harris, and Taylor.

This information on the distribution of τ(p) is enough to apply our
criterion, and we find that τ is Benford... relative to the set of n with
τ(n) ̸= 0. (It is still an open problem whether there are any such n.)

Here τ is for purposes of illustration; we can handle other modular
form coefficient sequences for which Sato–Tate applies.
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Thank you for your attention!
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